
 
 

 

  

Abstract—In this paper the vision architecture, 
named ROVIS, of the robotic system FRIEND is 
presented. The main concept of the ROVIS is the 
inclusion of feedback structures between different 
components of the vision system as well as between the 
vision and other modules of the robotic system to 
achieve high robustness against external influences of 
the individual system units as well as of the system as 
whole. The novelty of this work lies in the inclusion of 
feedback control at different levels of the 2D object 
recognition system to provide reliable inputs to the 3D 
object reconstruction and object manipulation modules 
of the robotic system FRIEND. The idea behind this 
approach is to change the processing parameters in a 
closed-loop manner so that the current image 
processing result at a particular processing level is 
driven to a desired result. The effectiveness of the 
ROVIS system is demonstrated through the 
presentation of experimental results on 3D 
reconstruction of different objects from FRIEND 
environment. 

I. INTRODUCTION 
NE of the key requirements in the field of service 

rehabilitation robotics is the robust perception of the 
robot environment. As a result of progress in research on 
robot vision and technology development, the use of vision 
as a primary perception sensor for controlling manipulators 
has grown significantly in recent years [1,2,3]. A crucial 
requirement of a robot vision system is the achievement of 
a human-like robustness against complexity of the robot’s 
environment in order to provide reliable visual information 
for autonomous assistance of human beings. A robot vision 
system is used to robustly analyze the images of complex 
scenes where the objects to be recognized are surrounded 
by a variety of other objects. As well as being robust 
against cluttered scenes, a robot vision system should be 
robust against unpredictability in the appearance of objects 
due to different external influences such as variable 
illumination. However, in spite of the significant work on 
the development of robot vision systems in recent years, 
robustness has remained a major problem. In order to 
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concentrate on challenging physical tasks such as object 
grasping, the designers of complex service robotic systems 
usually simplify the 2D object recognition task by choosing 
objects to be manipulated which are convenient for 2D 
recognition by a state-of-the-art recognition method. One 
approach is to use different, a-priori known, colors for 
different objects classes so that objects can be recognized 
by an established color based recognition method. Another 
approach is to use objects which have sufficient texture 
characteristics to allow the application of methods 
exploiting local texture features such as SIFT model based 
recognition method [4][5]. The commonly used color based 
and texture based recognition methods usually use default 
parameters in an open-loop manner so that they give good 
results for specific working conditions; they are however 
sensitive to external influences such as variations in 
lighting conditions. The required robustness of the robot 
vision system is often achieved using additional sensors 
[6], which may increase costs and mechanical complexity. 
In this paper a novel robust robot vision system in which 
the necessary object recognition robustness is achieved by 
introduction of closed-loop control structures at image 
segmentation level of the 2D object recognition system is 
presented. The main idea behind this is the automatic 
adjustment of the processing parameters instead of using 
their default values. This is a novel alternative to the above 
discussed conventional approach of using additional 
sensors or introducing a more controlled environment. The 
presented vision system ROVIS (RObust machine VIsion 
for Service robotics) is integrated into the semi-
autonomous rehabilitation robotic system FRIEND 
(Functional Robot arm with frIENdly interface for 
Disabled people) which has been developing at the Institute 
of Automation of University of Bremen since 1997 within 
different projects [7]. Within the research project AMaRob 
(Autonomous Manipulator control for rehabilitation 
Robots) the goal has been achieved of supporting disabled 
people with impairments of their upper limbs in Activities 
of Daily Living (ADL) and professional life and giving 
them independence from nursing staff for at least 1,5 
uninterrupted hours. In different robot working scenarios a 
large number of different action sequences like “pour and 
serve a drink”, “take, prepare and serve a frozen meal”, 
“fetch and handle a book” are necessary to fulfil the robotic 
system user’s demands. Hence, the ROVIS system has to 
deal with a variety of objects, including a bottle, a glass, a 
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book, a meal tray, fridge and the microwave oven. Some of 
these objects are uniformly coloured like the bottle, the 
glass and the handle of the meal tray, while some of them 
are textured such as the book or some bottle types. 
Furthermore, some of the objects to be recognized may be 
located in clustered environments, for example there may 
be several objects in the fridge or on the book shelf. Hence, 
the robot vision system must be robust enough to cope with 
the clustered environment (complex scenes) and with a 
variety of different objects as well as with different 
appearances of the same object in different lighting 
conditions that arise during the robot functioning. 

From the image processing point of view, the objects to 
be recognized in the FRIEND system are classified into 
two categories: ‘container’ objects such as the fridge, 
microwave oven and book shelf, and objects to be 
manipulated such as bottles, glasses, meal trays and books. 
The focus in this paper is on robust recognition of objects 
which have appropriate size and shape for manipulation by 
the robot arm. The recognition of containers, achieved by a 
SIFT model based method [8], is taken for granted. 
Moreover, the result of recognition of containers is used as 
a possible starting point for definition of the image Region 
Of Interest (ROI) as will be explained in Section III. The 
rest of the paper is organized as follows. The FRIEND’s 
control architecture, including ROVIS, is presented in 
Section II. ROVIS itself is described in Section III. Since 
this paper concentrates on one ROVIS module, robust 2D 
object recognition, the other modules of the ROVIS 
structure are only briefly described. The closed-loop 
segmentation of the image ROI for the purpose of reliable 
feature-based object recognition and reconstruction is 
explained in Section IV. The experimental results on 3D 
reconstruction of different objects from FRIEND 
environment are given in Section V. 

II. THE ROBOTIC SYSTEM FRIEND 
The system FRIEND consists of a 7 DoF (Degrees of

Freedom) manipulator mounted on an electrical wheelchair 
can only be achieved using an appropriate control 
framework. The architecture used, entitled MASSiVE 
(MultiLayer Architecture for SemiAutonomous Service 
Robots with Verified Task Execution), represents a 
distributed robotic control system which combines reactive 
behaviour with classical artificial intelligence based task 
planning capabilities [9]. The MASSiVE architecture is 
represented in Fig. 2 with its structure divided in four 
specific modules. The Human-Machine Interface (HMI) 
operates at the user interaction level. 
The user commands are acquired with the help of different 
input methods such as speech recognition, chin control and 
Brain-Computer Interface (BCI) and translated further into 
machine language for interpretation [9][10]. The processing 
algorithm that converts a user request into robot actions 
resides in the Reactive Layer. Here, the data collected from 
different Sensors, such as the stereo cameras and a tactile 
tray, are processed in order to “understand the 
environment”. The data is further converted into actions by 
the available Actuators such as 7DoF manipulator. The 
sequence of operations needed to perform a specific task is 
generated by the Sequencer module. The Sequencer plays 
the role of a Discrete Event Controller (DEC) that plans 
sequences of operations by means of predefined task 
knowledge. Through the functioning of the system, the 
computed data is shared between the modules with the help 
of the World Mode. The World Model defines the 
information produced and consumed by the operations in 
the Reactive Layer. The software interconnection between 
the processing layers is implemented using CORBA 
(Common Object Request Broker Architecture). 

As displayed in Fig.2, the vision framework ROVIS is 
placed inside the Reactive Layer where it provides visual 
information for the Sequencer which further activates the 
manipulator. ROVIS communicates with the sub-symbolic 
layer of the World Model to where it outputs the 
reconstructed 3D environment. This information is used

 
Fig. 1. The rehabilitation robotic system FRIEND operating in complex environment. 
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Fig. 2. The MASSiVE control architecture. 

further by the manipulative skills for virtual modeling of 
the scene, consisting of objects to be manipulated within 
containers as well as obstacles, viewed by the robotic 
camera system. The virtual 3D scene model is used further 
for collision free path planning [11]. On the other hand, 
for performing the ROI definition, object recognition and 
reconstruction tasks ROVIS uses necessary information 
from the World Model such as the features of an object 
class needed for object classification. 

III. THE ROVIS CONCEPT 
Fig. 3 shows a schematic overview of the ROVIS 

buildi- ng blocks. Arrows connecting the blocks illustrate 
the flow of information through the ROVIS system as well 
as the connections of the ROVIS components with the 
external modules, the Human-Machine Interface and other 
reactive operations of the system FRIEND. As can be 
seen, there are two main ROVIS components: hardware 
and the object recognition and reconstruction chain. 

The ROVIS hardware consists of a Bumblebee® stereo-
camera system mounted on a pan-tilt head placed on a 
special rack behind the user, above his head, as illustrated 
in Fig. 1. Using a special input device such as a chin 
joystick, the user of the semi-autonomous system FRIEND 
navigates the system in front of the container related to the 

particular working scenario. The stereo cameras view the 
scene in front of the robotic system including the 
manipulator and the tray mounted on the wheelchair in 
front of the user. In the ROVIS initialization phase the 
extrinsic camera parameters are calculated through camera 
calibration. The viewing angle of the sensors can be 
changed through the pan-tilt control so that the container 
as initialized by the Sequencer, can be detected in the 
image. This is illustrated in Fig. 3 by the feedback from 
Container Detection to the Camera Pan-Tilt Head block. 

The ROVIS object recognition and reconstruction chain 
consists of a sequence of image processing operations 
used for the extraction of features needed for both 2D 
recognition and 3D reconstruction of the objects present in 
the manipulator’s environment. The main concept of 
ROVIS is to apply the image processing operations on the 
image ROI rather than on the whole image. This is 
motivated by the observation that people focus their visual 
attention on the region around an object when they grasp it 
as illustrated in Fig.1. 3D reconstruction data are needed 
for a “look-and-move” type of robot control. In order to 
achieve satisfactory precision of 3D stereo reconstruction 
the high image resolution of 1024x768px is used. 

A. ROI definition 
An image ROI can be defined for two cases which 

differ with respect to the level of a-priori knowledge about 
the location of the object to be manipulated within the 
image. In the first case only a partial knowledge about the 
object environment is available. For example, in the 
FRIEND system the available information is of the form: 
“the object is in the fridge” or “the object is on the shelf”. 
Bearing in mind that the container objects in the FRIEND 
environment are a permanent feature of the scenarios, the 
SIFT method [8] is used for their recognition. This method 
uses a model image to train a classifier off-line. During 
on-line system operation the SIFT algorithm searches for 
the model image in the scene through a matching based 
algorithm. Once the model image has been detected its 
pose (position and orientation in 3D space) can be 
reconstructed. Knowing the position of the model image 
placed on or in a container (e.g. in the fridge) the 

 
Fig. 3. Block diagram of ROVIS, the robust vision framework of the rehabilitation robotic system FRIEND. 
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container pose can be further reconstructed. Starting from 
the reconstructed 3D pose of the container, the container 
region in the image is obtained using 3D to 2D mapping. 

The resulting image region enclosing the container, in 
which the object of interest is located, represents the 
image ROI. Hence, in this case, the defined ROI encloses 
all the objects present in the container and not just the 
object of interest. For example in the “serve a drink” 
scenario, where the task of the manipulator is to fetch a 
bottle with a drink from the fridge, such situation 
corresponds to a user’s command “I want a drink”. 

The second possible case regarding the ROI definition 
is the case where precise information on the object 
position within the image is available through the human-
machine interface (HMI). For example, the user can locate 
the object of interest by using a particular action, such as 
clicking on the displayed image using a special input 
device, such as a chin joystick, as illustrated in Fig. 3 for 
the case of “serving a drink” scenario. Starting from the 
user’s command “I want this drink” and an interest image 
point defined by the user, the size of the rectangular image 
ROI is automatically adjusted in order to fully bind the 
object of interest. 

The automatic adaptation of the size of the ROI when it 
is defined through the HMI as well as defining the ROI 
using 3D to 2D container mapping is beyond  the scope of 
this paper. In this paper the focus is on the robust 
recognition of uniformly colored objects of interest within 
the defined ROIs without using a-priori knowledge about 
the objects characteristics such as color and size. 

IV. FEEDBACK CONTROL OF IMAGE SEGMENTATION FOR 
RELIABLE OBJECT RECOGNITION 

A crucial requirement for reliable feature-based 2D 
object recognition and subsequent 3D object 
reconstruction is that the object segmented image is of 
good quality. A segmented image is said to be of good 
quality if the pixels of the object of interest forms a well 
shaped segmented object region. The image segmentation 
algorithm presented in this paper employs the idea of the 
inclusion of feedback structures to control the quality of 
the binary segmented image ROI. The idea behind this 
approach is to adjust the parameters of image 
segmentation in a closed-loop manner so that the current 
segmented image ROI is driven to the one of reference 
quality independently of external influences. This idea is 
suggested and investigated in detail both generally and 
within the context of specific gray level image processing 
applications in [12]. The authors published first results on 
the extension of this approach to color image processing 
in service robotics, when a-priori information about the 
color of objects of interest is available in [13]. In this 
paper, further improvement of the closed-loop method to 
be used for recognizing uniformly colored objects in a 
clustered scene without a-priori information is presented. 
The novelty of this paper also concerns the performance 
evaluation of the proposed closed-loop segmentation 
method. Namely in previous authors work [e.g. 12], the 
benefit of the proposed method over the traditional 

adaptive thresholding in image segmentation is 
demonstrated. In the section V of this paper it is shown 
that the proposed closed-loop thresholding contributes 
directly to the robustness of 3D reconstruction. 

A. Choice of actuator and controlled variables 
The use of closed-loop control in image processing 

differs significantly from its use in conventional industrial 
control, especially concerning the choice of the actuator 
and the controlled variables. Generally, the actuator 
variables are those that directly influence the result of 
image processing. In the system presented here, the image 
segmentation is done by thresholding of the so-called Hue 
image, which contains the pure color information of the 
original RGB image of a scene from a FRIEND working 
scenario. In thresholding, each pixel from the Hue image 
to be segmented is set to the foreground black color in the 
output segmented image if its pixel value belongs to a 
particular interval of the color values [13]. To further 
explain the thresholding operation the Hue image is 
defined as a 2D function f (x, y) and the object color 
interval as [ ]maxminl T,TC =  where Tmin and Tmax are the 
minimum and maximum color values across the object’s 
pixels. Then, the thresholding operation is defined as: 
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where t (x, y) is the segmented binary image, 1 and 0 
represent black and white color respectively, and x and y 
are the Hue image pixel coordinates. For the sake of 
clarity an object color interval Cl in the following is 
referred to as an object thresholding interval. 

The thresholding operation is highly sensitive to the 
illumination condition. Due to the pixel color uncertainty 
arising from changes in illumination during image 
acquisition, different thresholding intervals are needed to 
segment the same object at different time instances. This 
can be seen from Fig. 4 which shows two images of the 
same scene from a FRIEND working scenario which 
contains a fridge with various objects placed inside it, 
 

(a) (b) 

  
      (c)           (d) 
Fig. 4. RGB image of the scene containing a green bottle captured in 
artificial (a) and daylight illumination condition. (c) and (d) histograms of 
the corresponding Hue images overlaid with the thresholding interval of 
the green bottle.  
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captured in different illumination conditions. Fig. 4 shows 
also the histograms of the Hue planes of the considered 
images from which it can be seen that the thresholding 
object interval in the image taken in daylight conditions is 
shifted to the right with respect to the thresholding interval 
of the same object in the image captured in artificial 
illumination conditions. Therefore, in order to achieve 
good object segmentation it is necessary to adjust the 
object thresholding interval according to illumination. For 
this reason, the object thresholding interval, that is the 
threshold increment i, [ ]iT,iT maxmin ++ , is considered as 
the actuator variable u = i in the presented system 

In order to automatically adjust the thresholding interval 
so that the current quality of segmented image ROI is 
driven to the desired, reference, value a controlled variable 
has to be defined. The controlled variable has to be 
appropriate from the control, as well as from the image 
processing, viewpoint. From the image processing 
viewpoint, a feedback variable must be an appropriate 
measure of image ROI quality. Two basic requirements 
for control are: it should be possible to calculate the 
chosen quality measure easily from the image and the 
closed-loop should satisfy the input-output controllability 
conditions. Input-output controllability primarily means 
that for the selected output (controlled variable) an input 
(actuator variable) which has a significant effect on it must 
exist in the image processing chain.  

Bearing in mind the qualitative definition of a 
segmented image ROI of good quality given above, the 
following quantitative measure of ROI quality has been 
proposed: 

 

0)0(log ,82 =−= IpI , (2) 

where 8p  is the estimate of the probability of a segmented 
pixel surrounded with 8 segmented pixels in its 8-pixel 
neighbourhood: 

.=p
ROI image in the pixels segmented ofnumber  total

pixels segmented 8 with surrounded pixels segmented ofnumber 
8

 (3) 

Having in mind that a good segmented image ROI 
contains a “full" (free of holes) segmented object region, it 
is evident from (3) that a small probability 8p  
corresponds to a large disorder in a segmented image ROI 
and consequently a large uncertainty I, defined by (2), is 
assigned to the segmented image ROI. Therefore, for a 
reliable segmentation the goal is to achieve the segmented 
image ROI having as small as possible uncertainty 
measure I. 

To investigate the system input-output controllability 
when considering the threshold increment as the input 
variable, and the proposed uncertainty measure I as the 
output variable, the thresholding of the ROI, containing 
only the green bottle, in the images shown in Fig. 4(a) and 
Fig. 4(b) was done. The thresholding interval was set to an 
initial state [Tmin,Tmax] = [0, 20]. To this interval the 
increment u = i was added as [ ]iT,iT maxmin ++ . For each 
segmented image corresponding to the increment 
i ∈ [0,179], the uncertainty measure I was calculated. The 
resulting input-output characteristics are presented in Fig. 
5(a) and Fig. 5(c). As can be seen, the uncertainty I is 
sensitive to the chosen actuator variable across its 
effective operating range. Also, it is clear that each input 
value is mapped to at most one output value and that it is 
possible to achieve the minimum of I, corresponding to 
the segmented object image of reference good quality, by 
changing the thresholding boundaries. The satisfaction of 
these prerequisites for a successful control action 
demonstrates the pair “thresholding increment i –
 uncertainty measure I” as a good “actuator variable –
 controlled variable” pair. 
The same experiment, as described above, was done also 
for the case of the ROI enclosing the whole fridge in Fig. 
4(a) and Fig 4(b) thus containing more objects, 2 bottles 
of different colors and a meal tray. The resulting input-
output characteristics are shown in Fig. 5(b) and Fig. 5(d). 
As can be seen, the characteristics have more local 
minima. Each minimum corresponds to a good 
segmentation of a particular object. For example, the 
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Fig. 5. The uncertainty measure I of pixels segmented from the images taken in different illumination conditions vs. thresholding increment i, 
[ ] [ ]iiiTiT ++=++ 20,0, maxmin . (a) and (c) ROI containing only one  object. (b) and (d) ROI containing more objects. 

  

3578



 
 

 

minimum at [125, 145] in Fig. 5(b) corresponds to a blue 
object while the minimum achieved for the optimal 
threshold interval [35, 55] corresponds to the green bottle, 
as in the case of the previously described experiment and 
characteristic shown in Fig. 5(a). Also, it can be seen that 
the minima which correspond to optimal object 
thresholding intervals in the image taken in daylight 
conditions are shifted with respect to the thresholding 
intervals of the same object in the image captured in 
artificial illumination conditions, indicating the need to 
adjust thresholding intervals to different illumination 
conditions. 

Based on the above discussion it can be said that the 
original problem, that of finding the optimal object 
threshold interval that provides a segmented object image 
of good quality, appropriate for subsequent object feature 
extraction, can be interpreted and converted to the 
problem of finding the minimum uncertainty I of the 
object region in the binary segmented image. 

B. Closed-loop control design 
In the presented system, the reference value of the 

chosen controlled variable is not explicitly known as the 
intention is to develop an object recognition method which 
does not uses a-priori knowledge about the object 
characteristics such as object size and color. However, the 
selection of an image ROI quality measure whose minimal 
value corresponds to the image ROI of good quality has 
been suggested for the controlled variable. Hence, the 
optimal value of the chosen controlled variable can be 
achieved by an optimization process using an appropriate 
extremum seeking algorithm through a control structure, 
as shown in Fig. 6. Here the feedback information on the 
image ROI quality is used to choose the optimal value uopt 
of the actuator variable u, that is, to drive the current 
image ROI to one with reference optimal quality. 

An optimal threshold interval ensures that a reliable 
input is given to the feature extraction step where different 
object features needed for object classification are 
extracted. Such features are the Hu moments [13] which 
uniquely describe the shape of objects.  

C. Object classification and recognition 
As discussed above, the goal of the presented closed-

loop ROI segmentation system is to extract the optimal 
threshold intervals for all the objects present in the image 
ROI. The input image of a scene from the FRIEND 

environment is then segmented using the extracted 
threshold intervals. Therefore the segmentation result is 
either one binary image, in the case of an image ROI 
containing only one object, or as many binary images as 
there are objects present in the defined image ROI. The 
latter case is shown in Fig. 7. The input-output 
characteristic shown in Fig. 7 is obtained in the 
experiment described in Section IV A. As explained, each 
local minima of the input-output characteristic 
corresponds to an object of a particular color. The 
classification of objects as belonging to the class “bottle”, 
“handle” or “noise” is done based on the object’s shape 
descriptors extracted from the resulting binary segmented 
images and general knowledge on object classes stored in 
the World Model of system FRIEND. 

Once the object of interest is correctly identified in the 
image, the image coordinates of the object feature points 
are calculated at the object recognition level. A so-called 
object feature point is used for solving the stereo 
correspondence problem for 3D object reconstruction. For 
example, for a bottle the object feature point is the top 
neck point while for the meal tray the feature point is the 
middle of its handle [14]. 

V. PERFORMANCE EVALUATION 
The ultimate goal of the ROVIS system is reliable 3D 

reconstruction of objects to be manipulated which should 
assure correct 3D modeling of the FRIEND environment 
for the purpose of collision free path planning [9]. 
Therefore, the evaluation of the ROVIS effectiveness is 
done through the comparison of manually measured and 
automatically calculated 3D features of three different 
bottle objects. Two different methods are used for the 
automatic calculation of the 3D features: the proposed 3D 
reconstruction based on closed-loop object segmentation 
and 3D reconstruction based on traditional open-loop 
segmentation. In contrast to the closed-loop method, 
which uses feedback information on the segmentation 
result to adjust the thresholding parameter, the open-loop 
method uses a constant reference thresholding parameter. 
This threshold is determined offline by manual 
thresholding of the object image captured in reference 
illumination condition. 

A scene from the FRIEND working scenario “serve a 
drink” shown in Fig. 4 was imaged in different

 
Fig. 6. Block-diagram of the proposed feature-based object recognition system with closed-loop image ROI segmentation. 
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Fig. 7. Object classification based on the proposed closed-loop image 
segmentation. 

illumination conditions ranging from 15lx to 570lx. This 
range of illumination corresponds to a variation of the 
light intensity from a dark room lighted with candles 
(15lx) to the lighting level of an office according to the 
European law UNI EN 12464 (500lx). Each captured 
image was segmented using the two tested segmentation 
methods. The object feature points were extracted from 
each resulting segmented image and subsequently the 3D 
object coordinates were calculated and compared to the 
real measured 3D localtions in order to calculate 
coordinates errors Xe, Ye and Ze. Also the heights of the 
bottles and the width of the mealtray handle were 
estimated based on extracted top neck and bottom feature 
points, that is based on extracted right and left end feature 
points, and compared to the real bottle heights, as the error 
He, and real mealtray handle width, as error We, 
respectively. The comparison results are shown in Fig. 8. 
The statistical measures of achieved error in experiments 
performed in different illumination conditions are given in 
Table I. 

As it can be seen, the 3D objects features calculated 
using the segmented images resulting from the proposed 
closed-loop method only differs slightly from the real 
coordinates over the whole considered illumination range, 
thus demonstrating the robustness of ROVIS. However, 
the 3D objects features calculated from the segmented 
images resulting from the open-loop method which uses 
constant segmentation parameters significantly differs 
from the real coordinates for a number of illumination 
conditions which differ from the reference illumination of 
200lx. This indicates the importance of using feedback 
information from the current segmentation result to adapt 
the segmentation parameters to different environmental 
conditions. 

VI. CONCLUSION 
In this paper the novel robust vision system ROVIS of 

the rehabilitation robotic system FRIEND is presented. 
One of the main ROVIS concepts is the inclusion of 
feedback structures between different components of the 
vision system as well as between the vision and other 
components of the robotic system in order to achieve high 
robustness of the individual units as well as of the overall 
system against external influences such as variable 
illumination. The emphasis is on the feedback control of 
image segmentation for providing reliable input to higher 
vision levels, 2D object recognition and 3D object 
reconstruction, independently of different external 
influences. The presented experimental results on 3D 
reconstruction of features for two different objects from 
the FRIEND environment demonstrate the benefit of using 
feedback information on the current segmentation result to 
adjust the segmentation parameters in order to provide the 
necessary robustness of the robot vision system. 
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Fig. 8. Difference between the real 3D object features and the 3D features calculated from the segmented images resulting from the proposed closed-
loop segmentation and from the traditional open-loop segmentation of bottle objects images captured in different illumination conditions. 
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TABLE I 
STATISTICAL RESULTS OF OPEN-LOOP VS. THE ROVIS OBJECT RECONSTRUCTION METHOD. 

Open-loop Closed-loop  
Xe [m] Ye  [m] Ze  [m] He /We [m] Xe  [m]  Ye [m] Ze  [m] He /We [m] 

Max error 0.1397 0.0391 0.2357 0.1130 0.0049 0.0086 0.0029 0.0341 
Mean 0.0146 0.0083 0.0121 0.0359 0.0024 0.0051 0.0017 0.0051 
St. 
deviation 

0.0331 0.0071 0.0001 0.0282 0.0016 0.0021 0.0001 0.0044 
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