
  

  

Abstract—The multi-DOF prosthetic hand’s myocontrol 
needs to recognize more hand gestures (or motions) based on 
myoelectric signals. This paper presents a classification method, 
which is based on the support vector machine (SVM), to classify 
19 different hand gesture modes through electromyographic 
(EMG) signals acquired from six surface myoelectric electrodes. 
All hand gestures are based on a 3-DOF configuration, which 
makes the hand perform like three-fingered. The training 
performance is very high within each test session, but the 
cross-session validation is typically low. Acceptable 
cross-session performance can be achieved by training with 
more sessions or fewer gesture modes. A fast rhythm muscle 
contraction is suggested, which can make the training samples 
more resourceful and improve the prediction accuracy 
comparing with a relative slow muscle contraction method. 

For many precise grasp tasks, it is beneficial to the prosthetic 
hand’s myocontrol if we can efficiently extract the grasp force 
directly from EMG signals. Through grasping a JR3 6 
dimension force/torque sensor, the force signal applying to the 
sensor can be recorded synchronously with myoelectric signals. 
This paper uses three methods, local weighted projection 
regression (LWPR), artificial neural network (ANN) and SVM, 
to find the best regression relationship between these two kinds 
of signals. It reveals that the SVM method is better than ANN 
and LWPR, especially in the case of cross-session validation. 
Also, the performance of grasping force estimation based on 
specific hand gestures is superior to the performance of 
grasping with random fingers. 

I. INTRODUCTION 
HE electromyographic signal is a biomedical signal that 
measures electrical currents generated in muscles during 

its contraction representing neuron-muscular activities. 
Detection and analysis of the EMG signal with powerful and 
advanced method is a hot topic today in biomedical 
engineering, especially in the prosthetic hand’s myoelectric 
control. 

Myoelectric control has been widely used in commercial 
prosthetic hands for several decades. Take Otto Bock 
SensorHand [1] for example, one or two electrodes are used 
to capture the EMG signals generating from muscles on the 
surface of the forearm. Then, after extracting some time 
domain features of these signals and mapping these features 
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to the hand actuator’s rotation direction and velocity, the hand 
can be instructed to grasp (or release) an object with typical 
velocity and force. The myo-type prosthetic hand, which is 
activated by the amputee’s residual muscular activities, can 
be recognized as a simple replication of the human hand. But, 
the myohand is not widely accepted by disabled people 
because of its clumsy appearance and deficient functions [2]. 
Advanced development has been done to improve the 
dexterity degree and the grasping functionality by increasing 
the degrees of freedom (DOF) of the artificial hand, as shown 
from the novel Cyberhand [3] or i-limb [4]. But new problems 
of the EMG control policy appeared at the same time. The 
signal obtained by the surface EMG electrode is a summation 
of motor unit action potentials (MUAPs) beneath the 
electrode, which represents a comprehensive effect of many 
motor units' activations. It is quite difficult to acquire 
kinematics information of each joint of the human hand from 
raw EMG signals. 

However, by using advanced machine learning algorithm, 
such as SVM and ANN, to extract useful information from 
multi-channel EMG signal, a novel EMG control of 
multi-DOFs prosthetic hand can be achieved. 

This papers focus on the myocontrol of a 5-DOF prosthetic 
hand based on a powerful pattern recognition algorithm SVM, 
presents some detailed results of predicting 19 hand gestures 
using six-channel EMG signal based on different muscle 
contraction rhythms. It also clarifies the performance of 
estimating hand grasping force from the EMG signals under 
several specific hand gesture modes. 

II. BACKGROUND AND RELATED WORKS 
A novel prosthetic hand, named HIT/DLR Prosthetic Hand, 

has been developed by the State Key Laboratory of Robotics 
and System of China. Its five fingers can move independently 
and its volume is just 75% as a real human hand (Figure 1). 
For its myoelectric control, our previous work [5] combined 
auto- regressive (AR) model parameters with neural network 
(Levenberg-Marquardt learning), can successfully identify 
the fingers’ respective flexion actions of the thumb, the index 
and the middle. It used only two electrodes placed on the 
forearm to acquire proper EMG signals. However, this 
method has some obvious drawbacks: firstly, the control 
strategy is not similar with that of a human hand and only 
three motions can be classified; secondly, only a single finger 
can be controlled at a time.  
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Transient EMG signals can be utilized to recognize 

combining finger actions, such as pinching and holding [6]. 
But, methods of using this kind of signals discarded precious 
steady-state information of EMG signals. This deviation of 
EMG usage will make the recognition system only be able to 
predict the hand’s motions, but not real-time hand gestures.  

Kevin Englehart [7] investigated the different usage of 
transient EMG and steady-state EMG thoroughly, and 
indicated that high classification success rate can be also 
achieved by using steady-state EMG features to train the 
learning machines. Moreover, if we can predict every 
particular hand gesture from moment to moment, and make 
the prosthetic hand follow the human hand’s postures, there 
will be an improved intuitive feeling of the amputee about 
his/her prosthetic hand (extended physiological 
proprioception, EPP [8 ]). Continuous prediction of hand 
gestures based on steady-state EMG signals ensures the EPP 
feelings and enables the myocontrol system more responsive 
and usable. 

For raw EMG signals, a slide window is commonly 
established to extract time-frequency domain features at a 
certain length, such as wavelet coefficients [9], RMS [10], etc. 
Pattern recognition methods (such as GMMs [11], SVM [10], 
etc) are acting on these different feature groups for EMG 
pattern predictions. Sometimes, in order to identify the 
patterns more accurate and avoid some bad effects caused by 
pattern switches, it needs to overlap some decision points 
together within a typical length of decision stream using 
majority vote. But the prediction delay caused by the decision 
overlapping should be also considered. At the same time, the 
inertia of a prosthetic device will serve to smooth the stream 
of class decisions and ignore a few error transition states [7].  

Crawford [10] proposed an SVM-based approach for EMG 
classification using 7 surface electrodes. It can distinguish 8 
different gestures of the hand with an accuracy of 92-98%. 
But half of their discussing gestures were based on the arm 
being pronated or supinated. That made the system less useful 
for the multi-DOF prosthetic hand’s applications. Bitzer [12] 
used ten electrodes to classify six different finger motions, i.e., 
the flexion and extension of the thumb finger, the index finger 
and the remaining fingers, respectively. He also discussed 
some performance differences under several conditions, such 
as different arm gestures (relaxation, pronation) and 

cross-session validations. For his study, it is hard to 
implement some hand grasps which need fingers to cooperate 
with each other. Castellini [13] also used ten electrodes and 
focus on four grasping modes, i.e., grasping by opposing the 
thumb and index finger, grasping by opposing the thumb and 
middle, grasping by opposing the thumb and ring, and 
grasping by opposing the thumb and all other fingers. 
Originally, the regression performance from EMG signals to 
the grasp force of these gesture modes was discussed. 

Among them, Crawford and Bitzer adopted a probability 
estimate to the current classifying class. It can improve the 
recognition system’s reliability by setting its acceptance 
threshold to a high value (0.95). However, we should not 
ignore the existence of idle mode (where all fingers are 
relaxed). For example, errors will occur if some active 
modes’ signals are too similar to the idle mode’s ones. Also, 
the calculation of posteriori probability is so complex that, for 
real-time pattern recognition, it will increase the system’s 
time delay, especially for some embedded applications.  

III. METHODOLOGY 

A. Hand Gestures  
A research on human hand’s grasp function [14] indicated 

that the thumb, index and middle fingers play a relatively 
important role than the others (the ring and little) in most of 
our daily-life hand grasp modes. Although the new 
generation of HIT/DLR Prosthetic Hand has five independent 
moving fingers, it was intentionally configured into a 
three-fingered (three-DOF) type for its EMG control. 
Because our study found it was very difficult to recognize 
each finger’s motion only based on several surface EMG 
electrodes. Specifically, we made the thumb finger, the index 
finger, and the rest fingers (the middle, ring and little) move 
respectively, similar to the design of a fore generation 
HIT/DLR prosthetic hand [ 15 ]. Considering about their 
different state of relaxation, flexion and extension, there will 
be a total of 27 different hand gesture modes (Figure 2).  

If we use 0, -1 and 1 to represent the three DOFs’ different 
states respectively, the precise grip, which the thumb and 
index are opposite from different orientation, can be written 
as (-1, -1, 0), and the power grasp can be written as (-1, -1, -1), 
and so on. Figure 2 shows all the 27 modes divided into 4 
groups (basic, extended I-III) with varying degree of 
performing difficulty. There is also an index (from 1 to 27) 
indicating the training sequence of these modes. This 
arrangement improves the training efficiency in experiments 
and reduces the mental burden of the testers during training. 
Not only single but also joint fingers’ movements are 
included in these modes, which further improve the hand’s 
grasping funcion by EMG controlling. In this paper, some 
hard performing modes which are rarely seen, such as the 
group of extended III, in which the modes need a subject to 
keep the three DOFs with three different states, were 
eliminated from our study. Therefore, a total of 19 modes 

Fig. 1.  The proposed prosthetic hand (left) and a volume comparison to a 
human hand (right).  
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needed to be classified in this paper (include “all relax” mode 
(0, 0, 0), namely the idle mode). The index order of the modes 
was kept still for training, and that made the acquisition of the 
training samples more stable and reliable. 

 
For the estimation of grasping force from EMG signals, 

three closed gesture modes of the hand (index of 16, 25 and 
26) were utilized.  Figure 3 shows these three different modes 
while the subject is grasping a force sensor. 

 

B. Data Acquisition Set up  
The EMG sensors used in this paper were six surface EMG 

electrodes 13E200=50 [16], which were made by Otto Bock 

company in Germany. The electrodes were connected to an 
AD acquisition card (ADLINK PCI-9118HR), which was 
embedded in a computer’s PCI slot, via a self-made power 
supply connector. For the grasping force detection, a type of 6 
dimensional force/torque sensor, made by JR3 [17 ] was 
adopted. The force sensor’s output is between 0~200N (Fz), 
which is larger than a human hand’s grasp force. When the 
force sensor was grasped, the force signal was import into the 
PC via a standard PCI card. The signals of two different 
sensors (EMG and force) were collected synchronously in 
LabVIEW environment with a sample rate of 100HZ. In order 
to facilitate analysis and comparison, we also linearly scaled 
the force AD data into the EMG output range (0~5V). 

C. Electrode Placement  
The placement of the electrodes seriously infects the 

recognition of EMG patterns. Comparing with Bitzer’s 
research, fewer electrodes were used in this paper. It needs to 
prepare the electrodes’ position more carefully. The fingers’ 
flexion or extension motions need different muscles’ or 
muscle groups’ contractions. We chose some muscles where 
the electrode signals can mostly represent their own basic 
gesture modes (Table I) and hardly interfere with the others. 
Based on this criterion, five muscles on the forearm were 
adopted and six electrodes were put upon the bellies of these 
muscles. Specially, we chose the flexor digitorum superficials 
(the same muscle but different position) to take charge of both 
the index’s and the rest fingers’ flexions. Figure 4 and Table I 
shows exactly the electrodes’ placement and corresponding 
muscles and modes. 

 

 
D. Support Vector Machine  

The SVM [18] has proved to be a powerful and efficiency 
tool for classification tasks. It has so many applications in the 
field of artificial intelligence. We used a type of classification 
SVM named C-SVM to recognize the EMG patterns stated 
before. We chose RBF as the kernel function, and used 
one-against-one method to solve multi-mode classification. A 

 
Fig. 2.  All hand gesture modes under three-DOF configuration. Note that the 
modes of 5, 6, 12, 13, 14, 17, 21, 22 (lower contrast) is not discussed in this 
paper. 

  
(a) (b) (c) 

Fig. 3.  Hand grasp modes applied on the force sensor. (a) grasp by opposing 
the thumb and the rest three fingers (-1,1,-1). (b) grasp by opposing the thumb 
and index finger (-1,-1,0). (c) grasp by opposing the thumb and all the other 
fingers(-1,-1,-1). 

Fig. 4.  The placement of surface EMG electrodes on the forearm.  

TABLE I  
The related muscles and corresponding basic modes 

 Name of the muscle Corresponding mode 
1 
2 
3 
4 
5 
6 

Extensor pollicis brevis 
Flexor pollicis longus 
Extensor indicis proprius 
Flexor digitorum superficialis (distal) 
Extensor digiti quinti proprius 
Flexor digitorum superficialis (proximal) 

Extend thumb (1,0,0)
Flex thumb (-1,0,0) 
Extend index (0,1,0) 
Flex index (0,-1,0) 
Extend rest (0,0,1)  
Flex rest (0,0,-1) 
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regression method, ε -SVR with RBF kernel function, were 
used for the estimation of hand grasping force. For the 
optimization of a pair of parameters, the penalty parameter C 
and kernel function coefficientγ , we made an exponential 
grid research with 4-fold cross validations. 

E. Experiment Set up 
We split our experimental research into two different 

topics. One aimed to get the cross-session classification 
performance with two different training strategies (slow and 
fast rhythm muscle contraction), and the other discussed the 
regression performance from EMG signals to grasping force 
under several grasp modes. A healthy subject was selected for 
our tests. The ‘session’ meant a period of EMG data 
acquisition, in which each concerned hand gesture were 
performed by the subject for a typical length of time (in this 
paper, 10 seconds).  

For the first topic, the experiment was combined of four 
test groups. The six electrodes were removed from the 
forearm for about two hours and placed again in the group 
intervals. Each group was composed of 3-4 test sessions (4 
sessions each in the first two groups and 3 sessions each in the 
last two groups). Among these sessions, the subject got half 
an hour rest without the electrodes being removed. In each 
session, we collected a total of 360 seconds EMG data, i.e., 10 
seconds data for each hand gesture (not include the idle 
mode), respectively on two different muscle contraction 
rhythms (nearly 0.3Hz and 2Hz). We expected that the fast 
rhythm contraction would raise the muscle fatigue easily, thus 
makes the training samples more plentiful. The subject’s 
forearm for test was put on a desk with the palm orthogonal to 
the desk’s plane. This posture was persisted for performing 
all hand gestures.   

The eight sessions of experiment group 1 and group 2 was 
accompanied by force data collection. The subject was 
notified to grasp the force sensor’s two large faces (Figure 3), 
complying with the grasp modes, for nearly ten times with 
different scale of grasping force (0-60N, Fz direction). We 
also discussed a regression performance of another grasping 
strategy, in which the subject randomly grasps the sensor 
without specific modes. So, a total of four grasping modes 
(three from Figure 3 and a random grasping with random 
fingers and force) were concerned, and each of them lasted 10 
seconds in every session.  

IV. EXPERIMENT RESULTS  
A. EMG Pattern Recognition  

For the total 14 sessions, we used each session’s EMG data 
to train a C-SVM (C=32, γ =0.125), and used the C-SVM to 
predict the EMG modes of all sessions (that is called 
cross-session validation). All training and predicting were 
acted on the threshold dataset, which was defined as a subset 
of the acquired EMG data (360 second in length). The subset 
only contained the sampling points whose element (or 
elements) exceeded its own threshold. The threshold was set 

to the EMG value range’s 1/5 of its corresponding channel. 
Based on this operation, for a 6-dimension EMG signal vector, 
if all element values are bellow their own channel’s threshold, 
the date point will be treated as idle mode (0, 0, 0) and not 
used for training and predicting. Here we define that the 
success rate is the sum of right predict points divided by total 
points’ number in each session’s threshold dataset. Figure 5 
illustrates the success rates of both training within session and 
predicting cross-sessions. FS means training with fast rhythm 
(2Hz) data, but validating with slow rhythm (0.3Hz) data. 
Similar expression can be seen from FF, SF, and SS. 

From Figure 5, we can see that the training success is very 
high (nearly 99%), both on the condition of fast and slow 
rhythm muscle contraction. But the cross-session validation 
success rate is typically low (70%), especially in different 
groups which the electrodes were reconfigured. The 
validation from the same group is relatively high (80%). The 
fast rhythm training is better than slow rhythm training 
according to the cross-session performance (FS diagonal>SF 
diagonal, FF rest >SS rest).  

 
B. Grasping Force Estimation  

We adopted an ε -SVR algorithm (C=32,γ =0.01,ε =0.1) 
for the regression from EMG signal to the grasp force. 
Methods of LWPR and ANN were also used for comparing 
with the ε -SVR method. For the ANN, we used a 
feed-forward neural network with 6 inputs, 15 sigmoidal 
hidden units, and 6 linear outputs. The training method was 
Levenberg-Marquardt algorithm [ 19 ], and the learning 
stopping criteria, mean squared error (MSE) of the training 
target and prediction result, was set to 0.1 to avoid over fitting 
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of the network. For the LWPR, We chose the RBF kernel and 
meta-learning, performed a 5-fold cross-validation, and 
found the initial values of the distance metric for receptive 
fields by grid search (0.5 is perfect for our research).  

Because there were two different grasp strategies, i.e., 
grasp complying with gesture modes in Figure 3 and grasp 
with random fingers and force, we constructed two regression 
machine models (LWPR, ANN and ε -SVR, respectively),  
for these two different situations. That is, using each session’s 
30 second length EMG-force data (regularized gesture modes) 
to train the first model, and using the remaining 10 second 
length EMG-force data (randomized grasping) to train the 
other model.  

Figure 6 shows the regression performance of the first 
models training within sessions and estimating cross sessions 
with two standard indicators of performance: 

1) The mean squared error (MSE) in its standard definition; 
2) The squared correlation coefficient (SCC) between the 

training target and the predicted force result. 
 

 
In each group, there is no clear validation out-performance 

of the three methods, only the SVM cross-session validation 

is slightly better. But if taking the cross-group performance 
into consideration, SVM method is obviously better than the 
other two methods. As a whole, using SVM can achieve an 
acceptable cross-session performance as MSE: 0.1329 
±0.0233 (group 1) and 0.1004±0.0321 (group 2), SCC: 
0.9063±0.0147 (group 1) and 0.8985±0.0329 (group 2). 

For the second ε -SVR model, the system’s cross-session 
SCC reduced to 0.8655±0.0232 (group 1) and 0.8131±0.0541 
(group 2) respectively, MSE increased to 0.1753±0.0399 
(group 1) and 0.2173±0.105 (group 2). The ANN and LWPR 
performed even worse in cross-session and cross-group 
situations. 

V. DISCUSSION 
Only SVM method was used to identify the EMG hand 

gesture modes in this paper. Because so many researches 
revealed that the SVM method outperformed some general 
pattern reorganization methods, especially in the multi-mode 
and few training sample tasks. Even so, for the 18 active 
EMG modes, the cross-session performance is relatively low, 
not because of only the EMG signal’s random and 
time-varying properties, but also insufficient training samples. 
We attempted to use more training sessions in every group, 
for example, three sessions for training and the rest for 
validation, a higher success rate (nearly 93%) can be gotten. 
Moreover, by reducing the modes (only basic modes and grip 
(-1,-1, 0), total 9 active modes), the cross-session success 
rates are 85.88%±8.34% (inter-group) and 93.1±5.1% 
(intra-group). Training with fast rhythm muscle contraction 
also outperforms training with the slow rhythm in all of these 
cases.  

For the estimation of the grasping force, because the 
training data of two grasp strategies are different in size (30 
seconds and 10 seconds), we tried to use more sessions to 
train the second ε -SVR model. For example, using three 
sessions’ data to train and the rest session’s data to validate, 
we can get a performance of MSE: 0.1401±0.0299 (group 1), 
0.1628 ±0.0379 (group 2), SCC: 0.8822±0.0149 (group 1), 
0.8413 ±0.0432 (group 2), which is still worse than the first 
ε -SVR model’s achievement. But, if we construct an 
independent ε -SVR model for each hand gesture mode in 
Figure 3 (that is, three modes for three hand gestures in each 
session, respectively), the validation performance is better in 
some gesture modes (Figure 3-a, Figure 3-b), which is shown 
in Table II. 

 

TABLE II 
Force regression performance of cross-session validation within three gesture 

modes from Figure 3 
gestures  Figure 3 (a) Figure 3 (b) Figure 3 (c) 
MSE:    
group 1 0.1489±0.0535 0.0818±0.0344 0.2618±0.1262
group 2 0.1058±0.0483 0.0889±0.0340 0.1646±0.0785
SCC:    
group 1 0.9137±0.0123 0.9236±0.0180 0.8826±0.0418
group 2 0.9182±0.0151 0.9156±0.0328 0.8573±0.0888
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Fig. 6.  Cross-session validation of MSE (left column) and SCC (right 
column) using LWPR (a, b), ANN (c, d) and ε -SVR (e, f). 
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VI. CONCLUSIONS 
Throughout our study, the fast rhythm training (1 Hz 

muscle contraction) method will get better cross-session 
performance than slow rhythm (0.3 Hz). Using C-SVM 
method, the recognition of 18 active gesture patterns can 
achieve at 82.5%±5.4% (validation the success rate within 
each group). More training sessions or fewer gesture modes 
can increase the success rate to 93% (three sessions for 
training 18 modes, or one session for training 9 modes). 
Because of low validation success rate cross groups 
(60%~70%), it is recommended that re-training the SVM 
when the electrodes’ positions are changed. Our grasping 
force regression study shows that: training with grasp modes 
is better than without modes; hand gesture performed by 
fewer fingers achieves better results; and the SVM method 
outperforms ANN and LWPR with a strong generalization 
capability.  

Based on this paper, an intelligent EMG control scheme 
can be implemented to recognize the hand’s gesture and 
grasping force simultaneously. That makes a big 
improvement to current multi-DOF prosthetic hands’ 
myocontrol. Future work will concentrated on validating this 
method on patients. 
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