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Abstract— This paper presents a novel planner for manipula-
tors and robots in changing environments. When environments
are complicated, it’s always difficult to find a completely valid
path solution, which is essential for many methods. However,
our planner searches for several path segments to make robot
move towards its goal as much as possible even though such a
complete solution doesn’t exist currently. In the learning phase,
the planner begins by building a roadmap that captures the
topological structure of the configuration space in a workspace
without obstacles. In the query phase, the planner searches
for a solution path in the roadmap with the A∗ algorithm and
performs roadmap updating using the lazy evaluation idea con-
currently with the solution search process. If a completely valid
solution is found, it will be adopted immediately. Otherwise the
planner will collect a set of maximum valid path segments
and then select the optimal one for planning in the execution
process. The searching and execution process will be repeatedly
performed until a goal configuration is reached. In plentiful
experiments, our planner shows promising performances.

I. INTRODUCTION

Over the past several decades, path planning in static en-
vironments has been studied extensively. The basic problem
can be generally stated as to compute a collision-free and
feasible motion sequence for an object to move from a given
start configuration to a goal one without collision. Exact
algorithms[1] which need to describe both the robot and
its operation environment exactly, were first produced in the
early research. Due to the exponential complexity property,
they are infeasible for practical cases. After Lezano-Pérez
introduced the concept of configuration space into the context
of planning[2], methods building an approximate represen-
tation of the configuration space, C-space, caught the focus
of research. However, the size of representation increases
exponentially with C-space dimension. In order to avoid this
drawback, the sampling-based philosophy was introduced
to the path planning field. Among those sampling-based
approaches, the Probabilistic Roadmap method (PRM)[4] is
widely used and has led to many variants. Lazy PRM[5] is
one of those variants whose key idea is to perform collision
check unless it’s necessary and our method also shares
its Lazy Evaluation idea. Another category of sampling-
based path planning methods utilizes an effective tree-like
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data structure called Rapidly-exploring Random Tree (RRT),
which was first introduced in [6]. Since RRT biases the
exploration toward unexplored portions of the space[7], it
is an efficient tool for solving single query path planning
problems.

Although planning problems in static environments can
be solved elegantly, it is very common in such a real world
scenario that the environment is not always static. There are
a great number of dynamic planning problems involved in
industry area and Human-Robot Interaction (HRI)[8] fields.
For those purposes, how to extend the path planning to
dynamically changing environments had led to extensive re-
search. The Dynamic Roadmap method (DRM)[9][10] tailors
the PRM framework to make it adapt to changes occurring
to roadmap. It re-validates nodes and edges of roadmap
obstructed by obstacles according to a precomputed mapping
from workspace (W-space) to C-space. DRM is very effective
when the environment at query time does not vary much from
the one at precomputation time[11]. Due to the nice property
mentioned above of the RRT, many methods based on it,
such as Dynamic RRT (DRRT)[12] and Execution-extended
RRT (ERRT)[13], have been introduced. Nevertheless, it’s
always impossible to find a solution with those methods
when the environment is cluttered with moveable obstacles.
Even though such a solution has been found currently, it gets
invalidated soon by the moveable obstacles while planning.

In this paper, we aim to present a new planner tailored for
dynamically changing environments. Like other methods, a
completely valid path solution will be adopted immediately
in the query phase. However, if such a solution doesn’t exist
currently due to moveable obstacles, our planner will try to
collect several valid path segments of which only some nodes
and edges are obstructed and then select the optimal one (if
there is any) to control the motion of robot in the execution
process. If all segments are infeasible, the robot will stop
there until a complete solution or feasible segment is found.
Meanwhile the roadmap is updated concurrently with the
roadmap query process. Since the roadmap maintenance
process determines the real-time performance of our planner,
several optional update mechanisms will be discussed.

The rest of the paper is organized as follows. Section
II describes an overview of some previous works closely
related to our approach, plus the motivation of our method.
General framework of the planner is presented in Section III
and some important details are discussed as well. In Section
IV simulation experiments are described. Finally, we draw a
conclusion briefly.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1439



II. RELATED WORK AND MOTIVATION

PRM is a successful framework which has been widely
applied to many practical cases. The main idea behind PRM
is to precompute a roadmap which presents the topological
structure of C-space by sampling technique in a learning
phase and then to search for a solution path in the roadmap
in a query phase. Several methods tailor the original PRM
framework to solve path planning problems in dynamic
changing environments. In particular, DRM proposed in
[9][10], and a hybrid method suggested in [14], which
combines the merit of Lazy Evaluation and RRT are among
those PRM-based methods.

A. DRM

The key idea of DRM to cope with dynamic changes is
to build a mapping from W-space to C-space. In its learning
phase the W-space is decomposed into unit cells with each
one corresponding to some nodes and edges in the roadmap.
In the query phase, nodes and edges corresponding to cells
overlapped by obstacles are invalidated. The relationship be-
tween W-space unit cells and roadmap is called WC-mapping
which consists of nodes mapping and edges mapping and can
be defined as follows:

Φn(w) = {v ∈ G(V ) | w ∈Ω(v)}, (1)

Φa(w) = {e ∈ G(E) | w ∈Ω(e)}, (2)

where Φn(w) and Φa(w) denote node mapping and edge
mapping, respectively. The roadmap is represented as an
undirectional graph G(V,E), G(V ) is the set of roadmap
milestones and G(E) denotes the set of roadmap edges.
w∈W is a unit cell of workspace, Ω(v) represents the subset
of unit cells occupied by the robot at configuration v and
Ω(e) denotes the swept cells of motion e.

However, it’s difficult to compute Φn and Φa directly.
But the inverse mappings, Φ−1

n and Φ−1
a , can be computed

with less effort and the original mappings can be computed
through them. The inverse mappings are defined as follows:

Φ
−1
n (v) = {w ∈W | w ∈Ω(v)},v ∈ G(V ), (3)

Φ
−1
a (e) = {w ∈W | w ∈Ω(e)},e ∈ G(E). (4)

Although the WC-mapping is an effective roadmap main-
tenance mechanism, it will be always impossible for the
DRM method to find a solution if the environment at query
time varies a lot. Even though such a solution has been
found, it will be obstructed soon by moveable obstacles. See
Fig. 1 for example. DRM is not capable of solving planning
problems in such environments.

B. Lazy Evaluation with RRT Reconnection

The efficient Lazy Evaluation idea is firstly introduced
to dynamic planning field in [14]. In its learning phase, a
roadmap is computed for robot in static environment without
moveable obstacles. Then in the query phase, the planner
first searches for a path in the roadmap and then checks it
for collision. While checking the path, nodes and edges ob-
structed by moveable obstacles are set as invalid. If the path

Fig. 1. (a) There is no solution in the roadmap. (b) There is still no path,
though the obstacles have changed their configurations.

is collision-free, it will be the solution. Otherwise, a local
connection with the RRT-connected algorithm is employed to
reconnect those blocked edges. When all reconnections have
been attempted without success, the roadmap is enhanced via
inserting more nodes and edges into it.

However, if environment is cluttered by moveable obsta-
cles, the local connection and the roadmap enhancement
mechanism won’t achieve good performance.

C. Motivation and Overview of Our Method

The motivation of our method is to make robot move to-
wards its goal configuration as much as possible, even though
a completely valid solution path does not exit currently.

Our approach proceeds in two phases like PRM, a learning
phase and a query phase. In the learning phase, a roadmap
is constructed without considering any obstacles. Since only
self-collision of robot should be avoided, the roadmap con-
struction process is considerably fast. In the query phase,
our planner first searches for a solution path with the A∗

algorithm and then checks whether it is collision-free with
obstacles. If all nodes and edges in the path belong to
C f ree, the path will be adopted immediately. Otherwise, those
nodes and edges obstructed by obstacles will be labeled and
invalidated in the roadmap. At the same time the maximum
valid segment of the path is extracted and saved into a
container. The maximum valid path segment, S(P), is defined
as follows:

P = n0e0n1e1 · · ·em−1nm, (5)

S(P) = n0e0 · · ·ek−1nk,0≤ k ≤ m,

∀ i(0≤ i≤ k)(ni ∈ C f ree∧ (nk+1 ∈ Cobs∨ ek ⊂ Cobs)),
(6)

where P is a solution path in the roadmap while n0 and nm
are the start and goal, respectively. ni ∈ G(V ), e j ∈ G(E),
e j = (n j−1,n j). C f ree is the open subset of collision-free
configurations and Cobs = C −C f ree = {c | c∈C ∧c /∈C f ree}.

Once there is no completely valid path in the roadmap, the
planner will select the optimal segment from the container.
In the motion execution process, when the path segment is
obstructed by moveable obstacles or the endpoint is reached,
the current configuration will be set as the start of the next
roadmap query process until the robot reaches its goal.
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III. DETAILS OF OUR APPROACH

A. Initial Roadmap Construction

The first step is to build a roadmap, G(V,E). Nodes
that encode feasible motion of a robot is sampled in its
C-space without considering any obstacles. Many effective
sampling techniques have been introduced to construct a
robust roadmap in different tasks. The details of those tech-
niques can be found in [15][16][17]. A comparative study on
them has been presented in [18]. Moreover a method called
random halton is recommended. After those sampling nodes
are randomly generated in the C-space, a local planner is
called to connect them. Because obstacles are not considered
here, the local planner only needs to check whether self-
collision happens. Roadmap construction is considerably fast
accordingly. In our implementation, a binary local planner
is employed with the nearest-k connection strategy. The
rationale of the local connection strategy is also stated in
[18]. After the construction process is accomplished, a given
start and a goal configurations will be connected to the
roadmap with the local planner.

Since the real-time performance is the most essential
criterion, a robust roadmap that covers C-space adequately
is needed and roadmap enhancement shouldn’t be performed
while planning.

B. Roadmap Query Process of the Planner

Algorithm 1 explains the principle of our planner in
detail and the general process is illustrated in Fig. 2. Our
planner begins by searching for a solution path between the
given start and goal in the initial roadmap. If a collision-
free solution path exists, the motion sequence encoded by
the path will be adopted (see Fig. 2a). Otherwise, those

Fig. 2. (a) The completely path solution (red) is adopted immediately.
(b) Several maximum path segments have been found but only the optimal
one (red) of them is selected. (c) All segments are infeasible. (d) The robot
reaches its goal.

Algorithm 1: Roadmap Query
Data: G = G(V,E) is the roadmap. S is a maximum

path segment. qinit is the initial state. qgoal is the
goal state. qend point is the endpoint of the
segment. Sseg is a set of maximum path segments.

Result: qgoal is reached.
/* S = n0e0 . . .eknk+1,n0 = qinit ,nk+1 = qend point */
begin1

S← NULL;2

Sseg = /0;3

while qgoal is not reached do4

if Sseg 6= /0 then5

S← PopOptimalSegment(Sseg);6

Sseg = /0;7

i := 0;8

k← GetSegmentLength(S);9

while i≤ k and S is not blocked do10

ExecuteMotion(ei);11

i := i+1;12

if qend point is reached then13

qinit := qend point ;14

else15

qinit := qcurrent ;16

else17

InitiateRoadmap(G);18

Sseg← CollectSegment(qinit , qgoal , G);19

end20

obstructed nodes and edges along the path will be labeled and
invalidated in the roadmap and its maximum segment which
has been defined in the previous section will be extracted and
a container is used here to save the segment. The searching
procedure is called repeatedly in the maintained roadmap.
Until the start and goal are not connected with each other
any more or the number of times that the path searching
process is repeated exceeds a predetermined threshold, the
optimal segment will be selected from the container if it is
not empty (see Fig. 2b). Once the optimal segment is blocked
or the endpoint is reached in the planning execution process,
the current configuration will be returned and set as the start
configuration of the next query. All those nodes and edges
having been labeled will be cleared and set as valid again
before next query. However, the robot won’t execute any
motion if the container is empty or all segments are infeasible
(see Fig. 2c). Then the roadmap is re-initiated and searched
again. When the robot reaches the goal, the planning task
will terminate (see Fig. 2d).

The key step of Algorithm 1 is the maximum segment
collection process (see the 19th line of the algorithm). The
function CollectSegment is implemented to return a
segment container. It searches in the roadmap for a path
with the A∗ algorithm (see the 3rd and 9th line in its pseudo-
code) and calls the procedure ExtractMaximumSegment
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Procedure CollectSegment(qinit , qgoal , G)

Data: G = G(V,E) is roadmap. P is a path, if any. S is
a maximum path segment. qinit is the initial state.
qgoal is the goal state.

Result: Sseg is a set of maximum path segments.
begin1

Sseg← /0;2

P← A∗ SearchPath(qinit , qgoal , G);3

while P 6= NULL do4

S← ExtractMaximumSegment(P);5

Sseg← Sseg∪{S};6

if S = P then7

return Sseg;8

P← A∗ SearchPath(qinit , qgoal , G);9

return Sseg;10

end11

Procedure ExtractMaximumSegment(P)
Data: P is the path.
Result: S is the maximum path segment.
/* P = n0e0n1e1 . . .emnm+1,n0 = qinit ,nm+1 = qgoal */
begin1

S← Add(S, n0);2

i := 0;3

m← GetPathLength(P);4

while i≤ m and ni+1 ∈ C f ree∧ ei ⊂ C f ree do5

S← Add(S, ei, ni+1);6

i := i+1;7

while i≤ m do8

if ni+1 ∈ Cobs then SetInvalid (ni+1);9

if ei∩Cobs 6= /0 then SetInvalid (ei);10

i := i+1;11

return S;12

end13

to extract its maximum path segment.

C. Maximum Path Segment Extraction

The segment extraction procedure is very important for
our planner, thus it is discussed in detail here. The input
of the procedure ExtractMaximumSegment is a path
between two given configurations in the roadmap and the
procedure returns the maximum valid segment. The key step
(Line 6, 9, 10) of the procedure is to detect which nodes
and edges are obstructed by obstacles. It determines the real-
time performance of the proposed approach. Two different
mechanisms, WC-mapping and online collision check, can
be employed here.

1) WC-mapping: Like the DRM[9][10] method, our plan-
ner can utilize WC-mapping to cope with changes in the
roadmap. However, the mapping is not employed to update
roadmap directly. Instead it is only used to check whether
nodes and edges along a path are obstructed by moving

obstacles in the segment extraction process. The checking
process can be defined as follows:

ni+1 ∈ Cobs⇔ ni+1 ∈Φn(Wobs), (7)

ei∩Cobs 6= /0⇔ ei ∈Φe(Wobs). (8)

Since C f ree = C −Cobs, it’s obvious that

ni+1 ∈ C f ree⇔ ni+1 ∈
(

G(V )−Φn(Wobs)
)
, (9)

ei ⊂ C f ree⇔ ei ∈
(

G(E)−Φe(Wobs)
)
, (10)

where Wobs is the set of cells overlapped by obstacles.

2) Online Collision Check: After a path is found with
the A∗ algorithm, the planner checks nodes and edges for
collision online with a collision checker. Since an invalid
node implies that all its corresponding edges are invalid, it’s
reasonable to check endpoints of the edges for collision first.
In other words, if ni ∈ Cobs or ni+1 ∈ Cobs, then ei∩Cobs 6=
/0. There is no need to check feasibility of ei any more
accordingly.

After the segment is extracted, the remains of the path are
also checked for collision. The obstructed residue will be
labeled invalid in the roadmap as well (see line 8–11 in the
pseudo-code).

D. Optimal Maximum Segment Selection

The procedure PopOptimalSegment greatly deter-
mines performance of our method. In the 6th line of Al-
gorithm 1, the planner invokes it to select the optimal
maximum path segment from the segment container Sseg:
S← PopOptimalSegment(Sseg).

Once a maximum segment is extracted, an evaluation
scheme is needed to determine its feasibility. Three eval-
uation criteria are employed here:

1) energy cost (minimize);
2) energy required for future execution (minimize);
3) execution safety.
1) Energy Computation: The first two criteria are both

concerning energy consumption. According to the detailed
mechanical parameters of robot, it’s possible to calculate the
accurate energy cost through a large number of mathematical
operations. However, a simple but effective enough approx-
imation is needed in experiments since the accurate energy
consumption is not our interest.

After a segment is extracted, the changing quantity of
mechanical parameters is computed for each link. As we all
know that energy consumption varies directly with changes
in parameter, so energy cost can be approximately repre-
sented with changing quantity of mechanical parameters.

Let c1 denotes the start configuration of a collision-
free motion e, while c2 is the stop configuration. Assume
that c1 = (x1,x2, . . . ,xn), c2 = (x′1,x

′
2, . . . ,x

′
n). The corre-

sponding mechanical parameters of c1 and c2 are p1 and
p2, respectively. We denote p1 = (θ1,θ2, . . . ,θn) and p2 =
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(θ ′1,θ
′
2, . . . ,θ

′
n). Here Ψ is the energy evaluation function

defined as following:

Ψ : C ×C →R, Ψ(c1,c2) =
n

∑
i=1

εi∆θi =
n

∑
i=1

εi(θ ′i −θi), (11)

where εi is the weight value of link i. Let’s consider a
path P = n0e0n1e1 · · ·em−1nm and its maximum segment S =
n0e0 · · ·nk−1ek−1nk,0 ≤ k ≤ m. The energy consumption of
the segment is Ψ(S) = ∑

k
i=1 Ψ(ni−1,ni). Since the C-space

continuously changes its form with obstacles moving in the
environment, it’s impossible to compute the accurate energy
required for future execution. In our method, it is estimated
as Ψ(P−S) = ∑

m
i=k+1 Ψ(ni−1,ni).

2) Safety Degree Estimation: The safety degree can’t be
calculated easily as the energy cost. We even don’t have a
criterion in strict sense to judge whether a path segment is
safer than an other one. A simple and approximate method
is used to estimate safety degree here.

While building the roadmap, the planner gives each node
and edge a reference counter with initial value 0. In the
query phase, all nodes and edges obstructed by obstacles
increment their reference counters. By contrast, the refer-
ence counter will be decremented once the node or edge
is not blocked. The safety degree of the segment, S =
n0e0 · · ·nk−1ek−1nk,0≤ k ≤ m, can be estimated through the
total sum of the reference counters:

Γ(S) ∝ re f (nm)+
m−1

∑
i=0

(
re f (ni)+ re f (ei)

)
, (12)

where Γ is the safety degree estimated function. The larger
Γ(S) is, the more dangerous S is.

3) Segment Feasibility Computation: The value of en-
ergy cost, energy for future execution and safety degree
determine feasibility of the segment. Let’s consider the
path P = n0e0n1e1 · · ·nm−1em−1nm and its maximum segment
S = n0e0 · · ·nk−1ek−1nk,0 ≤ k ≤ m. The feasibility can be
computed as:

Feas(S) = ω1Ψ(S)+ω2Ψ(P−S)+ω3Γ(S), (13)

where ωi,(i = 1,2,3) is the weight value that indicates the
importance of corresponding factor. In fact the feasibility of
segments, i.e. Feas(S), is not calculated explicitly when the
planner is implemented. Instead it embeds the computation
of ω1Ψ(S) and ω3Γ(S) into the A∗ path searching procedure.
The optimal segment S is the one with minimum Fea(S).

E. Real-time Performance Optimization

In some cases the roadmap is complicated. For ex-
ample, the number of nodes, i.e. |G(V )|, is large or
Knearest has a big value. In such cases, the procedure
CollectSegment will search for path a great many times
until no path exits any more, which makes the procedure
ExtractMaximumSegment invoked over and over again.
Moreover, after several segments have been extracted, those
segments left over are scarcely feasible. Thus it’s reasonable
to limit the number of times that the path searching procedure
could be executed.

IV. EXPERIMENTS AND ANALYSIS

For evaluating our method, we build a manipulator sim-
ulation for 6-DOF Kawasaki robot manipulator (FS03N).
The planner has been implemented in C++ and the collision
checks are handled with ColDet 1.2, an open-source 3D col-
lision detection library. The simulation program (see Fig. 3)
is running under Linux (Ubuntu 8.04) on an AMD 4000+
processor with 3 GByte of memory. In order to test the
performance of the proposed method, experiments are per-
formed within different scenarios.

A. Experiment Scenarios

In the first scenario, we compare the performance of our
method with the DRM method. Just like DRM, our planner
utilizes the WC-mapping to maintain the roadmap. The
experimental scenario consists of two FS03N manipulators
and several obstacles (see Fig. 4a). The two manipulators are
treated as one entity. Thus the C-space is 12-dimensional.
We approximately represent the reachable workspace as a
cuboid with the size of 160×280×120 cm3. For building the
WC-mapping, the W-space is decomposed into 80×140×60
grids. The initial state of manipulators is shown in Fig. 4a.
The task of manipulators is to touch a target object (the
purple cylinder) at the same time. The manipulators’ goal
state is given in Fig. 4b.

In the second scenario, there are four KS03N manipu-
lators. The number of C-space dimension increases to 24.
The volume of cuboid which roughly represents the W-
space is 260× 240× 120 cm3. Since the C-space is much
more complicated than the first scenario, a larger roadmap is
needed to cover the volume of the free C-space adequately.
Experimental results in [10] show that the size of WC-
mapping for maintaining roadmap grows dramatically with
the roadmap size increasing. Accordingly only the Online
Collision Check mechanism is tested. The Lazy Evaluation
method is implemented in control experiments to show that
our method can greatly increase the success rate for the
manipulators operating in complicated environments. The
initial and goal states are shown in Fig. 4c and Fig. 4d,
respectively.

For both scenarios, it is assumed that the robots’ operating
velocity is not very fast and the acceleration is small. Taken
the planning safety of HRI problems into consideration, those
assumptions are acceptable.

Fig. 3. (a) Experiment scenario 1 (b) Experiment scenario 2
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Fig. 4. (a) The given configuration in the scenario 1 (b) The given goal
configuration in the scenario 1 (c) The initial configuration in the scenario
2 (d) The goal configuration in the scenario 2

B. Performance Results and Analysis

For each experiment, 100 tasks have been randomly gen-
erated. They are all valid, but some of them are impossible
to solve under certain stipulation. The planner is deemed to
fail to solve the problem when the manipulators can’t reach
the goal configurations within a time threshold by either of
the methods. The time threshold for the first scenario is 30
seconds and since the tasks for the second scenario are much
harder than those in the first one, the threshold for it is 60
seconds.

1) Comparison with DRM: Firstly, we compare the per-
formance of our method with DRM. See Table I. The number
of roadmap nodes, |G(V )|, is 103 and the Knearest is 5. Three
kinds of experiments with different difficulty levels have
been performed. The content of the third row presents the
number of obstacles in form of a + b, which reflects the
difficulty degree of the experiment. Here a is the number
of moveable obstacles at normal speed and b represents the
number of obstacles at a bit slower speed which could hinder
the movement of manipulators more often. The experiment
data shows that not only the success rate of our planner
increases much with the maximum path segment searching
algorithm (see the last row of Table I), but also the total time
of planning is reduced (see the 6th row). Since our planner
needs to search for several segments in one query, the A∗

path searching procedure will be invoked several times and

TABLE I
COMPARISON WITH DRM

Experiment task 1 ∼ 100 task 101 ∼ 200 task 201 ∼ 300
Grids (cm3) 160×280×120
Obstacles 10+0 5+5 10+5
Method DRM Our DRM Our DRM Our
Query Time (s) 0.39 0.47 0.32 0.41 0.56 0.69
Total Time (s) 24.84 19.62 27.18 23.90 29.90 28.12
Success Rate 48% 80% 27% 51% 2% 28%

the average time for roadmap query is a bit more than DRM
(see the 5th row).

2) Comparison with Lazy Evaluation: The comparative
result is shown in Table II. Since the second scenario is
more complicated than the first one, a large roadmap is
needed. |G(V )| is 104 and Knearest is 15. It’s inaccessible to
precompute a WC-mapping for the manipulators because the
size of mapping will be intolerable. Accordingly the planner
employs the Online Collision Check to maintain roadmap.
We compared its performance with Lazy Evaluation method.
From the table we can see that our planner is far better
than its counterpart. It has higher success rate with much
fewer collision checks and better real-time performance. The
performance data also show that the Lazy Evaluation method
is not suitable for solving dynamic planning problems in
a complicated environment. Because |G(V )| or Knearest has
a large value, the roadmap G(V,E) will have such a good
connectivity that the A∗ path searching procedure would be
invoked for a great many times until no path exits in the
roadmap. In some task the query time of Lazy Evaluation
planner is up to 59.38 which is unacceptable.

3) Comparison between Different Roadmap Maintenance
Mechanisms: In Table III we show the performance of
our planner in detail and compare the two roadmap main-
tenance mechanisms—WC-mapping and Online Collision
Check which we’ve discussed in section III-C. From the
first four rows we find that the performance of WC-mapping
declines sharply with the increase in roadmap size though
the C-space is covered more adequately. For instance, the
success solving rate declines from 80% to 27%, while |G(V )|
increases from 103 to 2× 103 and the roadmap query time
increases sharply. Because there will be more pairs of cell
such that Φn(w1)∩Φn(w2) 6= /0 or Φe(w1)∩Φe(w2) 6= /0 if the
size of roadmap increases. The intersecting cells make some
nodes and edges in the roadmap labeled and re-validated for
many times meaninglessly. If the WC-mapping mechanism
is employed, collision check is not needed online. Therefore,
some grids of the table are blank. We can see from the
table that the Online Collision Check is more effective here.
The time for roadmap query doesn’t grow rapidly with the
increase in the size of roadmap. More importantly the success
rate is much higher. We also find that the average number
of node and edge collision check declines with |G(V )|
increasing.

V. CONCLUSIONS

The main contribution of this paper is to introduce a
novel planner for solving dynamic path planning problems.
The proposed planner has been tested with simulations of
manipulator on static pedestal in two scenarios and exper-
iment data shows that the planner has following promising
characteristics: 1) The planner can solve planning problems
in high-dimensional configuration spaces. 2) Due to the good
performance of maximum path segment searching algorithm,
our rate of successful planning increases considerably, com-
pared to those methods which require a completely valid
path. 3) The safety of planner is considered as well.
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TABLE II
COMPARISON WITH LAZY EVALUATION

Method Experiment (Scenario 2) Query Time (s) Total Time (s) Node Check Edge Check Success
RateTask Nodes Obstacles Min Max Avg Min Avg Min Max Avg Min Max Avg

Lazy 001 ∼ 100 104 5+0 < 0.01 17.17 0.55 24.76 54.82 4 3862 1161.21 10 3601 808.32 28%
Lazy 101 ∼ 200 104 5+5 0.02 59.38 0.71 28.65 58.84 4 2774 1159.73 10 1972 653.41 7%
Our 001 ∼ 100 104 5+0 < 0.01 0.36 0.13 12.50 39.06 25 3341 643.98 16 2017 400.17 85%
Our 100 ∼ 200 104 5+5 0.01 4.02 0.20 20.21 50.573 50 3919 1213.10 28 1709 393.13 51%

TABLE III
PERFORMANCE OF PROPOSED METHOD

Method Experiment (Scenario 1) Query Time (s) Total Time (s) Node Check Edge Check Success
RateTask Nodes Obstacles Min Max Avg Min Avg Min Max Avg Min Max Avg

Mapping 001 ∼ 100 103 10+0 0.08 1.50 0.48 7.99 19.62 80%
Mapping 101 ∼ 200 103 5+5 0.04 1.60 0.42 6.98 23.90 49%
Mapping 201 ∼ 300 103 10+5 0.10 1.60 0.69 13.42 28.12 28%

Mapping 001 ∼ 100 2×103 10+0 0.28 6.73 2.55 14.57 28.24 26%

Col-Check 001 ∼ 100 103 10+0 < 0.01 0.10 0.047 6.95 14.92 5 1605 252.11 3 724 184.58 97%
Col-Check 101 ∼ 200 103 5+5 < 0.01 0.13 0.05 6.62 18.74 9 2090 569.25 7 1225 287.43 78%
Col-Check 201 ∼ 300 103 10+5 < 0.01 0.19 0.068 10.73 25.62 25 1749 664.46 19 895 316.31 48%

Col-Check 001 ∼ 100 2×103 10+0 < 0.01 0.17 0.082 10.14 20.33 7 2108 281.11 4 1298 188.90 85%
Col-Check 101 ∼ 200 2×103 5+5 < 0.01 0.18 0.093 9.66 19.91 9 1936 424.77 8 1030 239.07 73%
Col-Check 201 ∼ 300 2×103 10+5 < 0.01 0.21 0.10 11.76 26.88 23 1523 613.73 22 760 313.23 40%

Col-Check 001 ∼ 100 3×103 10+0 < 0.01 0.14 0.080 7.06 12.88 5 1280 193.13 3 626 153.19 93%
Col-Check 101 ∼ 200 3×103 5+5 < 0.01 0.21 0.084 6.37 22.03 2 915 192.88 2 569 97.03 80%
Col-Check 201 ∼ 300 3×103 10+5 < 0.01 0.24 0.096 8.97 25.97 25 1316 499.98 20 617 221.49 45%
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