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Abstract— This paper reports the use of a MRI device to
pull a magnetic microrobot inside a vessel and control its
trajectory. The bead subjected to magnetic and hydrodynamic
forces is first modeled as a nonlinear control system. Then,
a backstepping approach is discussed in order to synthesize
a feedback law ensuring the stability along the controlled
trajectory. We show that this control law, combined with a
high gain observer, provides good tracking performances and
robustness to measurement noise as well as to some matched
uncertainties.

I. INTRODUCTION

Microrobots designed to perform targeted therapy by navi-

gating in the cardiovascular system are a prolific research

area for minimally invasive surgery purposes [1]. Indeed,

these untethered robots have the distinctive feature of being

less invasive than catethered methods, and thus may reach

remote parts of the human body that remain inaccessible

to present tools without operating. On such a scale, it

proves difficult to embed actuators sufficiently powerful to

propel the robot, especially when swimming against the

tide. Therefore, the great majority of swimming approaches

considers magnetic fields to wirelessly transmit power to the

robot [2], [3].

Untethered devices have been mainly developed accor-

ding to three different designs: magnetic beads pulling,

biomimetic flagellated robots and magnetotactic bacteria.

The former propelling scheme relies on generating thrust on

the microrobot using the magnetic force related to the gradi-

ents of the external field. This concept has first been studied

using magnets [4] or superconducting magnets [5]. The last

innovation in this domain has been provided by Martel [6],

[7], where the basic idea is the use of the magnetic gradients

coils of a clinical MRI to pull the robot. Since medical

applications are the underlying theme of these works, using

a clinical MRI device to actuate the robot combines several

advantages. MRI devices are widely implanted and provide

both a permanent magnetic field and magnetic gradient that

can be used for propelling purposes. Besides, the MRI imager

can provide fine observation of the scene for navigation and

observation, using multiplexing for controlling and imaging

[8]. In-vivo experiments have also been carried out [9].

The second class of robots, using respectively oscillating
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and rotating magnetic fields, imitates either the motion of

a beating flagella [10] provided by bending and pivoting

a magnetic particles made elastic rod, or the corkscrew

effect of an helical coil attached to a magnetic core [11]

to swim in Stokes flow. These techniques are well suited for

nanorobots since they move at low Reynolds number, and

are proved more efficient than bead pulling for robots whose

radius is down to a few micrometers [12]. However, they

will prove difficult to implement on classical MRI devices,

since their propulsion requires a time-varying external field

whereas actual MR imaging requires a uniform DC field.

In [13], the flagella of magnetotactic bacteria have been

exploited to provide propulsion, while steering has been

achieved by inducing a torque on a chain of nanoparticles

(magnetosomes) synthesized in the cell of each bacterium.

Despite promising, this recent design faces some unsolved

problems leading to reduced efficiency as reported in [13].

Efforts have mostly focused on fine modeling, feasibility

and sizing of these various designs, but few works deal with

advanced control and observation of these nonlinear systems.

To our knowledge, the more advanced feedback controller

scheme designed in the scope of microrobotics facing non-

linear drag is a PID approach developed in [8], [14]. Besides,

there is no consideration about observation issues. Authors

report in [8] instabilities and important oscillations around

the equilibrium, especially when the blood stream is modeled

as a pulsatile flow. They also indicate a lack of robustness

to noise and unmodeled dynamics. However, it is clear that

nonlinear control techniques can improve the tracking, both

at the control and at the observation point of view.

The paper is organized as follows. Section II is devoted

to the 2D-state space nonlinear model for a microrobot

subjected to hydrodynamic and magnetic forces. In Section

III, we synthesize a backstepping controller based on the

previous model. Then Section IV is devoted to the high

gain observer used to reconstruct the state, and especially

the unmeasured robot’s velocity that is needed to implement

the backstepping control law. In Section V, simulation experi-

ments are presented for both swimming with and against the

flow and for bifurcating in an Y-shaped vessel. These simula-

tions point out the robustness of the observer-controller pair

to noise measurements and to blood’s velocity uncertainties.

Finally, conclusion and future works are detailed in the last

section.

II. MODELING

Modeling at micro and nanoscale has been widely inves-

tigated. The purpose of this section is to get a basic state
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space model at microscale. Since the control is designed to

make the robot levitate, it is not necessary to take friction

forces into account in a first approximation. Moreover, we

assume the microrobot is big enough to be unaffected by

specific nanoforces such as van der Waals interaction.

A. Forces Balance

The microrobot immersed in a blood vessel is modeled by

a ferromagnetic sphere with a high saturation magnetization.

In this paper, the core is supposed to be made of permendur.

Assuming the robot is spherical, with a some hundreds

micrometers radius r, we now detail the forces acting on

it, see Figure 1.
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Fig. 1. Forces exerted on the core

1) Hydrodynamics: The Navier-Stokes equation allows to

model hydrodynamics phenomena:

ρ
∂−→v
∂t

+ ρ (−→v .∇) .−→v =
−→
f −∇p + ∇.σ (1)

where ρ denotes the density of the fluid, −→v the fluid velocity,−→
f the body forces acting on the fluid, p the pressure and σ

the stress tensor. However, equation (1) is very complex and,

nowadays, we neither know how to solve it analytically, nor

whether a solution exists. A numerical approach is possible

but heavily computation consuming, which is not to be

desired for direct and real-time experiments.

Assuming that the flow is a Newtonian incompressible

fluid, hydrodynamic forces are referred as drag force :

−→
F d = −1

2
ρ (ur − v)

2
ACd

−−−−→
ur − v

‖−−−−→ur − v‖
(2)

where ur−v is the relative velocity of the robot with respect

to the fluid, A is the frontal area of the core and Cd is the

drag coefficient.

The drag coefficient represents the overall effect of the

robot’s shape on the drag force. In the literature, one can

find various expressions for the drag coefficient Cd as a

function of the Reynolds number Re. Re is a dimensionless

positive number characterizing the flow regime as laminar or

turbulent; its expression for a spherical core is given by:

Re =
2ρ (ur − v) r

η

where η is the fluid’s viscosity.

In our study case, we assume the flow to be pulsatile

and laminar, i.e. we neglect the turbulences generated by

heart pumping just downstream from the aortic valve. This

assumption is not too restrictive if we consider a blood vessel

quite far from the heart. In a low Reynolds number, the

drag coefficient is approximated by Cd = 24
Re

. For higher

Reynolds numbers, a more precise drag coefficient in laminar

flow for a spherical core is given by [15]:

Cd =
24

Re
+

6

1 +
√

Re
+ 0.4 (3)

In addition to the drag force, apparent weight (combined

action of weight and buoyancy) is acting on the microrobot:
−→
W a = V (ρr − ρ)−→g (4)

where V and −→g respectively denote the volume of the robot

and the gravitational acceleration.
2) Magnetic Force: On the one hand, the permanent

magnet of a clinical MRI device commonly generates a

strong and uniform magnetic field (B0 ≥ 1.5T ), so that we

can assume the robot’s magnetization reaches the saturation

magnetization. This magnetic field induces a torque that

tends to align the magnetization of the robot along the field.

However, since we consider a spherical bead, it is useless to

take it into account.

On the other hand, the gradient coils of the MRI system

provide magnetic gradients which produce a magnetic force

on the robot. This magnetic force can be expressed as:

−→
F m = µ0Vm

(−→
M.∇

)−→
H (5)

where µ0 = 4π.10−7 T.m.A−1 is the permeability of free

space, Vm is the volume of the magnetic material in the

core,
−→
M denotes the magnetization of the core and

−→
H the

external magnetic field, ∇ being the gradient operator.
3) Forces balance: The blood vessel is considered as a

tube which divides in two with an angle θ (Figure 2).
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Fig. 2. Scheme of a blood vessel with bifurcation

Let (x, z) denote the location of the robot in the blood

vessel with respect to a given frame F(0,~i,~k). If we consider

that the drag force is distributed linearly between the ~i-axis

and the ~k-axis, applying Newton’s second law leads to:
{

mẍ =
−→
F dx

+
−→
F mx

mz̈ =
−→
F dz

+
−→
W a +

−→
F mz

(6)
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where m = 4
3πr3ρr is the mass of the robot, and indexes x

(respectively z) denote the projections on ~i (~k ).

If we substitute (2) with (3), (4) and (5) in (6), we get:


















ẍ = a1(ẋ − vx) + a2(ẋ − vx)2

+a3
(ẋ−vx)2

1+α
√

ẋ−vx
+ a4u1

z̈ = b1(ż − vz) + b2(ż − vz)
2 + g( ρ

ρr
− 1)

+b3
(ż−vz)2

1+α
√

ż−vz
+ b4u2

(7)

with the following parameters α, ai, bi, and magnetic gra-

dients considered as control inputs u1 and u2:






















a1 = −4.5η sin θ
r2ρr

a2 = −0.15ρ sin θ
rρr

u1 = ‖−→∇Bx‖
a3 = −2.25ρ sin θ

rρr
a4 = M

ρr
u2 = ‖−→∇Bz‖

b1 = −4.5η cos θ
r2ρr

b2 = −0.15ρ cos θ
r ρr

α =
√

2ρr
η

b3 = −2.25 cos θ
rρr

b4 = M
ρr

B. State Space Representation

Let x1, x2, x3, x4 denote respectively the robot’s position

and velocity along~i-axis, and the position and velocity along
~k-axis. Assuming that positions x1 and x3 can be measured

thanks to the MRI imaging system, let y denote the state’s

measure. Then, system (7) can be written as:

(S)























ẋ1 = x2

ẋ2 = f2(x2) + u1

}

(S1)

ẋ3 = x4

ẋ4 = f4(x4) + u2

}

(S2)

y = (x1 x3)
T

(8)

where functions f and controls u are obtained using:


















u1 = a2v
2
x − a1vx + a4u1

u2 = b2v
2
z − b1vz + g( ρ

ρr
− 1) + b4u2

f2(x2) = a1x2 + a2

(

x2
2 − 2vxx2

)

+ a3
(x2−vx)2

1+α
√

x2−vx

f4(x4) = b1x4 + b2

(

x2
4 − 2vzx4

)

+ b3
(x4−vz)2

1+α
√

x4−vz

We can notice that system (S) can be divided into two

subsystems (S1) and (S2), what allows to define two in-

dependent control laws Lyapunov-stabilizing trajectories for

each subsystem.

III. CONTROL APPROACH

Each of the two subsystems (S1) and (S2) can be straight

expressed in a triangular form, so that backstepping control

approach easily applies [16], [17]. Since the two subsystems

expressions are similar, we can focus on the first one. The

control law synthesis for the first subsystem can thus be

applied mutatis mutandis to the second one.

First, we set x̃1 = xr − x1 as the error between any C2

reference trajectory xr and the real position x1 of the core.

A Lyapunov Control Function (CLF) is given by:

V1(x̃1) =
1

2
x̃2

1 ≥ 0 (9)

Differentiating (9) leads to:

V̇1(x̃1) =
∂V1(x̃1)

∂x̃1

˙̃x1 = x̃1 (ẋr − x2)

To ensure V̇1(x̃1) is definite negative, for instance:

V̇1(x̃1) = −k1 x̃2
1, k1 ≥ 0

a possible issue is hence to set −k1 x̃1 = ẋr − x2r.

Second, setting x̃2 = x2r−x2 implies ˙̃x2 = ẍr+k1
˙̃x1−ẋ2.

Yet we have ˙̃x1 = ẋr − x2 = −k1 x̃1 and x̃2 = (ẋr − x2) +
k1x̃1, hence it follows that ˙̃x1 = x̃2 − k1 x̃1, and we get:

˙̃x2 = ẍr + k1 x̃2 − k2
1 x̃1 − ẋ2

Using the CLF (9), a Lyapunov function is given by

V2(x̃1, x̃2) = V1(x̃1) + 1
2 x̃2

2 ≥ 0. We obtain:

V̇2(x̃1, x̃2) = x̃1
˙̃x1 + x̃2

˙̃x2

= −k1x̃
2
1 + x̃2[(1 − k2

1)x̃1 + k1x̃2 + ẍr − ẋ2]

Likewise, to ensure V̇2(x̃1, x̃2) is definite negative, for

instance V̇2(x̃1, x̃2) = −k1x̃
2
1−k2x̃

2
2 with k2 ≥ 0, a possible

issue is hence to set:

−k2x̃2 = (1 − k2
1)x̃1 + k1x̃2 + ẍr − ẋ2

Substituting expressions of x̃1 and x̃2, and using (8) in the

previous expression finally suggests assigning the following

control law for subsystem (S1) of (8):

ū1 = ẍr + (k1 + k2)ẋr + (1 + k1k2)xr

−(1 + k1k2)x1 − (k1 + k2)x2 − f2(x2)
(10)

IV. HIGH GAIN OBSERVER

For many applications, appropriate control requires the

knowledge of unmeasured parameters, hence the interest in

an observer to estimate the state. In our case, we can measure

the position of the core but we have also to estimate its

velocity, since the control law (10) requires it.

To study the observability of nonlinear system

ẋ = f(x) + g(x)u, y = h(x), with x ∈ R
n, u ∈ R

m and

y ∈ R
p, a necessary and sufficient condition is to have a

full ranked observability matrix Oi,j =
∂Li−1

f
h(x)

∂xj
, where

Lfh(x) denotes the Lie derivative of h(x) along the vector

field f(x). In system (8), it is clear that the observability is

ensured for all x.

In our study case, we decided to use a high gain observer.

This one requires the system to have canonical form, that is

for a second order system:






ẋ1 = x2 + ϕ1(u, x1)
ẋ2 = ϕ2(u, x1, x2)
y = x1

According to [18], if |ϕk(u, x1, ..., xk) −
ϕk(u, x̂1, ..., x̂k)| ≤ c

√

(x1 − x̂1)2 + ... + (xk − x̂k)2

where c is a locally Lipschitz constant, then an observer is

given by:

{

˙̂x1 = x̂2 + ϕ1(u, x̂1) + Lg1(x̂1 − x1)
˙̂x2 = ϕ2(u, x̂1, x̂2) + L2g2(x̂1 − x1)

,H =

(

g1 1
g2 0

)

where L is the high gain and with H a Hurwitz matrix.
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V. SIMULATIONS

Simulations are conducted within the scope of actual

commonly spread MRI system abilities. At the moment,

MRI systems are able to generate magnetic gradients with

an intensity of some tens of mT.m−1. Let us note that this

limitation is additionally affected by the gradient coils’ duty

cycle and by the multiplexing needed both for controlling

and observing. That is the reason why some prospects are

actually led in order to design additional powerful gradient

coils [19], which is a difficult task since they must not affect

the imaging capability and quality. In order to make sure

that the amplitude of the control inputs remains bounded by

physical actuators limits ui,max and to protect the system,

we perform a simple time scaling. Thus, the control is first

computed using (10), and the applied control law is given

by ui

k(t) , with k(t) = max
{

1, ui

ui,max

}

.

TABLE I

SIMULATIONS DATA

Radius of the core r 300 µm

Blood’s viscosity η 15 × 10−3 Pa.s

Blood’s density ρ 1060 kg.m−3

Bead’s density ρsphere 8000 kg.m−3

Magnetization M 1.950 × 106A.m−1

Angle θ π
2

Initial condition on x x0 (0, 0, 0, 0)T

Initial condition on x̂ x̂0 (0.01,−0.01, 0.01,−0.01)T

Inputs saturations ui,max 45 mT.m−1

Controller gains (k1, k2) (50, 100)
Observer gains (g1, g2, L) (−5,−5, 400)

We suppose that a pre-planned trajectory has been ob-

tained, and the control aims at keeping a null error between

desired and real trajectory. The following simulations illus-

trate two different backgrounds. In the first one, we consider

that the reference trajectory requires the robot to move with

and against the flow and study effects of noise measurements

on tracking. In the latter, a 2D Y-shaped reference trajectory

is considered to validate our approach, with uncertainties

considerations. Simulation parameters are given in Table I.

A. 1D trajectory with and against the flow

This simulation is performed only on the ~i-axis, which

does not affect the 2D-approach we lead since the two sub-

systems are similar and so for the results. The only difference

is that, on ~k-axis, the gravity must be counterbalanced in

order to levitate the ferromagnetic core.

Reference trajectory is here a sinusoidal function xr(t) =
0.01 sin 5.5

2 t along the ~i-axis, thus illustrating the case of

swimming longitudinally with and against the flow. The

noise applied on the output is a white gaussian noise with a

10−4 amplitude, i.e. about 10% of the measured signal. The

blood’s velocity v = 0.035(1 + 1.15 sin 2πt) is supposed

to be known. Since blood’s velocity is periodic, using the

previous expression is relevant for simulation’s purpose as

an approximation, even if not realistic.

Fig. 3. Longitudinal position: reference position (grey dot line), actual
position (black dot line) and estimated position (grey solid line)

Fig. 4. Error between actual and reference position

Fig. 5. Longitudinal speed: reference speed (grey dot line), actual speed
(black dot line) and estimated speed (grey solid line)

Figures 3 and 4 illustrate that the position tracking is

good with respect to noise and the observer’s convergence

is efficient. Globally, tracking is not too much affected by

the noise, since position error is below 0.1% of the reference

position, and the observer-controller pair ensures an efficient

stabilization after a short transient phase. Note that notable

degradation of tracking performance occurs at times t ∈
{1; 3; 8}, because the control input reaches low saturation

at these times (Figure 7).

Figures 5 and 6 also show a rather good tracking of
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Fig. 6. Error between actual and reference speed

velocity, yet not as efficient as the position tracking, since the

noise induced on speed error is about 2% of desired speed.

This result should be expected, as the estimate velocity

highly depends on the noised measures on position. We

can also notice the three peaks on speed error related with

control’s saturation.

Fig. 7. Control input (magnetic field gradient on ~i-axis)

B. 2D Y-shaped trajectory

In order to illustrate any case of Y-shaped bifurcation,

simulation is led so as to work in every quadrant using a

circular reference trajectory (Figure 8). Experiment in the

2D space defined by the frame F(0,~i,~k) of Figure 2 is of

particular interest, since the special issue of levitating along
~k-axis is encompassed as well as less demanding control on
~i (or ~j) axis.

Moreover, the blood’s velocity v = 0.035(1+1.15 sin 2πt)
is unknown at the controller-observer level. This matched

additive uncertainty on the physical system is motivated

by the difficulty to measure the pumping blood stream in

the vessels, whereas it is a decisive parameter in the force

balance. We consider here the worst case scenario, since this

parameter is considered as null when designing the control

as well as the observer.

Figures 8 and 9 show that the position tracking perfor-

mance is quite robust to unmodeled dynamics. After conver-

gence of both controller and observer, tracking error is fewer

Fig. 8. XY trajectory: reference trajectory (grey solid line) and actual
trajectory (black dot line)

Fig. 9. Position error between actual and desired position: on ~i-axis (solid

line), on ~k-axis (dot line)

Fig. 10. Control inputs: magnetic field gradients on ~i-axis (solid line), on
~k-axis (dot line)

than 4mm for each of the considered axis, suggesting that

bifurcating can be performed even with important fluctuating

uncertainties, at least for vessels whose diameter is up to

some 5mm. However, to navigate efficiently in smaller

vessels, this result suggests it would be necessary either to

reject this unknown perturbation, or to rebuilt it.

Figure 10 shows the gradient inputs on ~i and ~k-axis.

During transient phase, control input on ~k-axis reaches its

actuator saturation, which explains the peaks at the beginning
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of the simulation. It can be noticed that input on the vertical

magnetic gradient is mainly negative: this is due to the

imposed constraint of levitating, which is directly related to

a force balance between apparent weight versus magnetic

force. For the parameters values given in Table I, levitating

requires about ∇Blev = − (ρsphere−ρ)g
M

≈ −36mT.m−1,

which is at the merge of control saturation.

VI. DISCUSSION

The previous simulations show that it is possible to control

a some hundred micrometers radius ferromagnetic core in

a blood vessel in 1D and 2D (with no particular difficulty

to extend it to 3D), with an improved efficiency compared

to PID controllers. In the first case, we show that our

controller-observer is robust to output noise. In fact, actual

MRI devices have a precision around some hundreds of

micrometers, besides the microrobot being ferromagnetic, it

may induce artifacts on the MRI imager. That is why output

noise robustness is a key point for implementation on such

process.

The second simulation points out the relative robustness

of the proposed controller-observer with respect to some

unmodeled dynamics. Since microrobots are mainly devoted

to medical applications, controllers designed for such robots

have to deal with well-known uncertain biological systems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a state space represen-

tation of a magnetic microrobot in a fluidic environment

and have developed both a nonlinear control law and an

observer to improve actual experiments. We have studied

the effect of noise on the output and its influence on the

position and speed tracking as well as the convergence of

the high gain observer. We have remarked that the position

is not too much affected by the noise, unlike the velocity of

the core. We also have showed that the proposed design is

robust with respect to some matched uncertainties. However,

we noticed that tracking efficiency is very sensitive to some

biological parameters uncertainties. Besides, robustness to

blood’s velocity unknowing reaches its limits in the case of

small vessels.

In near future, we can expect better performances by im-

proving the controller, using adaptative rejection of matched

uncertainties based on [20]. Another promising improvement

may be obtained using the varying high gain observer pro-

posed in [21], which allows, under some conditions, to take

into account these perturbations and to ensure the practical

convergence of the observer.

Beyond theoretic and simulating developments we are

working on, we expect to soon implement these nonlinear

tools on the benchmark MR-SUB of the Nanorobotics Lab-

oratory through afoot collaboration with the Ecole Polytech-

nique of Montreal.
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