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Abstract— In this paper we present a methodology based
on a variation of the Spatial Pythagorean Hodograph curves
to generate smooth feasible paths for autonomous vehicles in
three-dimensional space under the restriction of limited climb
angles. An fast iterative algorithm is used to calculate the curve.
The generated path satisfy three main angular constraints given
by the vehicle: (i) maximum curvature, (ii) maximum torsion
and (iii) maximum climb (or dive). A path is considered feasible
if these kinematic constraints are not violated. The smoothness
vehicle’s acceleration profile is indirectly guaranteed between
two points. The proposed methodology is applicable to vehicles
that move in three-dimensional environments, and that can be
modeled by the constraints considered here. We show results
for small aerial vehicle.

I. INTRODUCTION

There are still several open issues in the task of making
autonomous vehicles going through three-dimensional envi-
ronments. If a robot wants to go from one location to another,
there is a basic question that it should answer before starts
its navigation: “How do I get there?”. It might be possible
for such robots to traverse environments in a reactive way,
but the generation of viable paths is an important feature for
a large number of robotics tasks.

Mobile robots always present some type of motion con-
straint that must be solved by the path planning algorithm.
Fixed-wings aerial vehicles, for example, present dynamic
behaviors where variables of spatial position and orientation
are completely interdependent, which impose several holo-
nomic and nonholonomic constraints to the system. These
constraints are embedded, for example, in the maximum
values of lateral acceleration that can be imposed by those
vehicles, which can be translated by the minimum value of
curvature radius that the vehicle can describe in space.

One of the main motion constraints of a vehicle moving
in 3D space is the climb (or dive) angle. It basically refers to
the rate of change in altitude, which may be severely limited
for some types of vehicles. Some aircrafts, por example, have
a very small angle of attack (the angle that the chord of the
wing, viewed laterally, makes with respect to the wind) that is
one way of describing the climb angle, which is often limited
by the control action of the navigation. Some underwater
vehicles exhibit climb angles which are restricted by the
configuration of their actuators and control surfaces.

We propose a path planning algorithm that takes into
account three major motion constraints in three-dimensional
space: maximum curvature, maximum torsion and maximum
climb angle, but with special emphasis on the cases where
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climb (or dive) rates are limited. For the special case of fixed-
wing aircrafts, the goal is to guarantee stall-free maneuvers.
The general idea behind the method is to model the path as a
5th order spatial Bézier curve which is iteratively computed.
This path will satisfy the required constraints and, at the
same time, will produce curve with a satisfactory length.

II. RELATED WORKS

One of the most important factors for path planning
is to produce paths that are feasible to be executed by
the vehicle, which means that during path generation, the
movement restrictions of the vehicle must be considered
(e.g. nonholonomic constraints). This problem has been
thoroughly studied, and the literature available in the area
abounds specially for manipulators and two dimensional
mobile robots [1]. However, there are fewer works dealing
with vehicles that displace in the three-dimensional space.
Furthermore, many new challenges are posed despite the fact
that, in principle, it seems that the problem is less restrictive.
Current problems, which include path planning for multiple
UAVs (Unmanned Aerial Vehicles) and AUVs (Autonomous
Underwater Vehicles), still demand better solutions.

In this paper we use a special technique to calcule feasible
paths, called Pythagorean Hodograph Interpolation. The PH
curves of fifth order were presented for the first time by
Farouki and Sakkalis [2], for the two-dimensional case. A
Hermite Interpolation algorithm was proposed in [3], where
the author demonstrate that there exist four possible solutions
for the curve in R2. The chosen solution is the one that
minimizes the cost function (bending energy function) based
in the integral of the modulus a curvature function (the
torsion in this in case is null).

The three-dimensional case is presented by Farouki et al.
in [4]. In [5], the quaternion representation is used to deal
with the Hermite Interpolation issues, and the author claims
that the infinite cardinality of the set of solutions for the
problem is due to an underdetermined system of equations
needed to compute the final curve. In order to significantly
reduce the solution space, the author suggests assigning a
small set of values to the unknown variables, reducing the
number of possible solutions to some. The best solution is
obtained from the minimization of the cost function defined
in [4], that is based on the integral of the sum of the curvature
and torsion functions modulus of each curve.

To guarantee that the PH does note violate the kinematic
constraints of a vehicle, Shanmugavel et al. [6] proposes a
modification where the PH curve is computed iteratively. For
every step of the algorithm, gain values are increased until
~r(t) becomes realizable. However, only the curvature and
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torsion constraints are considered. As it will be shown later,
for vehicles with bounded values of climb (or dive) angle, it
is not possible to minimize the problem for the spatial cost
functions.

In [7] the authors present an improved cost function based
on [4] that consider all three constraints. In this paper, we
propose a new cost function that will take into account just
the climb angle limitation, indirectly ensuring the others
constraints, and providing a decrease in the computational
cost of the method. The θmax constraint will be included
in the PH computation, which will then generate feasible
paths for robots in the three-dimensional space, under the
aforementioned constraints.

III. PROBLEM STATEMENT

Our technique assumes an obstacle free environment, and
that the only limitations for the navigation of the robot
are imposed only by its own kinematic constraints. Two
configurations, Pi and Pf mark the initial and final poses,
respectively, which define the position and (partially) the
orientation of the robot in the extreme points of the path.

A path may be defined mathematically as a parametric
curve ~r(t) in three-dimensional space, where t is a parameter
that continuously varies in R. In this manner, the path
planning problem can formally be described as:

Pi(xi, yi, zi, ψi, θi) = ~r(ti),
Pf (xf , yf , zf , ψf , θf ) = ~r(tf ),

(1)

where ti and tf are the initial and final values, respectively,
for the curve parameter t.

Each waypoint is described by three position (x, y, z) and
two orientation (ψ, θ) variables. The variable ψ is an angle
that describes the way-point orientation parallel to the XY
plane in relation to the X axis. Now θ corresponds to the
way-point orientation measured parallel to XZ the plane,
also in relation to the X axis.

The poses Pi and Pf can represent any pair of way-
points in a set, which in turn, is determined by the missions
planning modules in a high-level.

A. Constraints

In order for a path to be considered feasible for a given
robot, the curve ~r(t) must simultaneously fulfill kinematic
and dynamic constraints and their maximum numerical val-
ues. The three motion constraints mentioned before are the
maximum curvature (κmax), the maximum torsion (τmax)
and the maximum climb (or dive) angles (θmax) realizable
by the robot in 3D space. It is possible to completely define
a curve in R3 only by means of its functions of curvature
and torsion [8].

As far as the physics is concerned, the curvature may
be defined as a quantity that is directly proportional to the
lateral acceleration of the robot in space. The value of κmax
is inversely proportional to the minimum curvature radius
(ρmin) of the curve that the vehicle is able to execute, which
is also proportional to the maximum lateral acceleration of

the vehicle. The curvature function of a curve in the n-
dimensional space is given by the following equation:

κ(t) =
|~̇r(t)× ~̈r(t)|
|~̇r(t)|3

. (2)

The torsion can be seen as being directly proportional to
the angular moment (roll moment) of the robot, which is
also physically limited. Thus, the value of τmax is given in
function of the minimum torsion radius (σmin) that the robot
describes in space. The torsion of a curve can be calculated
through the following equation:

τ(t) =
[~̇r(t)× ~̈r(t)] ·

...
~r (t)

|~̇r(t)× ~̈r(t)|2
. (3)

Finally, the climb (or dive) angle is proportional to the
ascent (or descent) rate of the robot in 3D space. In other
words, it captures the variation of the altitude (z) throughout
the path. For vehicles with limited values of climb angle,
such as fixed-wing aircrafts, this is a fundamental variable.
The value of θmax may depend on many factors, as trans-
lation speed and spatial orientation of the robot. The climb
angle function of a parametric curve in three-dimensions is
given by:

θ(t) = tan−1

(
ż(t)√

ẋ(t)2 + ẏ(t)2

)
. (4)

It is possible to show that this function is mathematically
confined to the interval

[
−π2 ,

π
2

]
. The same is valid for the

value of θmax.
Finally, the path ~r(t) is valid for a vehicle if the modulus

of curvature, torsion and climb angle functions, are smaller
than the the vehicles absolute maximum values, as described
below:

~r(t), |κ(t)| < κmax, |τ(t)| < τmax, |θ(t)| < θmax. (5)

With regard to the dynamic, it is important to consider
the form by which such constraints vary in the time. The
continuity of the curvature, torsion and climb angle functions
is another fundamental characteristic in the path planning for
real vehicles. Discontinuities in the curvature function, for
example, can induce infinite variations of lateral acceleration,
which of course, are not realizable. The same reasoning is
valid for the torsion. In the case of the climb angle function,
the lack of continuity implies in the tangential discontinuity
of the curve itself.

Finally, the curve produced by the path planning algorithm
is continuously derivable, should be third order differen-
tiable, according to the Equation 3.

B. Spatial Pythagorean Hodograph Curves

Spatial Pythagorean Hodograph curves are a special
kind of parametric polynomial curves defined in the three-
dimensional space. They are represented, in general, as
~r(t) = [x(t), y(t), z(t)] and their derivatives (hodograph
components) satisfy the Pythagorean condition:

ẋ(t)2 + ẏ(t)2 + ż(t)2 = h(t)2 (6)
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for some polinomial h(t). This means that the parametric
“speed”, ṡ(t), of the curve can be described by means of a
polynomial, making it possible to compute the length of the
path, s, exactly as:

s =
∫ tf

ti

~̇r(t) dt =
∫ 1

0

|h(t)| dt (7)

The spatial PH curves are still shaped as fifth order Bézier
curves:

~r(t) =
5∑
k=0

pk

(
5
k

)
(1− t)5−ktk; t ∈ [0, 1] (8)

where pk = [xk, yk, zk] is the k-th control point of the
Bézier curve. The path planning problem is then reduced to
find a solution to the Hermite Interpolation problem. One
important advantage of using this model is that the resulting
curve is infinitely continuous, so that the curvature, torsion
and inclination functions are always smooth.

IV. REALIZABLE PATH CALCULATION

In this work the principles of spatial PH curves are used
to generate paths that are attainable by a robot in three-
dimensional space. These paths comply with the curvature,
torsion and climb angle constraints imposed by this robot.
Thus, assuming the model described by the Equation 8, the
path planning problem is to determine the six control points
of the Bézier curve.

A. First-order Hermite Interpolation Problem

To find the control points of the Bézier curve we should
solve the following Hermite Interpolation system:

p0 = [xi, yi, zi],

p1 = p0 +
c0
5
A0iA∗0,

p2 = p1 +
c0
10

(A0iA∗1 +A1iA∗0),

p3 = p4 −
c5
10

(A2iA∗1 +A1iA∗2),

p4 = p5 −
c5
5
A2iA∗2,

p5 = [xf , yf , zf ].

(9)

where c0 and c5 are gain factors that has unit values for
a PH with no constraints. The above set of equations was
derived from [5], and according to authors, it represents an
underdetermined system. In other words, there are infinity
spatial PH curves that interpolate the initial and final way-
points.

The problem is initially approached by assuming that the
extreme points of the curve (p0 and p5) are directly deter-
mined by the initial and final poses Pi and Pf , respectively.
All the remaining points will depend on these pose vectors
and on the c0 and c5 gains.

We model the problem using quaternions, which allows for
a more compact and elegant representation of the system, as
well as providing a clearer geometric view of the solution.

The conjugate of Ak is given by the notation A∗k. As shown
in [4], a set of equations of the type

AkiA∗k = c , (10)

where i is a pure vector quaternion since its scalar part is
null, such that i2 = −1; presents a solution c which also is
a pure vector quaternion.

Hence, a system is formed that is composed of three
equations and four unknowns, leaving a degree of freedom
still to be determined. With this, the solution for every Ak
is parameterized by an angle variable φk (for a detailed
explanation the reader is referred to [4]). Deriving the
Equation 10 with respect to A0, one obtains:

A0(φ0) =

r
|di|
2

(1 + λi)

266666664

− sin(φ0)

cos(φ0)

µi cos(φ0) + νi sin(φ0)

1 + λi
νi cos(φ0)− µi sin(φ0)

1 + λi

377777775
, (11)

where di is the vetor direction of the pose Pi, computed as

di = c0 [cos(ψi) cos(θi), sin(ψi) cos(θi), sin(θi)]

and
[λi, µi, νi] = di/‖di‖ .

Equivalently, A2 can be expressed in the form:

A2(φ2) =

r
|df |
2

(1 + λf )

266666664

− sin(φ2)

cos(φ2)

µf cos(φ2) + νf sin(φ2)

1 + λf
νf cos(φ2)− µf sin(φ2)

1 + λf

377777775
,

(12)
where df is the vetor direction of the pose Pf , given by

df = c5 [cos(ψf ) cos(θf ), sin(ψf ) cos(θf ), sin(θf )]

and
[λf , µf , νf ] = df/‖df‖ .

Once the values of A0 and A2 are determinated by setting
the values of φ0 and φ2, respectively, A1 can be defined as
function of a third angle variable φ1:

A1(φ1) = −3
4
(A0 +A2) +

√
|c|
2

(1 + λ)

4
Ac(φ1), (13)

where

Ac(φ1) =



− sin(φ1)

cos(φ1)

µ cos(φ1) + ν sin(φ1)

1 + λ
ν cos(φ1)− µ sin(φ1)

1 + λ

 ,
c is a pure vector quaternion given by

c = 120(pf−pi)−15(di+df )+5(A0iA∗2 +A2iA∗0) (14)

and
[λ, µ, ν] =

c
|c|
.
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B. Iterative Algorithm

To compute the spatial PH, it is remains to determine the
values of the angles φ0, φ1, φ2 and the gains c0 and c5. The
angular variables are defined for the range

[
−π2 ,

π
2

]
. In [4],

authors claim (empirically) that it is possible to represent the
solution space in extensive form enough, by the quantization
of the values of each of these angles according to:

φk =
[
−π

2
, −π

4
, 0,

π

4
,
π

2

]
.

The combinatorial arrangement of these five values for
each φk leads to a total of one hundred and twenty-five
solutions to the PH curve. The authors also argue that
for most cases, φ1 may be equal to −π2 , without loss of
generality, reducing the number of solutions to twenty-five.
Each of these solutions has different curvature, torsion and
climb angle functions. The best solution is the one that
minimizes the cost function of the path, or the bending elastic
energy function [9]:

E =
∫ 1

0

ω(t)2 |~̇r(t)| dt (15)

where ω(t) is the total curvature of the spatial PH, which is
given by

ω(t) =
√
κ(t)2 + τ(t)2.

This solution, however, is not satisfactory for the problem
considered here, since it does not take into account the climb
angle function in the energy computation. As it will be shown
later, the PH curves that minimizes the cost function, may
present climb (or dive) angles unattainable for a given robot.

To solve this problem, the following elastic bending energy
function is proposed in [7]:

ω(t) =

√(
κ(t)
κmax

)2

+
(
τ(t)
τmax

)2

+
(
θ(t)
θmax

)2

. (16)

Besides minimizing the increase in the rate of climb of
the vehicle in three-dimensional space, this new function still
takes into account the three aforementioned constraints and
their maximum values in a normalized form. The problem
with this function is the increase in the computational com-
plexity in relation to the previous equation. We show in the
next section that a more satisfactory result can be obtained
using the following cost function:

ω(t) = |θ(t)| . (17)

Instead of considering the curvature and torsion profiles,
this new function takes into account only the aforementioned
climb constraint of the vehicle, which minimizes the cost of
algorithm and contributes to the smoothing of the climb rate
of the curve.

We verify, experimentally, that in most cases the lowest
values of E were obtained when φ1 = −π2 (as seen in the
previous case), and when the difference between φ0 and
φ2 was the largest possible. Therefore, taking φ0 in the φk
interval and φ2 = −φ0, the number of solutions is reduced
to a set of five only.

Finally, the values of c0 and c5, the gains for which the
spatial PH fulfills the requirements described in Equation
5 still remains to be determined. This naturally leads to
an optimization approach, since there is no closed solution
for this problem. Increasing these gains tends to minimize
the function ω(t) as a whole, which is indirectly linked to
the inverse of the parametric “speed” of the curve. But that
brings as a consequence an increase in path length. Thus, the
ideal values of c0 and c5 are those which produces a feasible
curve for a given robot, but also minimizes s.

In the first step of the algorithm, the values of these
gain factors are unit. In each iteration of the algorithm the
conditions 5 are observed, and gains are increased by

c0 = c0 +
(
E0

E0 + E5

)
(ρmin + σmin) , (18)

c5 = c5 +
(
E5

E0 + E5

)
(ρmin + σmin) , (19)

where

E0 =
∫ 0.5

0

ω(t)2 |~̇r(t)| dt

and

E5 =
∫ 1

0.5

ω(t)2 |~̇r(t)| dt.

This method promotes a convergence to the result with
a very small number of iterations, producing a curve of
reasonable length when compared to other techniques, such
as RRT [10].

V. RESULTS

The proposed methodology has been used to generate
paths in three-dimensional space for an autonomous vehicle
modeled by the following constraints:

• ρmin = 10 meters,
• σmin = 100 meters,
• θmax = π

6 radians.

These values were chosen arbitrarily, so that the vehicle
presents a relatively small climb angle (30 degrees) and
minimum torsion radius ten times larger than the minimum
radius of curvature.

We have also established two spatial configurations rep-
resenting the initial and final way-points of the path to be
planned, where position variables units are in meters and the
orientation in radians:

• Pi =
[
0, 0, 0,−π2 ,

π
6

]
,

• Pf =
[
50, 20, 50,−π2 , 0

]
.

A very important point is to ensure that the values of
the climb angles θi and θf of these way-points are smaller
in modulus than the maximum climb angle. Otherwise,
it becomes impossible to find values of c0 and c5 that
guarantees the condition 5 for ~r(t).

Next two types of paths for those configurations pairs were
generated. The first use of the methodology of Spatial PH
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curves, is shown in [4]. As seen, this technique only mini-
mizes the curvature and torsion functions of ~r(t). The second
method applies the proposed energy function (Equations 15
and 17) to minimize the three constraints considered.

Figures 1(a) and 1(b) show a comparison between the
results produced by these two techniques, respectively. It is
possible to see that the curve without climb constraint is
incapable of being accomplished by the robot, even though
it presents a length smaller than the second case.

(a)

(b)

Fig. 1. Comparison between (a) Pythagorean Hodograph curve and
(b) Pythagorean Hodograph curve with bounded climb angle for Pi =ˆ
0, 0, 0,−π

2
, π

6

˜
, Pf =

ˆ
50, 20, 50,−π

2
, 0

˜
, ρmin = 10 meters, σmin =

100 meters and θmax = π
6

radians.

Besides the paths produced, it is possible to see the
configuration of the control points calculated for each curve.
These points were calculated from the values φ0 = π

2 ,
φ1 = 0 and φ2 = −π2 for the conventional PH and φ0 = π

2 ,
φ1 = −π2 and φ2 = −π2 for the PH with bounded climb
angle.

In the Figure 2 is possible to see the comparison of the
two curves in relation to the constraint functions of the
path. Both curvature (Figure 2(a)) and torsion (Figure 2(b))
functions for both methods are continuous and bounded by
the maximum κmax and τmax values, respectively. The main
difference between them is the climb angle function (Figure
2(c)), where it realizes that the first method which generates
curves that pass over the value of θmax in modulus. In certain

respects, the climb comes close to extremes of the range[
−π2 ,

π
2

]
.

(a)

(b)

(c)

Fig. 2. Constraint functions of (a) curvature, (b) torsion and (c) climb
angle of Spatial PH (dashed black line) and Spatial PH curve with bounded
climb angle (continuous black line).

The proposed methodology limits values of the climb
angle to the range of θmax throughout the path. But that
is at the expense of increasing the length of the path, as
can be seen in Figure 2. In fact, higher values of c0 and
c5 are necessary if the curve reach the three constraints as
compared to the first technique, where only two constraints
are used.

The technique was used to plan paths for a small un-
manned fixed-wing aircraft called AqVS (Figure 3), de-
veloped at Universidade Federal de Minas Gerais. This is
a small hand launched hybrid electric motor sail plane,
equipped with gps receptor, barometric altimeter, infrared in-
clinometer, airspeed sensor and CCD camera, and controlled
by a set of PID stabilizators for autonomous navigation
(for more informations view [11]). The AqVS presents the
following characteristics:

• ρmin = 50 meters,
• σmin = 300 meters,
• θmax = π

30 radians.

The above values were determined using data from actual
flights of the SUAV, considering a speed of approximately 50
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km/h. This vehicle has shown to be a good choice for testing
our methodology because of its small climb angle (about 6
degrees).

Fig. 3. AqVS-SUAV from Universidade Federal de Minas Gerais/Brazil.

Figure 4 shows the result of two simulated flights of the
AqVS/SUAV. In the first test we use the Spatial Pythagorean
Hodograph methodology to generate paths to our vehicle.
In the second test we use our methodology. The following
five points were arbitrarily chosen and used to produce these
paths:

• P1 = [0, 0, 1000, 0, 0],
• P2 =

[
1500, 0, 1050,−π4 ,

π
30

]
,

• P3 =
[
1500, 2000, 1100, π2 , 0

]
,

• P4 =
[
2500, 500, 1050, π,− π

30

]
,

• P5 =
[
0, 200, 1000,−π2 , 0

]
.

The blue line in the graphs represents the actual trajectory
executed by the SUAV model when tracking the planned
paths. We can see in the Figure 4(a) that the aircraft have
some difficulties to execute the paths, once its clearly violate
the climb constraint of the robot. In the Figure 4(b) however,
the fly is satisfactory. In spite of the noise, which is mainly
due to the altitude sensor and the actions of the control
system, the vehicle is able to closely track the path.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a methodology for path plan-
ning for autonomous vehicles that move in three-dimensional
environments. These vehicles typically present at least three
motion constraints: maximum curvature, maximum torsion
and maximum climb angles. These kinematic constrains
represent a simplification to a more complicated dynamic
model, in which dynamic constraints must to be consider.

The methodology is an extension of Spatial Pythagorean
Hodographs where such constraints are explicitly taken into
account. The proposed methodology uses an elastic bending
energy function for the resolution of the Spatial Pythagorean
Hodograph that minimizes the climb angle function of the
curve ~r(t), generating a solution that is adequate for vehicles
with limited climb (or dive) angle capability.

Including other constraints to the cost function, such as
maximum translation speed, is one of the next steps in this
research. As further investigation we will consider environ-
ments with static and dynamic objects, which demand path
replanning, and are of major relevance to the case of multiple
and cooperating vehicles moving in three-dimensional space.

(a)

(b)

Fig. 4. Comparison between AqVS trajectory over the planned paths
(a) using Spatial Pythagorean Hodograph curve and (b) using Spatial
Pythagorean Hodograph curve with bounded climb angle.
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