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Abstract—
Human movement analysis through vision sensing systems

is an important subject regarding Human-Robot interaction.
This is a growing area of research, with wide range of
aplications fields. The ability to recognize human actions using
passive sensing modalities, is a decisive factor for machine
interaction. In mobile platforms, image processing is regarded
as a problem, due to constant changes. We propose an approach,
based on Horopter technique, to extract Regions Of Interest
(ROI) delimiting human contours. This fact will allow tracking
algorithms to provide faster and accurate responses to human
feature extraction. The key features are head and both hand
positions, that will be tracked within image context. Posterior
to feature acquisition, they will be contextualized within a
technique, Laban Movement Analysis (LMA) and will be used
to provide sets of classifiers. The implementation of the LMA
techquine will be based on Bayesian Networks. We will use
these bayesian classifiers to label/classify human emotion within
the context of expressive movements. Compared to full image
tracking, results improved with the implemented approach, the
horopter and consequently so did classification results.

I. INTRODUCTION

Human movement analysis is an active area of research
with a growing number of surveys. Gavrila [4] points out
that the ability to recognize human movements and their
activities using passive sensing modalities, namely vision,
is a key factor for machine interaction in an inteligently
and effortlessly fashion within a human-inhabited environ-
ment. Human-machine interaction can beneficiate from this
simple sensor, allowing ’communication’ to become easier
and uncumbersome. This work uses a technique, Laban
Movement Analysis (LMA), to analyze human gestures. A
classifier was implemented based on LMA, which uses low-
level-features (LLF) as the very basic level to characterize
human emotion within the context of expressive movements.
These descriptors will be extracted from spatial trajectories
generated by specific body parts along the time. The key
body parts to be tracked are the head and both hands. To
acquire the body part trajectories, two sensing modalities
are used: vision and magnetic sensor. However, in mobile
human-interacting platforms, image processing can pose as
problem, due to dynamic characteristics of the elements in
the image. This work proposes the use of the geometric
horopter defined by the vision system to extract, via signal
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processing, Regions Of Interest (ROI) delimiting human
contours. As a consequence, the tracker will no longer search
the entire image, rather it will be confined to the computed
ROI. This fact will improve the tracking algorithm speed and
accuracy to body part position extraction.

II. BASIC CONCEPTS

A. Laban Notation and Bayesian Approach

Laban Movement Analysis (LMA) is a method to observe,
describe, notate and interpret human movement, developed
by Rudolf Laban (1879 to 1958). The general framework
is widely applied in physical and menthal therapy [1] as
well as studies of dance, however, it has found little appli-
cation in the engineering domain. A recent study by Rett
J. [8], explored how LMA can be used to classify human
expressive movements within human-machine interaction. A
robot interface was developed with the capability to interpret
a set of basic human movements. Rett’s work also states
that LMA has the potential to analyze emotional content of
human actions.

Laban theory consists of several major components,
though the available literature does not set a standard re-
garding their total numbers. The work of Norman Badler’s
group [10, 2] mentions five major components.

Non kinematic components: Body specifies which body
parts are moving, their relation to the body center; Space
deals directly with the trajectory executed by the body parts
while performing a movement. Within the Kinematic ones
there are: Effort which deals with the dynamic qualities of
the movement, and the inner attitude towards the use of
energy; Shape (emerging from Body and Space) is focused
on the body itself. The fifth component is Relantionship
that appears as the less explored one, and describes the
interaction with oneself, others and the environment. Some
literature only considers the first four mentioned components
[3]. The Space component has already been studied by
Rett et. al. [6], though in his recent study [8], space was
left for improvement on the Effort component, in order to
study the emotional content of expressive movements. The
Effort component will be the main focus within movement
analysis in this work, hence a short description will follow.

Effort
What makes the framework of LMA so special is its ability
to describe an additional ’expression’ that accompanies the
spatial trajectory (Space component). By retrieving some
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TABLE I
Effort QUALITIES AND THEIR SUBJECTS

Effort Cognitive process Subject Extremes
Space Attention The spatial

orientation
focused or
non-focused

Weight Intention The impact strong or light

Time Decision The urgency urgent or
non-urgent

Flow Progression How to keep
going free or careful

Fig. 1. The bipolar Effort qualities of the Action Drive, i.e. Flow = neutral
(omitted) represented as a cube. The position of the movement M (punch)
indicates its qualities, i.e. direct, sudden and strong.

evidences about the emotional state or the intention of
the performer, the Effort component can be seen as the
key descriptor to solve the task of analyzing ’expressive
movements’.

Effort describes the dynamic qualities of the movement
and the inner attitude towards using energy. It consists of
four Effort qualities: Space, Weight, Time, and Flow. Table I
shows the Effort qualities, the underlying cognitive process,
the subject and the two extremes each quality has [1]. Each
quality is bipolar and lies between two extremes. The values
for the Effort qualities are shown in (1)

Space ∈ {direct, neutral, indirect}
Time ∈ {sudden, neutral, sustained}

Weight ∈ {strong, neutral, light}
Flow ∈ {bound, neutral, free}

(1)

Movements are described and distinguished by those qual-
ities close to an extreme, e.g. a Punch has Strong Weight,
Sudden Time and Direct Space.

Combinations of all four qualities rarely occur as they
produce extreme movements (e.g. tearing something apart)
[1]. Single-quality movements are also rare [1] [10]. Com-
binations of three qualities, with the fourth considered to
be neutral, appear to be the most natural way to perform
an action. These combinations of three Effort qualities can
be divided into four cathegories: Action Drive, Weightless,
Timeless and Spaceless, considering as being neutral, the
Flow, Weight, Time and Space respectively. Each of these
combinations, can be modulated to define a 3-D space, a
cube where each vertex represents a sub-component (Fig.
1).

Fig. 2. a) Depth map (’hot’ colors represent nearest areas, ’cold’ colors
represent further ones; b) Dominant eye raw image

B. Interaction Zone and Dynamic Backgrounds

In order to human-robot interaction occur, the robot needs
to identify the subject with whom it will interact. This
process usually involves video sensing.

The system is implemented in a mobile platform, and the
use of a monocular vision system has inherent problems. The
extraction of a person from the image demands more com-
plex image processing due to dynamic characteristics (other
people and/or skin color like objects) of the background.
Algorithms based on haar-like features and color filters have
their application compromised. This means that an approach
based on static background, as in [9] and [7], is not possible.

The challenge was thus to have a robust real time solution
for dynamic background segmentation on mobile robotics.
It was decided to base our approach on the Geometric
Horopter.

The first step of this technique uses stereo vision to
generate a depth map. In Fig.3 a) the depth map resulting
from the application of this algorithm is presented, whilst the
right side shows the image from one of the stereo cameras.

Within the application of the horopter a new definition
is introduced, the interaction zone. A circumference will be
defined from the geometric setup of the system, and its inner
area defines the interaction zone. Any subject that intents to
interact with the system must lie inside this circumference.
The geometry behind this definition is explained in the
following section.

C. Geometrical Horopter

1) Horopter Segmentation :
a) Properties of ViethMuller Circle: The concept of

interaction zone has been defined as dependent of a circle.
That circle is called the Vieth-Muller Circle, where the
following properties can be defined (See Fig.4):
• In a pure version eye movement, the fixation point

moves along the same ViethMuller Circle. Fig.4 a)
illustrates this fact showing how P moves to P ′ along
the Vieth-Muller Circle.

• If the fixation point remains static, the disparity for
various points is studied. Disparity is defined as φL
φR.

The Vieth-Muller circle is geometrically defined from two
points and a distance. The two points are easily found, as
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Fig. 3. a) Calculating the Disparity; b) Disparity Properties on Vieth-Muller
Circle

they reflect the camera positions. The distance will define the
interaction zone, making the selection criteria, an important
aspect. Several options for defining this distance could be
chosen, however a simple approach was selected: to use a
fix value of 2 meters.

b) Theorem 1: If a point Q lies on ViethMuller Circle,
its disparity is zero.
As Q moves outside (e.g. point P moves to position Q in
Fig.4 a)), φL decreases whilst φR will naturally increase.
However ff point Q moves inside the circle, the opposite
relation between φL and φR occurs.

c) Theorem 2: Disparity is nonzero outside the circun-
ference line of the Vieth-Muller Circle (with opposite signals,
depending on whether side of the circle it lies in, outside or
inside).
For human vision system, when the disparity has high
enough values, the object is seen in double (one from left
eye and the other from right eye). This phenomenon is called
Diplopia. The maximum disparity prior to the diplopia even
is defined as Panum’s Fusional Limit.

d) Calculating Disparity: The φL and φR are made
by line of sight with the straight ahead direction. The
GazeAngle γ (see Fig.4 a) and V ergenceAngle µ (see fig.
4) are defined as

γ =
1
2
(φL+ φR)

µ =
1
2
(φL− φR)

(2)

CE represents the cyclopean eye and (d + δ) is the
distance from CE to the target object (see fig. 4).

The Horizontal Disparity is

h =
I cos γ
d

(
δ

δ + d
+
d tan γ
δ + d

x+ x2)

and Vertical Disparity

v =
I cos γ
d

(
d tan γ
δ + d

y + xy)

where (x, y) are cyclopean image coordinates and I is the
interocular distance.

Fig. 4. Simples justification scheme for value γ

Fig. 5. a) The toolbox is yet outside the Vieth-Muller Circle; b) Toolbox
starting to enter the horopter zone; c) The object is fully inside the Vieth-
Muller circle, and thus, visible.

e) Theorem 3: d = I cos γ/ sin 2µ
A simple justification can be presented for the value of

γ = 0, as it can bee seen in Fig.4.

I/2 = d× sinu× cosu⇒ d = I cos r/ sin 2u

The disparity is calculated, and the resulting depth image
(Fig.3 a)) is correlated with the CE image.

The pixel values in the final CE image will depend on the
disparity values: pixels with negative disparity values will be
assigned the value ’0’; for positive disparity values, the pixel
maintains its original value. The result is a masked image,
where only ’visible’ objects within the circle (the interaction
zone) can be seen (right column of figure 5).

The resulting image allows us to define a Region Of
Interest (ROI) that can be approximated for an elipsoid. This
image will be further processed for face/hand detection. The
authors present this approach as a robust way to ensure that
the robot will interact only with visible subjects in the image,
i.e. subject that are inside Vieth-Mullercircle.

III. HUMAN ROBOT INTERACTION

A. Database of Expressive Movements

According to LMA Effort definitions of Action drive,
Timeless, Weightless and Spaceless, there are 32 different
possible combinations. This work is focused on Effort com-
ponent (work on Space component has been done in [6]),
thus Space component has no particular relevance in this
set of results. The database was build around movements
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TABLE II
Basic Effort Weightless

Action Example E.Sp E.Fl E.Ti
Punch Forward punch Dir Bound Sud
Writting Write name with a spray can Ind Free Sus
Lift Lift heavy object Dir Bound Sus
Flick Clean with a brush Ind Bound Sud
Free scene Free movements misc misc misc

that present certain Effort characteristics, in a way that will
allow the Bayesian Classifier to accurately provide an Effort
labelling of the movements, based on LMA. Table II shows
a set of Weightless expressive movements and their qualities.

The data set also encompasses a free scene hand labeled,
were several of the Effort characteristics were performed
along the time.

B. Tracking
Data acquisition is processed using two different types of

sensor:
1) a 6-DoF magnetic tracker that provides 3-D coordi-

nates with high accuracy and speed (50Hz),
2) a regular firewire camera.
In the learning stage, to train the bayesian framework, the

data provided by the magnetic tracker is used to provide
accurate data to work as ”‘ground truth”’. However, in real
life situations, it is not feasible to have magnetic sensors
attached in subjects, thus in the classification stage vision
sensing was used as the data acquisition method.

The magnetic tracker has the possibility to work eight
sensors at a time. However in the current work, only three
were used, which are positioned in the head, and one at each
hand of the performer. The tracker provides the raw position
data for each of the body parts, relative to the magnetic
tracker referential. To acquire the body part position using
the vision system, a simple algorithm was implemented.
The detailed description of the tracking algorithm is out
of the scope of this work, however a brief description
will be given. The algorithm starts with the acquisition of
the image obtained from the application of the geometric
horopter (see Section II-C). Haarlike features are applied
for face detection initialization. After the face has been
detected, a color histogram based algorithm, CAMshift, is
used to track body parts based on skin color information.
For faster initialization of the color tracker, body geometric
constrains use the face position to compute the initial guess
of hand positions. Both Haarlike and CAMshift algorithms
used belong to the OpenCV Library.

Regardless of the acquisition system used, the acquired
data is a collection of hand and head coordinates in 3-D
and 2-D space for magnetic tracker and camera respectively.
Using geometric transformation, homography [5], the mag-
netic tracker 3-D coordinates are mapped into the camera
referential. The homography process was done considering
the calibration between camera and magnetic tracker. The
process of calibration was done using projective geometry
[5].

TABLE III
INITIAL HYPOTHESES OF CORRESPONDENCES BETWEEN LMA Effort

QUALITIES AND PHYSICAL ENTITIES

LMA Effort Qualities Physical entities
Time.sudden High acceleration, High velocity
Time.sustained Low acceleration, Low velocity
Space.direct Small curvature, Small angular velocity
Space.indirect High curvature, High angular velocity
Flow.free High curvature, High angular velocity
Flow.bound Low acceleration, Low velocity
Weight.strong Muscle tension, Medium acceleration
Weight.light Muscle relaxed

C. Prominent physical features

The selection of relevant features is one on the great
mysteries in pattern recognition. In this work, features were
chosen by interpreting the parameters of Laban Movement
Analysis (LMA) through physical measurable entities that
could describe them best. The resulting data in form of
coordinates allows the computation of physical features such
as velocity, acceleration and curvature of the discretized
trajectories (e.g. having two sets of coordinates, it is possible,
knowing the time interval between each of them, to compute
the velocity from one point to the other). Having this sort of
features in mind, the initial hypotheses of correspondences
between LMA parameters and physical entities are expressed
as shown in Table III.

It seems most natural that high velocities and accelera-
tions are connected to sudden/fast movements. Also when
trajectories exhibit low curvatures, one must assume that
they are mainly linear, or in Laban parameters, Direct. The
behavior of these features within each of the LMA qualities
was studied, and the most prominent are marked in bold in
table III. As it can be seen, this work still has not found
physical features that can inequivocally define Ef.Weight
(there is no visual cue that could reflect muscle tension).
However, ongoing work is still being conducted focused on
visual cues that could reflect it. In Fig. 6 an example of
physical features behavior in a determined Effort quality is
presented. Velocity (Fig.6a)) and curvature (Fig.6c)) do not
present a strong pattern that can distinguish both extremes
of E.Ti, however Acceleration (Fig.6b)) presents a strong,
distinguishable feature.

All features are identically processed, originating the final
relations for the models presented in table III.

IV. PROBABILISTIC MODELING

A. Effort Model

The Effort model describes the dynamic aspects of the
movement. It relates the low-level features like speed (V el),
acceleration (Acc) and curvature (K) to Effort qualities
like Time (E.T i), Space (E.Sp), Weight (E.We) and Flow
(E.F l). In order to not confuse the Space component
from the previous section with the Space quality of the
Effort component, all variable symbols of Effort qualities
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Fig. 6. Behavior of Velocity V , Acceleration A and Curvature K in Effort
Time

are preceded by a leading E.

LLFEf ∈ {V el, Acc,K}
Effort ∈ {E.T i, E.Sp,E.We,E.F l}

(3)

The relation between the two sets of variables described in
3 has already been investigated, established and developed
in Section III. The concept space relates the Effort qualities
to a specific movement M . The Effort model is related with
a specific plane and body part where the Effort qualities can
be detected best. Variables and their space are shown in (4)

Acc ∈ {no, low,medium, high} 〈4〉
K ∈ {no, small,medium, big} 〈4〉

E.Sp ∈ {direct, indirect} 〈2〉
E.T i ∈ {sudden, sustained} 〈2〉
E.F l ∈ {free, bounded} 〈2〉

(4)

Each movement M will produce a certain set of Effort
qualities during the movement action. Thus we have a
conditional dependency of Effort Space E.Sp, Effort Time
E.T i and Effort Flow E.F l from the movement M as can
be seen in Bayes-net of Fig. 7.

The Effort variables can not be directly measured but
observed through some low-level features (i.e. LLFEf ).

Fig. 7. Laban Effort Bayesian Model

TABLE IV
EFFORT VARIABLES

Variable Symbol Description
Movement M e.g. Punch
Effort Space E.Sp e.g. E.Sp = direct
Effort Time E.T i e.g. E.T i = sudden
Effort Flow E.F l e.g. E.F l = bound
Speed gain Acc e.g. Acc = high
Curvature K e.g. K = small
Velocity V e.g. V = medium

Thus, there is a dependency of the non-observable variables
from the Effort set and LLFEf . The joint distribution can
be expressed as

P (M E.Sp E.T i E.F l A K V )
= P (M) P (E.Sp |M) P (E.T i |M) P (E.F l |M)
P (A | E.T i E.fl)) P (K | E.Sp E.F l) P (V | E.F l)

(5)

The variables used in this sub-model are summarized in Table
IV.

V. RESULTS AND DISCUSSION

This section will briefly describe the general setup, and
will divide the results in two sections: the results of geo-
metric horopter and consequent tracking and the results for
the Effort analysis. Four movements and a free scene were
processed, with 100 trials per movement, with 10 subjects
(both gender), with no more than 10 trials per different
person within each gesture.

A. Experimental Setup

A pair of Firewire cameras compose the stereo vision
system. The movement sequences were acquired with Mag-
netic Tracker Device (Polhemus Liberty). The data acquired
by the magnetic tracker was used to train our bayesian
network. Classification results derived from features acquired
through image video sequences which simulate real-time
conditions perfectly. The analyzed movements are summed
up in Sec.III-A tableII.

B. Geometric Horopter Results

The Horopter results are easily understood if visualized,
hence in Fig.8 it can be seen the segmentation that occurs
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Fig. 8. a) Subject outside FoV. b) Subject entering FoV (Haarlike features
try to identify a face) c) Person inside FoV, Face detected and CAMshift
starts hand and head tracking

TABLE V
RESULTS FOR EFFORT QUALITIES

Physical Qualities
Space Flow Time

Ind Dir Free Bound Sud Sus
Positive
results 79.3% 90.2% 61.2% 58.7% 84.8% 97.1%

with this algorithm. Once the subject enters the horopter
field of view (FoV) completely, the result is a region where
the person can be seen (that region tends to approximate
a contour). This countor is then aproximated by an elipse
(Fig.8c) left side), which defines the region where the
tracking is processed (superimposed in Fig.8c) right side).
Haarlike features detect a face within the delimited region
(Fig.8c) right side), after which CAMshift is triggered to start
acquiring information relative to hand and head positions.
This algorithm is, as said, based in color histograms and
kalman filtering. Cases happen where tracker is momentarily
lost. In those cases, the probability distributions in each node
of the bayesian network are not updated.

C. Emotion Analysis Results

The usefulness of Laban Movement Analysis within emo-
tion classification is demonstrated with the results shown in
table V. The positive results represent the percentage of trials
that have achieved correct results, e.g. if in 10 trials, 7 were
correcly identified and 3 were not, the result would be 70%.
For E.Time and E.Space the results are considered good.
However for E.Flow the results exhibit some confusion. This
arises from the fact that low accelerations only describe the
’bound’ state of E.Flow, but acceleration is still counted
as evidence for the ’free’ state. Similar conclusion when
analyzing Curvature. Effort qualities, due to the number
of different combinations possible, allow the possibility to
distinguish movements almost based on Effort component.
The selected features already allow a good discretization,

TABLE VI
RESULTS FOR EFFORT AND SPACE COMPONENTS COMBINED

Laban Components
Space Effort Space+Effort

Classification
Rate 61.3% 86.4% 79.4%

and when combined with the other LMA components can
provide a robust tool for human movement analysis.

Previous work [6] has been done concerning the Space
component alone, however the fusion of the Space and
Effort components in one simple bayesian model defined
as P (Movement|Space.component Effort.component)
showed what can be described as significant improvement.
As seen in the following table, the results from [6] yielded
positive results around 60%, and the fusion with the Effort
component implemented in the current work, improved to
around 80% the overall movement classification rate.

VI. CONCLUSION

From the results achieved, we can conclude that horopter
is a valid approach for dynamic background segmentation,
provided that it receives background with enough features,
which usually happens. This segmentation enhances tracking
results, both in speed and accuracy and should be further
explored. Laban Movement Analysis is without a doubt a
powerfull movement descriptive tool, results show that it
can, with some accuracy classify basic emotion primitives
(contextualized within LMA), and the implementation of the
remaining components is an ongoing work. The final goal of
this work, is to build an autonomous interactive social robot.
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