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Abstract— This paper describes a robotic system that learns
visual models of symmetric objects autonomously. Our robot
learns by physically interacting with an object using its end
effector. This departs from eye-in-hand systems that move the
camera while keeping the scene static. Our robot leverages a
simple nudge action to obtain the motion segmentation of an
object in stereo. The robot uses the segmentation results to pick
up the object. The robot collects training images by rotating the
grasped object in front of a camera. Robotic experiments show
that this interactive object learning approach can deal with top-
heavy and fragile objects. Trials confirm that the robot-learned
object models allow robust object recognition.

I. INTRODUCTION

Autonomous object learning is an inherently interesting

concept as humans use it regularly to adapt to new en-

vironments. A robot with the ability to learn new objects

on its own can adapt to different operating environments

while shifting the burden of training data collection and

model construction away from human users. By doing so,

the robot may now be able to operate in environments such

as the household where the large number of unique objects

make exhaustive modelling and training intractable. Given

the increasing ratio of workers versus retirees in developed

nations [1] and positive public opinion towards domestic

robots [2], the case for autonomous object learning has never

been stronger.

There are many bilaterally symmetric objects in the house-

hold, including container objects such a cups and bottles. As

such, the ability to autonomously learn symmetric objects is

a useful addition to any domestic robot performing tasks such

as cleaning or setting the table. In a previous paper [3], the

authors demonstrated a robotic system that segments objects

autonomously. Segmentation is performed by observing the

object motion induced using a controlled pushing action

called the robotic nudge. The robotic nudge removed the

need for object models, allowing the robot to segment new

objects autonomously, including near-symmetric objects such

as a mug with a handle. We suggested that it maybe possi-

ble to use robot-obtained segmentations to perform further

interactions and object learning.

This paper confirms these suggestions by demonstrating a

robotic system that learns visual models of new symmetric

objects via robotic interaction. The learning process is au-

tonomous and model-free, which frees our robot from having

to rely on training data and prior object models. Experiments

on beverage bottles show that models learned by the robot

allow reliable and robust object recognition.

II. CONTRIBUTIONS

Contributions are made in the areas of interactive object

learning and object recognition. The autonomous nature

of the entire robotic system, from object segmentation to

grasping to modelling, also contributes to current research.

A. From Simple to Advanced Interactions

Fitzpatrick suspected that it maybe possible to leverage

simple object interactions to perform advanced interactions

such as object grasping [4]. This paper confirms Fitzpatrick’s

suspicion experimentally. Our robotic system investigates

objects by moving them a very short distance across the

table using a robotic nudge. The information gained from

this simple interaction is then used by the robot to pick up

the object. The robot’s ability to move autonomously from a

nudge to a grasp is novel and useful in situations where the

robot has to deal with new objects.

B. Object Learning using Robot-collected Training Images

In our previous paper [3], we suggested that object seg-

mentations obtained autonomously by our robot can be used

as training data for an object recognition system. While these

segmentations are accurate, nudging an object on a table

only provides a single view of the moved object. The robot

presented here grasps the nudged object and rotates it to

collect training images over the entire 360 degrees of the

grasped object. Object models are constructed using these

robot-collected training images.

The proposed approach differs from the traditional ap-

proach of offline image collection and feature detection using

a turntable-camera rig as surveyed in [5]. Our approach

also differs from semi-autonomous systems, such as [6], that

require a human user to provide the robot with different

views of test objects. Instead, our robot autonomously learns
new objects by modelling them online. Object recognition

experiments suggests that the robot is able to learn useful

visual models of new objects.

C. Robust Object Recognition by Pruning SIFT Descriptors

The robot’s gripper has two wide foam fingers, which can

be seen in the photos of Figure 1. The foam-padded gripper

ensures a stable grasp but does not allow an accurate pose
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estimate of the grasped object. This means that foreground-

background segmentation is not available during training.

As such, multi-view object recognition methods such as [7]

are unsuitable because they rely on well segmented training

images.

(a) Front view of gripper (b) Side view of gripper

Fig. 1. Photos of foam-padded robot gripper. The L-shaped protrusion is
used to perform the robotic nudge

Our approach extracts SIFT descriptors [8] from the robot-

collected training images to model objects. As the inclusion

of background SIFT descriptors in the object model can

produce false positives during recognition, we developed an

automatic descriptor pruning method. The pruning method

crossexamines descriptors between the images within a

robot-collected training set to reject background descriptors.

III. PICKING UP A NUDGED OBJECT

The object learning process begins with a robotic nudge

as described in [3], except that motion segmentation is now

performed in stereo. This results in two object segmentations,

one for each camera view. These segmentations allows the

robot to crudely triangulate the top of the object. The

location of the object on the table is found by looking for

the intersection of its 3D axis of symmetry with the table

plane. The object’s axis of symmetry is found through fast

symmetry triangulation as detailed in [9].

A. Determining the Height of a Nudged Object

In each camera view, the top of the nudged object is

determined by following the object’s symmetry line upwards.

The top of the object is where its symmetry line intersects

with the object-background boundary of its segmentation.

Figure 2 visualizes an object’s symmetry line and the top of

the object as detected by our robot.

(a) Left camera image (b) Right camera image

Fig. 2. The top of a blue cup’s symmetry line as detected by the robot

After locating the top of the object in each camera view,

standard stereo triangulation is performed to determine the

height of the object. As the top of the object is a projection

of the rear of the object, there is an inherent error to the

object’s triangulated height. Figure 3 illustrates the pertinent

geometry of the error for a single camera. The blue line

joins the camera’s focal point and the top of the object

as detected in the camera view. The height returned by

stereo triangulation is marked as a black dot. Notice that

the triangulated height will always be greater than or equal

to the actual height of the object.

d
r

Object Symmetry Axis

Object

Camera
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Fig. 3. Error of stereo triangulated object height.

In Figure 3, r represents the object radius and d is the error

of the triangulated height. In cases where the object deviates

from a surface of revolution, r represents the horizontal

distance between the object’s symmetry axis and the point

on the top of the object that is furthest from the camera. The

angle between the camera’s viewing direction and the table

plane is labelled as θ. Using similar triangles, the height error

d is described by the following equation.

d = r tan θ (1)

To simulate humanoid robots dealing with objects at arm’s

length, our experimental rig has a θ of 30 degrees. This

results in a d error of roughly 0.6 × r. We assume objects

with radii ranging from 30mm to 90mm, which produces

values of d between 18mm and 54mm. To compensate

for the height error d, the gripper vertical coordinates are

offset downwards by 36mm. As the vertical tolerance of the

robot’s two-fingered end effector is well over ±18mm, object

grasping remains stable and reliable as demonstrated by the

experiments detailed in Section V.

B. Object Grasping, Rotation and Training Data Collection

A PUMA260 6-DOF robot arm is used to perform all

object manipulations. Grasping is performed by lowering the

opened gripper along an object’s symmetry axis. When the

gripper arrives at the top of the object, offset downwards

by the height triangulation error d, grasping is performed

by closing the gripper. The gripper is then raised until the

majority of the gripper is no longer visible in the camera

image. This helps prevent the inclusion of gripper features

in the object model.
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Training images are collected by rotating the grasped

object about the vertical axis of the robot manipulator. Right

camera images are taken at 30-degree intervals over 360

degrees to produce 12 training images per object. The 30-

degree angle increment is chosen according to the ±15
degrees viewing orientation tolerance reported for SIFT

descriptors [8]. The first two images of the twelve-image

training set collected by the robot is shown in Figure 4. Each

training image is 640 × 480 pixels in size.

Fig. 4. First two images of the green bottle training set. The robot has
rotated the grasped bottle by 30 degrees.

IV. BUILDING OBJECT MODELS USING SIFT

The scale invariant feature transform (SIFT) [8] is a multi-

scale method that extracts highly unique descriptors from

affine regions on an image. The descriptors are robust against

translation, rotation and illumination changes as well as small

changes in viewing orientation and minor perspective effects.

This makes the SIFT descriptor a viable feature for modelling

objects visually.

A. SIFT Detection

As shown in Figure 4, the robot rotates a grasped object

to collect training images at 30-degree increments. SIFT

detection is performed on each of the twelve images in a

training set. David Lowe’s SIFT binary is used to extract

descriptors from the image. Our own C++ code is used to

match and visualize the detected descriptors. The location

of SIFT descriptors detected from a training image of a

white bottle are visualized as blue dots in Figure 5(a). Note

the dense coverage of descriptors over the object. Object

modelling is performed offline after object interaction.

B. Pruning Background Descriptors

Figure 5(a) highlights the need to prune away non-object

descriptors before building object models. The inclusion of

background descriptors, such as those in the upper right and

lower right of Figure 5(a), will probably lead to false posi-

tives during object recognition. This is especially worrying

when the robot is operating on objects set against similar

backgrounds.

We have developed an automatic pruning method to re-

move background descriptors. The pruned result is shown

in Figure 5(b). Notice that the majority of background de-

scriptors, including the descriptor extracted from the object’s

shadow, have been successfully removed. Our experiments

suggests that the remaining non-object descriptors have neg-

ligible effect on object recognition performance.

(a) All detected descriptors

(b) Background descriptors pruned

Fig. 5. Removing background SIFT descriptors.

The descriptor pruning method is a two-step process.

Firstly, a loose bounding box is placed around the grasped

object to remove non-object descriptors. The bounding box

is large enough to accommodate the object tilt and displace-

ment incurred as a result of grasping and rotation. This

removes a large portion of background descriptors.

The second pruning step exploits the repetitions within a

training image set to remove background descriptors. As the

grasped object is rotated in front of a static background,

background descriptors will occur much more frequently

within a training image set. We assume that an object

descriptor in the current training image may also be detected

in the image collected at the previous object rotation as

well as the next object rotation. This means that an object

descriptor can at most match with descriptors from two other

images within the training set. As such, the second pruning

step rejects any descriptor in a training image that has three

or more descriptor matches with other images in the training

set.

The proposed pruning method can be applied to other

training data collection situations where an object is rotated

in front of a static background. The three descriptor threshold

can be altered depending on the angular increment used

for object rotation. Apart from increasing object recognition

robustness by reducing the probability of false positives,

the reduction in the number of descriptors also reduces the

computational cost of recognition. In the example shown in

Figure 5, the number of descriptors is reduced from 268 to
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163.

C. Object Recognition

The robot’s object recognition system is described in

Figure 6. The object database is created automatically from

robot-collected training images of grasped objects. Each

object in the database is represented by the descriptors

detected from a twelve-image training set, with background

descriptors pruned using the method described in Section IV-

B. Note that SIFT detection is carried out on grayscale

images, so colour information is not used by our object

recognition system. The names of the object labels are

specified manually by the user.

0o 30o 60o 330o

OBJECT LABEL: White Bottle

SIFT Descriptor Sets from 12 Training Images

OBJECT LABEL: Yellow Bottle

OBJECT LABEL: Transparent Bottle

OBJECT DATABASE

Input Image

Detect 
SIFT

Compute Matches with 
all Descriptor Sets

0o 30o 60o 330o

SIFT Descriptor Sets from 12 Training Images

0o 30o 60o 330o

SIFT Descriptor Sets from 12 Training Images

Object Recognition 
Results

Object Label of 
Best SIFT Set

Best SIFT 
Descriptor Set 

Training Image 
of Best SIFT Set

Set with Most 
Matches is BEST

Input
SIFT 

Descriptors

Fig. 6. Object recognition using learned SIFT descriptors.

Object recognition is performed by matching descriptors

in the input image against each descriptor set in the object

database, shown as green squares with angles in Figure 6. As

there are twelve descriptor sets per object learned, twelve set

matches are performed for each object in the database. The

descriptor set with the most matches is considered best and

its object label is returned as the recognized object. The best
descriptor set and the corresponding training image are also

returned by the system. As pose estimation requires three

correct matches [8], the recognition system will only return

a result when three or more matches are found.

Descriptor matches are found using the ratio-based method

described in [8]. Each descriptor of one set is compared with

all descriptors of the other set. The best matching descriptor

pair is the one with the shortest Euclidean distance. Addi-

tionally, the nearest pair is only considered a valid match if

its distance is shorter than 0.6 times the second nearest pair.

V. AUTONOMOUS OBJECT LEARNING EXPERIMENTS

Autonomous learning experiments were performed by the

robot on the seven test objects displayed in Figure 7. The test

objects are beverage bottles, including two transparent bottles

and a glass bottle. Apart from the cola bottle, all the other

bottles are empty. This raises the object’s center of gravity

and makes object interactions more difficult. As beverage

bottles are surfaces of revolution, they are visually symmetric

from multiple views and therefore easily segmented using the

robotic nudge. The robot was successful in collecting training

images autonomously for all seven test objects.

(a) White (b) Yellow (c) Green (d) Brown

(e) Glass (f) Cola (g) Transparent

Fig. 7. Bottles used in object learning and recognition experiments.

The object database and recognition system is tested

using 28 images, four for each test object. Each quartet of

images show the test object at different orientations and

set against varying amounts of object clutter. The object

recognition results are shown beside their corresponding

object learning videos at:

www.ecse.monash.edu.au/centres/irrc/iros09li.php

The long pause after the nudge in the object learning

videos is due to the saving of data to document the experi-

ment. This includes the saving of several hundred 640×480
tracking images collected during the nudge, which takes

a considerable amount of time. Without the logging of

experiment data, object grasping can occur 160ms after the

robotic nudge. Two videos where experiment data saving has

been disabled are available under the Video Walkthroughs
heading on the website. These videos are a part of the first

author’s thesis documentation and includes a verbal narration

of the autonomous learning process.

The recognition system returned the correct object label

for all 28 test images. This result implies that the SIFT de-

scriptors models built autonomously by our robot is sufficient

for reliable object recognition. Statistics of the descriptor

matches obtained for the test images are shown in Table I.

Good descriptor matches are tabulated under the columns

labelled with a
√

. Bad matches are shown under the ×
columns. We define a good match as one where the descriptor

in the input image appears at a similar location on the

object in the matching training image. Bad matches are those

with descriptors that belong to different parts of the object.
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Good and bad matches are judged by manual observation.

As only three correct SIFT matches are needed for pose

estimation [8], the results in Table I suggests that our robot-

learned object models can be used for pose estimation.

TABLE I

OBJECT RECOGNITION RESULTS – SIFT DESCRIPTOR MATCHES

Bottle
Image number

00 01 02 03√ × √ × √ × √ ×
White 16 0 6 0 17 0 7 0

Yellow 14 0 11 0 24 0 4 0

Green 23 1 21 1 11 0 9 1

Brown 15 0 16 0 16 0 8 0

Glass 5 0 6 1 4 1 4 1

Cola 7 0 4 0 9 0 11 0

Transparent 6 0 7 1 11 0 6 0

The recognition results for four test images are shown

in Figures 8, 9, 10 and 11. The bracketed number in the

captions is the same as the image numbers in Table I and

the website. Each figure shows the input image above the

matching training image returned by the recognition system.

The recognized object label is shown as green text at the

bottom of the figure. The red lines linking the two images

represent the SIFT descriptor matches between the input

image and the matching training image.

Figure 8 shows the affine invariant nature of our SIFT-

based recognition system as the white bottle is successfully

recognized despite an inversion of orientation. Figure 9 con-

tains a difficult object recognition scenario. The green bottle

is heavily occluded by objects and also has several specular

reflections on its shiny surface. Despite these challenges,

the correct object is recognized and the figure also shows

numerous descriptor matches.

Figure 10 shows the small number of SIFT descriptor

matches found for the glass bottle. This can be attributed

to the bottle’s reflective label and its low texture surface.

Note also that a bad descriptor match is found between

the bottle cap in the input image and the bottle’s label in

the training image. However, as four correct matches are

found, object recognition remained successful. Additionally,

as pose estimation only requires three correct matches, the

noisy match is of minor concern.

Figure 11 shows the object recognition result for a cola

bottle with large patches of transparency. Note also that the

cola bottle in the input image is empty. The recognition sys-

tem remains robust against the change in object appearance

and the presence of background clutter.

VI. CONCLUSION AND FUTURE WORK

This paper has demonstrated a robot that can au-

tonomously learn new objects through the intelligent use of

object interaction. Our robot is able leverage a simple nudge

action to pick up and rotate new objects. Experiments show

that our robot is able learn beverage bottles autonomously,

including transparent plastic bottles and a fragile glass bottle.

The transition from simple to advanced object interac-

tions allow the robot to collect its own training images.

An object database is constructed using the robot-collected

training images by applying SIFT detection with background

descriptor pruning. The resulting object recognition system

performs well in our trials, reliably identifying the correct

object in all test images. The recognition results show that

the robot-collected training images are of sufficient quantity

and quality to build useful object models. Future works can

increase the discriminatory power of learned object models

by including colour information. Additionally, the robustness

descriptor pruning with different backgrounds should be

further investigated. Possible robustness improvements may

include the estimation of the fundamental matrix between

object views to improve pruning and model building.

Our robot is an addition to a sparse field of systems [4],

[10], [11] that actuates objects in front of a static camera

instead of actuating a camera around static objects. The

proposed approach takes a small but important step towards

greater robot autonomy by shifting the labour intensive task

of object modelling from the human user to the tireless robot.
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Fig. 8. Object recognition result – White bottle (Image Number 01).

Fig. 9. Object recognition result – Green bottle (Image Number 02).

Fig. 10. Object recognition result – Glass bottle (Image Number 03).

Fig. 11. Object recognition result – Cola bottle (Image Number 03).
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