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Abstract— In this paper, we present an application to Search
and Rescue of a task negotiation protocol for teams of hetero-
geneous robots. Self-organization through autonomous negoti-
ations allow the robots to assign themselves a number of target
observation points decided by the operator, who is relieved
from deciding the optimal assignment. The operator can then
focus on monitoring the mission and deciding next actions. The
protocol has been tested on both computer simulations and real
robots.

I. INTRODUCTION

Multi-robot systems (MRS) are a very active field of
research. A variety of techniques have been proposed in
order to approach the problem of coordination in different
kinds of applications [1]. Cooperation applications can be
roughly divided in two classes: tight cooperation requires a
continuous coordination between the robots, like for instance
in box pushing and formation keeping. Loose cooperation
requires coordination at the beginning of the mission for
planning a division of labour, and at given moments of times,
when re-planning may be needed. Exploration and mapping
are typical applications.

In this work, we focus on exploration, with an application
to Search and Rescue (SAR) with a team of heterogeneous
robots. The mission is to explore and map a disaster scene
in semi-autonomous mode. An operator at the command and
control center receives the information of robots’ positions
and status, partial maps and other sensory information, and
have to analyze such information in order to guide the search
process. One of his/her duties is to decide to which points
of the scenario to send the robots for further exploration,
being it mapping an unexplored part or revising an interesting
feature (e.g. a possible victim). Once target locations have
been decided and assigned to individual robots, these can
navigate autonomously to their destinations.

In order to aid the operator in such process and reduce
his/her workload, it would be useful to consider the team as
a whole, and assign the objective points to the team, instead
of deciding for each individual point which is the robot that
shall go. Once the team has received the task, it can decide
which is the most suited robot for each of the points, taking
into account the robots’ preferences and limitations w.r.t, e.g.
locomotion, sensors, battery status, distance, and achieving
an optimal allocation.

*Robotics and Cybernetics Research Group, UPM
**Intelligent Control Research Group, UPM

In other words, a given task, consisting in a set of target
points, has to be partitioned in sub-tasks, and sub-tasks
have to be assigned to individual team-members for being
executed. Market-based [2] and auction [3] techniques are
commonly used in this class of problems. Most of the
coordination techniques assume that the task subdivision step
is performed at a high-level, either by a command and control
station or by a specific team-member, and focus on the sub-
task allocation problem.

In recent work [7] we have developed a distributed nego-
tiation algorithm that performs a simultaneous task subdivi-
sion and allocation, taking into account robots preferences
already in the task partitioning stage, and not only after the
partitioning has been performed and robots have to bid for
the subtasks.

The protocol relies on an abstract concept of task, and the
negotiation algorithm based on such an abstraction allows
different applications with minimal changes. Let us clarify
that, in the context of loose cooperation, with task we
mean the object to be divided, and not the activity to be
performed on such object. In the exploration task object of
this paper, we are mainly interested in partitioning the set of
target points and assigning subsets to the agents. The role
of their preferences (for instance w.r.t. their capabilities) is
encapsulated in the cost/reward the agents associate to the
set of points.

Negotiations have been widely studied in the context of
socio-economic studies [4] using, amongst others, Game
Theory [5]. An example of recent application is electronic
commerce using agents [6]. The main problem with game
theory approaches is that the theoretical results obtained
refer to very simplified models that are not immediately
applicable to complex applications. The protocol we propose
is based on Rubinsteins alternate-offers protocol [8]. Since
Rubinstein’s protocol is based on a uni-dimensional good,
a search mechanism for the best (counter)-offer had to
be devised for the protocol to be applied in real multi-
dimensional tasks.

In the following, we will first present our definition of
task, how agents take into account costs and rewards to
evaluate (sub-)tasks and the negotiation protocol. Section II
also describes the representation of the exploration problem
with our system. The results of preliminary experiments
we have performed to tune and validate the algorithm are
described next. Section IV describes the test performed with
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real robots. Finally, Section V reports the experiments we
have performed using the simulation environment used in
the RoboCup Rescue competition [10].

II. TASKS AND TASK NEGOTIATIONS

We define a task T as an element of a set TT, T ∈ TT. An
element of TT is described by a set of k parameters x ∈ IPk

(without loss of generality we can assume they are all of the
same type –in most practical cases x will be an array of real
numbers: x ∈ IRk). Then we can write T = T (x), that is,
we consider that a task T is the product of a function that
maps a set of parameters into a task: T : IPk → TT. A task
T has to be divided in R subtasks: T (x) = {T1, . . . , TR}.
Each subtask Ti, i = 1..R, can in turn be described by a set
of parameters xi:

T (x) = {T1(x1), . . . , TR(xR)}

In general a good subdivision is such that there is minimum
overlapping between sub-tasks (ideally null), and such that
the subtasks cover the original task. That is,

Ti ∩ Tj = �, ∀i, j = 1 . . . R and

R⋃
i=1

Ti = T

where the operators ∩,∪ : TT × TT → TT are to be defined
according to the meaning of the task. In this application a
task is a set of target points to be visited, and the intersection
ad union of two tasks are the normal set operations. Thus,
the objective of the task partitioning is having subsets of the
target points assigned to the robots, in such a way that robots
have not points in common, and all the points are assigned
to a robot. Let g : TT → IR be a reward function, giving the
value of a (sub)task. Then, the function

f : IPk → IR = T ◦ g

associates a reward to a set of parameters describing a task.
We associate to a subdivision T = {T1, . . . , TR} an index
called global coverage G, that takes into account the total
coverage of the subtasks and their pair wise overlapping.

G =
R∑

r=1

f(xr)−
∑

i

∑
j 6=i g(T (xi) ∩ T (xj))

2

Then, the problem of task subdivision can be formulated
in the following way:

Given a task T and a number R of agents, find the R sets
of parameters xi, i = 1 . . . R, such that G is maximized:

maxx1...xr
(G).

Note that G is a global performance index. During the
negotiation, each robot uses its own reward function gi to
evaluate a task. Hence, the robots can give a different value
to the same task, depending on their characteristics.

Fig. 1. An example of the scenario: a team of robots is assigned a group
of target points to visit (typically along the frontiers, i.e. the limits of the
explored area, or locations where interesting features shall be analyzed, such
as potential victims.

A. Evaluation of a task

As mentioned earlier, during the negotiation each robot has
to evaluate the cost and reward of a given task. To this aim, it
takes into account its internal parameters to evaluate the cost
of executing the task, the start-up cost (for instance, to reach
the execution site), specific constraints (e.g. forbidden zones,
turn angles, sensors) and the general reward associated to the
task (expressed as function g).

Thus, given the complete task T, evaluation function gi of
subtask Si for agent i takes the form:

gi(Si) = g(Si) + dim(Si)−
∑
j 6=i

g(Si ∩ Sj)− C

where dim() is a dimension measure. In this case, dim(Si) is
the number of points of Si normalized w.r.t. the total number
of points, and function g(Si) the total distance to be travelled
to visit all the points is Si normalized w.r.t. the length of the
minimum tour that connects all the points of T . The last
term defines the penalty for overlapping sub-tasks (points in
common with other robots). Finally, element C accounts for
the constraints. All terms have a weight factor used for tuning
the mission-specific behavior not expressed in the equation
for simplicity. More factors can be included in function gi

for other mission-specific costs or rewards.

B. Task Negotiations

A given task T can be executed by a team of R robots,
after a suitable subdivision of the task has been performed,
and an assignment of the subtasks to the robots have been
established. Our aim is to perform these two actions simulta-
neously and in a distributed way. In our system, the number
of sub-tasks is determined by the number of robots willing
to participate in the negotiation. In the following, we will
describe the negotiation protocol for the case R = 2.
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We assume that robots aim at maximizing their reward, the
only limitations being their available resources (endurance,
computation power, battery consumption etc.). Thus, in a
negotiation, each agent will try to maximize its reward
by (i) trying to get the biggest possible subtask and (ii)
minimizing overlapping with other agents task. Each agent
starts proposing the biggest possible share for itself, and
reduces it until the counterpart finds it acceptable. In this
way, a good near-optimal solution can be achieved, and
global index G is optimized in a distributed way, without
even being computed explicitly.

Fig. 2. Architecture of the negotiation module.

Fig. 3. Negotiation protocol. The first counteroffer is the maximum possible
for the robots

In the alternate-offers protocol proposed by Rubinstein,
each part of the bilateral negotiation, in turn, proposes
a subdivision of a uni-dimensional good of size 1. The
responder can agree with the subdivision, or disagree with
it, and in this case it has to propose a counteroffer. The

protocol assumes that each part has a target (desired) reward,
and a negotiation cost called discount factor that makes
the target reward decrease at each step, imposing a time
pressure to the reaching of an agreement. Such protocol
has interesting theoretical properties. By applying discount
factors as negotiation cost, it guarantees a termination and
can forecast the final agreement, which will be a perfect
equilibrium in the sense of Game Theory.

However, the theoretical results are not immediately appli-
cable to the multi-dimensional case. In the multidimensional
case, given a proposal x ∈ IPk on the whole task T0, an
agent shall search the space T0\T (x) to decide if the share
it would get is acceptable and to generate a counteroffer,
since many different configurations are possible.

Thus, we divide the negotiation in two levels: the protocol
level and the proposals evaluation and generation level (see
Fig. 2). The protocol level is governed by parameters such as
impatience to reach an agreement (time pressure as discount
factor) and desired target reward. Moreover, at each new offer
received, it estimates the other agent’s discount factor, which
is private information, in order to estimate the maximum
possible share it can expect, according to Rubinstein’s theory,
and updates its desired share accordingly. The protocol is
depicted in Fig. 3.

The proposal generation level searches the space for a
good share given a proposal from the other part, taking into
account its own resources, parameters and limitations. This
level is also responsible for updating counteroffers. In fact,
in a multi-dimensional space there are may ways they can be
updated. In this level a search procedure is implemented that
looks for the best combination of parameters x ∈ IPk that
maximizes its objective function gi. In the current implemen-
tation, this search is performed by a heuristic algorithm that
calculates the minimum path to visit all the points that are not
claimed by the other negotiators. The update function aims
at reducing the offer in such a way to reduce the overlapping
(points in common).

In case R > 2, negotiation rounds can be performed.
Each robot, in turn, makes its proposal. If everybody agrees
the negotiation ends, otherwise offers are reduced in the
following round.

When an agreement has been reached, the result is a
subdivision of the original task and at the same time an
assignment of the sub-tasks. Note that one agent does not
need to know information about the private characteristics
of the team-mates. The only information it needs is their
offers, in form of an array of parameters x ∈ IPk.

III. SIMULATIONS RESULTS

In order to assess the effectiveness of the proposed pro-
tocol, we have performed some simulations with a varying
number of randomly positioned target points and different
initial position of the robots. We have compared the total
distance that the robots will travel in case of negotiated al-
location and the optimum total travel distance. The optimum
has been computed with a simple enumerative algorithm that
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guarantees to find an optimal allocation. Only Euclidean
distance has been considered for the comparison. All the
robots used the same discount factor δ = 0.988. The
percentage of additional path that the robots have to travel
w.r.t the optimal solution is reported in Table I. All entries
are the average over 10 runs 1.

Roughly, if we consider the total distance travelled, the
solution agreed is worst of by a factor between 30% and
60%. However, if we consider the longest path travelled by
each robot (that relates to mission time), the difference is
reduced to 5% − 10%. This happens because, depending
on the positions of the robots and of the points, often it
is cheaper to let fewer robots visit many points, for example
if the points are close to each other. In this case, the total
distance travelled is lower, but the individual paths of the
robots are longer (consider the extreme case of one robot
visiting all the locations). Clearly, such kid of solutions are
not desirable since imply a lower degree of parallelism, to
the extreme case that some of the robots are not employed
at all. The longest path relates to mission time, which
sometimes can be a crucial factor, as in the case of the
robocup competition. The plot of Figure 4 shows the average
difference between the optimum solution and the result of the
negotiations, for a fixed number of robots.

TABLE I
RESULT OF THE NEGOTIATION W.R.T OPTIMAL SOLUTION: TOTAL

DISTANCE. PERCENTAGE OF ADDITIONAL PATH TRAVELLED.

No. of Number of points
robots 2 3 4 5 6

2 28% 56% 19% 38% 50%
3 35% 34% 15% 29% 55%
4 27% 55% 23% 61% 64%
5 28% 46% 19% 55% 64%
6 28% 47% 21% 65% 60%

TABLE II
RESULT OF THE NEGOTIATION W.R.T OPTIMAL SOLUTION: LONGEST

PATH OF THE ROBOTS. PERCENTAGE OF ADDITIONAL PATH TRAVELLED.

No. of Number of points
robots 2 3 4 5 6

2 5% 12% 12% 6% 9%
3 5% 8% 8% 13% 11%
4 9% 9% 9% 10% 8%
5 10% 12% 12% 7% 8%
6 10% 8% 9% 14% 9%

IV. EXPERIMENT WITH REAL ROBOTS
We have deployed the negotiation agents on a fleet of mo-

bile robots (WiFiBots 4G, equipped with electronic compass
and GPS for self-localisation) running suitable navigation
software developed in the framework of the project.

The scenario was composed of three robots an five target
points, located on an area of 15×15 meters. Figure 6 shows

1Here, we are comparing only the quality of the final solution. As
far as computational efforts is concerned, it is worth noting that finding
the optimum assignment took up to two orders of magnitude longer than
negotiation time.

Fig. 4. Detail of total distance travelled for three robots. Average over ten
runs.

two different allocations, depending of different parameters
settings (discount factor of the robots). In this experiment the
optimum solution as far as total travelled path is of 15.58
meters, while the total travelled distance of the negotiated
allocation was of 17.87 (left) and 18.01 meters (right),
approximately 15% longer than the optimum. The mission
time, accounted for as the longest path of the individual
robots, was of 28.16 seconds for the optimum solution
(corresponding to the time it takes robot R2 to complete
its task, for a travelled path of 9.29 meters), while it was of
26.81 seconds for the negotiated solution (corresponding to
the time it takes robot R1 to complete its task, for a travelled
path of 8.85 meters), approximately 4% slower.

This experiment also shows how the sub-task allocation
depends on the discount factors of the robots. In fact,
different discount factors lead to different expected values, as
described earlier. Thus, agents can accept solutions that are
worst for them, if they are more impatient. In the example
shown in Figure 6 it is clear that the two rightmost robots
(robot R2 and robot R3) agree to leave point P4 to the
teammate according to their discount factor: the one with the
smaller discount factor (i.e. the most impatient) gives up the
negotiation earlier, getting a smaller share of the task. Figure
5 shows the detail of the last negotiation step. The target
rewards are computed according to Rubinstein’s theory as
M1 = 0.4,M2 = 0.4,M3 = 0.2. The share S2 = {P3, P4}
robot R2 ask to robot R3 is rejected by this, since the share
it would get, S∗3 = {P5} has a value g3 = 0.13 which
is smaller than its target reward M3 = 0.2. However, R3
then updates its previous offer releasing point P4 (note how
the value of the new proposal g(t=15) is δ3 smaller then the
previous g(t=14)). Such proposal is accepted by R2 since the
value it gets is higher the its target reward.

V. AN APPLICATION TO SEARCH AND RESCUE

As an application of the target points negotiation, we im-
plemented the negotiation capability as a module of the open
RDK architecture [9] in the multirobot system used in the
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Fig. 6. Snapshots of the tests with real robots. Different solutions are agreed according to the impatience of the negotiators. In this example δ1 =
0.887, δ2 = 0.877, δ3 = 0.867 (left) and δ1 = 0.887, δ2 = 0.867, δ3 = 0.877 (right). Green cones represent target locations, and superimposed lines
represent the final allocation.

Caso 1: d1=0.887,  d2=0.877 y d3=0.867 

M1=0.4, M2=0.4 y M3=0.2 

!

!

Robot 2 

S2={P3,P4}!

evaluate 

=T\(S1  S2)= ={P5} 

g( )=0.05 

g3( )=0.13<0.2=M3 

Rejected 

update!

S3={P5} 

evaluate 

Iteration 15 

Iteration  16 

=T\(S1  S3)={P3,P4} 

g(( ))=0.12 

g2(( ))=0.52>0.4=M2 
Accept!

Negotiation ends  

Robot 3 

[g(S3
(t=15)

)=!3·g(S3
(t=14)

)] 

S3
(t=14)

={P4,P5} => S3
(t=15)

={P5} 

g(S3
(t=14)

)=0.1176 => g(S3
(t=15)

)=0.1019 

g3(S3
(t=14)

)=-0.08 => g3(S3
(t=15)

)=0.30>0.2=M3 

"! "!

Fig. 5. Detail of the last negotiation steps between robots r2 and R3 for
assignment of Fig. 6 (left). Both robots R2 and R3 want to visit point P4.

context of the robocup rescue [10] competition (”simulation”
league).

In this system, the human-robot interface consists of a base
station that allows the operator to monitor the progress of the
mission, know the status of the robots, give directives to them
and even tele-operate them (see Fig. 8). Such interface allow
choosing between four operation modes: the tele-operation
and safe-teleoperation allow to operate only one robot. The
safe tele-operation consists in using robots navigation sensors
to override commands in case on danger (e.g. proximity to

a wall causes the robot to stop despite ordered to advance).
On the opposite side, in the autonomous mode, the robots
explore the area choosing autonomously the locations to
explore. In the semi-autonomous mode, the operator specifies
a number of interesting locations that the robots shall visit,
and robots navigate autonomously to them. In the latter
operation mode, the operator has to specify which robot
goes to which points. In the case the number of robots
composing the team grows, it become increasingly difficult
for the operator to control them, even in the case of semi-
autonomous mode. For this reason, we propose to exploit
our robot-coordination mechanism and give the operator the
vision of the team as a whole: the operator decides the
locations to be visited (the task), and let the team organize
itself in order to accomplish with the task, thus reducing the
operator’s overload. Figure 9 shows two stages of a test. The
square in the center are the robots, and the crosses are the
points the operator would like to be visited to enlarge the
explored area and to check a possible victim (bottom-right
location, see also Fig. 7).

Fig. 7. Example of the USARSim simulated world.

5872



Fig. 9. Allocation of target points in robot search and rescue: initial (left) and final (right) configuration. The operator indicates the locations to be visited
by the team (crosses of the left image) and the robots autonomously decide a subdivision. The image on the right shows the robots final positions and
path travelled. Note how the map is updated as consequence of the exploration.

Fig. 8. The interface used in robot rescue. The user has different views of
the explored area and monitors mission and robots’ status information.

VI. CONCLUSION

We have presented a negotiation mechanism capable of
partitioning a given task among a group of robots. The
algorithm is distributed and takes into account the robots’
preferences and limitations. In this work we have applied
the task negotiation to semi-autonomous exploration.

The exploration and mapping task is a classic applica-
tion on multi-robot systems, since the advantage of using
multiple agents working simultaneously is evident. In semi-
autonomous exploration, such as search and rescue, an oper-
ator monitor the evolution of the mission and take decisions
on where to send the robot to explore. However, controlling
multiple robots is not a trivial task, even in the case their
number is not high, and for three or more robots it becomes
quite difficult. Thus, the idea is to provide the team with
self-organizing capability, and allow the operator to consider
the team as a whole, reducing his/her workload.

In these experiments, only euclidean distances were con-
sidered in the cost function. However, the system is intended

to work considering the estimation of real distances by the
robots and/or resources needed to reach them, which can be
easily done by simply changing the Euclidean distance func-
tion with any other more sophisticated function. Although the
negotiated solution is not optimum, it does achieve a good
task partitioning, if we consider mission time and degree of
parallelism in the execution of the task.

Future work will be aimed at testing the system in the
robocup competition, and at incorporating actual robot status
information such as battery level for the evaluation of a task
in the experiments with real robots.
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