
On the Generation of Feasible Paths for Aerial
Robots in Environments with Obstacles

Douglas G. Macharet Armando A. Neto Mario F. M. Campos

Abstract— This paper presents a methodology based on a
variation of the Rapidly-exploring Random Trees (RRTs) that
generates feasible trajectories for autonomous aerial vehicles
with holonomic constraints in environments with obstacles. Our
approach uses Pythagorean Hodograph (PH) curves to connect
vertices of the tree, which makes it possible to generate paths
for which the main kinematic constraints of the vehicle are
not violated. The smoothness of the acceleration profile of the
vehicle is indirectly guaranteed between two vertices of the RRT
tree. The proposed algorithm provides fast convergence to the
final trajectory. We still utilize the properties of the RRT to
avoid collisions with static obstacles of a environment. We show
results for a small unmanned aerial vehicles in environments
with different configurations.

I. INTRODUCTION

Several strategies to obtain a path between two different
positions can be found in the literature. Among the simplest
and most common of such strategies are the visibility graph,
cell decomposition and potential field path planners. How-
ever, one of the problems with them is that they guarantee
obstacle free path between two points without considering
the vehicle’s capacity to follow the generated path (e.g.
negotiate a curve between obstacles).

The interest and research in Unmanned Aerial Vehicles
(UAVs) have been increasingly growing, specially due to the
decrease in cost, weight, size and performance of actuators,
sensors and processors. Clearly UAVs have their niche of
applications, which cannot be occupied by other types of
mobile robots, as far as the capacity of covering a broad
set of relevant applications is concerned. They are able to
navigate over large areas obviously faster than land vehicles,
with a privileged view from above, which is one of their main
advantages in monitoring and surveillance. As the availability
increases, so does the possibility of having multiple such
vehicles traversing a given volume of the space. Therefore,
there is a growing need to study and develop techniques for
the generation of safe and feasible trajectories considering
the specific constraints of different types of aerial robots.
One fundamental feature of a path planning algorithm is
to ensure that the vehicle will be able to execute this
path, which means that during the trajectory generation, the
movements restrictions of the vehicle must be considered
(i.e. nonholonomic constraints). For example, the radius of
curvature is one of the restrictions imposed on trajectories
generated for cars, since a typical car cannot move laterally.

The authors are with the Computer Vision and Robotics Laboratory (Ver-
lab), Computer Science Department, Federal University of Minas Gerais,
Brazil. e-mails: {doug,aaneto,mario}@dcc.ufmg.br

UAVs can be divided into at least three categories: rotary-
wing aircrafts (e.g. helicopters and quadrotors), aerostatic
aircrafts (such as airships and hot air balloons) and fixed-
wing aircrafts (airplanes). The technique described in this
text will be instantiated in a fixed-wing UAV, however,
without loss of generality, it can be applied to other types
of vehicles. Fixed-wing aircrafts present constraints on their
mobility such as minimum curvature, maximum angle of
climb or dive, and minimum speed.

In our approach, the more general case of UAV’s moving
in the three dimensional is efficiently modeled as vehicles
moving in two dimensions with non zero speed and limited
turning rate. A novel adaptation of the well-known prob-
abilistic technique used for the motion planning problem,
called Rapidly-exploring Random Tree (RRT) is described,
where the possible link between new states is calculated
based on the use of a special type of Bézier curve, known as
the Pythagorean Hodograph curve (PH). We also show the
advantages of using this approach in the path planning of
robots in environments with obstacles.

II. RELATED WORKS

Motion-planning problem for autonomous vehicles is the
subject of many investigations, and various works on this
overall topic can be found in literature [1], [2], [3]. One
possible taxonomy of the area can be based on the number
of vehicles involved, and the presence or absence of obstacles
in the environment. Even though the generation of feasible
paths (or trajectories) for nonholonomic vehicles is in itself
a great challenge, ignoring the possible presence of obstacles
restricts even further a broader use of such techniques.

Some approaches of single vehicle path planning in gen-
eral environments can be found in literature [4], [5]. Voronoi
diagram is a widely used technique to generate paths with
such constraints [6], [7]. Rapidly-exploring Random Trees
(RRTs) can also be used in this case, especially for solving
the case of nonholonomic vehicles. [8] presents trajectory
planning for both an automobiles and a a spacecraft. In the
later example, even though an obstacle free environment is
concerned, the focus remains on the motion constraints that
need to be satisfied for a safe entry of the spacecraft in the
Earth’s atmosphere. Other works like [9], use this technique
to generate nominal paths for miniature air vehicles. The
authors present an algorithm for terrain avoidance for the
air platform BYU/MAV, which allows, among other things,
flying through canyons and urban environments.

There are still some works that only deal with the gen-
eration of safe paths for vehicles assuming an obstacle

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3380

free environment. Among them is the work by [10], which
presents one of the first methods about the use of the
Pythagorean Hodograph curves in the path planning problem.
The author discusses numerous advantages (which will be
listed later in this text) of use such a curve in the modeling
of paths for vehicles with holonomic constraints.

III. METHODOLOGY

A. Problem Statement

Our technique assumes the existence of an environment
with obstacles whose position and geometry are known.
Also, other limitations for the robot navigation are imposed
by its own kinematic constraints. Two configurations, Pinit

and Pgoal respectively, describe the initial and final poses
(or states) which also define the position and the orientation
of the robot in the extreme points of the path. These states
can represent any pair of waypoints in a set, which in turn,
is defined by the mission planning module at a higher level
in the robot’s architecture.

A path may be defined, mathematically, as a parametric
curve ~r(t) in the two-dimensional space, where t is the
parameter that continuously varies in R. In this manner, the
path planning problem for a single robot can be formally
described as:

Pinit(xinit, yinit, ψinit) = ~r(tinit),
Pgoal(xgoal, ygoal, ψgoal) = ~r(tgoal),

(1)

where tinit and tgoal are the initial and final parameter
values, respectively, for the curve parameter t. Each waypoint
is described by two position (x, y) and one orientation (ψ)
variable. The variable ψ (also called yaw) is an angle that
describes the waypoint orientation parallel to the XY plane
in relation to the X axis of the space.

We consider both local and global constraints. The local
constraints are related to the kinematic and dynamic behavior
of the robot in the configuration space. The global constraints
represent the composition of the obstacles in the environ-
ment. The RRT is a technique which generates paths that
respect both constraints.

In order to be considered a feasible path for the robot
(in an environment with or without obstacles), the curve
~r(t) must simultaneously fulfill kinematic and dynamic
constraints and their maximum numerical values. The main
kinematic constraint considered in this work is the maximum
curvature κmax, that corresponds to the minimum curvature
radius of the vehicle in space. It is possible to completely
define a curve in R2 only by means of its curvature function
[11].

As far as the physics is concerned, the curvature may
be defined as a quantity that is directly proportional to the
lateral acceleration of the robot in space. The value of κmax
is inversely proportional to the minimum curvature radius
(ρmin) of the curve that the vehicle is able to execute,
which is also proportional to the vehicle’s maximum lateral
acceleration. The curvature function of a curve in the n-
dimensional space is given by the following equation:

κ(t) =
|~̇r(t)× ~̈r(t)|
|~̇r(t)|3

. (2)

With regard to the dynamic, it is important to consider
the form by which such constraints vary in time. The
continuity of the curvature and velocity functions is another
fundamental characteristic in the path planning for real vehi-
cles. Discontinuities in the curvature function, for example,
may induce infinite variations of lateral acceleration which
obviously are not realizable. The same reasoning is valid for
the velocity profile. Finally, the curve produced by the path
planning algorithm should be continuously derivable, should
be second order differentiable, according to the Equation 2.

As far as global constraints are concerned, one may define
two types of environments, the most common one being the
static environment, which is specified only by the geometry,
position and orientation of the obstacles therein. In a dynamic
environment, the obstacles (which may also be other agents,
such as robots) move through space, and their trajectories
may or may not be previously known. As we will show later,
we lay hold of the RRT algorithm to generate trajectories
which avoid both static and dynamic obstacles.

Finally, a path ~r(t) is valid for a vehicle if, and only if,
the magnitude of the curvature function is smaller than the
vehicle’s absolute maximum curvature value, and if the curve
is entirely contained in a region of the environment free of
obstacles, as described below:

~r(t)→ (|κ(t)| ≤ κmax) ∧ (~r(t) ∈ Pfree) , (3)

where Pfree represent the set of all states that satisfy the
global constraints.

To calculate this path, we first established a curve between
states produced by the RRT algorithm. These curves are
produced by means of the Pythagorean Hodograph curve
technique that simultaneously fulfills the kinematic and dy-
namic constraints of the robot.

B. Rapidly-Exploring Random Tree

There are some key factors of a path generating method
that need to be considered, such as its efficiency, its ability
to deal with obstacles in the environment, and the feasibility
of the produced paths given a robots kinematic and dynamic
restrictions. A known sampling based planning algorithms
used to solve this problem is a technique called Rapidly-
exploring Random Tree (RRT) [12], which has been shown
to be a good alternative, mainly due to the fact of its
ability to quickly explore large areas, and to consider both
environmental and the vehicle’s nonholonomic constraints
during its generation.

Among the interesting features related to the RRTs are
i) that it is (probabilistically) complete under general con-
ditions, since it always remains connected regardless of the
amount of edges, and ii)that it is a relatively simple algorithm
when compared to other techniques.

Algorithm 1 presents the basic steps for the generation of
an RRT.

3381

Algorithm 1 GENERATE RRT(Pinit, K)

1: T .init(Pinit)
2: for k = 1 to K do
3: Prand ← RANDOM STATE()
4: Pnear ← NEAREST NEIGHBOR(Prand, T)
5: unew ← SELECT INPUT(Prand, Pnear)
6: Pnew ← NEW STATE(Pnear, unew)
7: T .add vertex(Pnew)
8: T .add edge(Pnear, Pnew, unew)
9: end for

10: return T

First of all, the starting point of the execution of the
algorithm needs to be chosen. The starting point represent
a robot pose (Pinit ∈ Pfree), and the maximum number of
iterations (K) that the algorithm must perform before it stops
must also set. Then, a random position on the map (Prand) is
generated, and this position will be used to guide the growth
of the tree. A search is executed through all nodes already
in the tree to find the one that is the closest to the new
random position (Pnear) according to some defined metric
ρ (the Euclidean distance is a commonly used metric). The
tree will expand from this node.

A segment connecting Pnear to Prand must be inserted,
however only a certain and fixed part of this segment will
be actually used to expand the tree. A verification is made
to check if it is possible to expand the tree, which means
to verify if the segment doesn’t intersect with any obstacles.
If possible, a new state is generated and added to the tree
(Pnew). In this case, instead of Euclidean distance, our
method uses a metric ρ for determining the Pnear that best
suits the motion constraints of the robot. Then, we use the
key ideas of a Pythagorean Hodograph curve to determine
the value of Pnew, and describe a path between this and the
nearest state.

C. Pythagorean Hodograph Curves

Pythagorean Hodograph (PH) curves are a special kind of
parametric curves that present many computational advan-
tages over polynomial parametric curves in general. They
were introduced in [13], where, for the first time PH curves
of fifth order for the two-dimensional case were presented. A
Hermite Interpolation algorithm was proposed in [14], where
the author demonstrate that there exist four possible solutions
for the curve in R2. The chosen solution is the one that
minimizes the cost function [15] (bending energy function)
based on the integral of the magnitude of the curvature
function.

A PH curve is represented, in general, as ~p(τ) =
[x(τ), y(τ)] which are the derivatives in relation to its
parameter (hodograph components). They exhibit a special
algebraic property, which is that they satisfy the Pythagorean
condition

ẋ(τ)2 + ẏ(τ)2 = h(τ)2, (4)

for some polynomial h(τ), where the variable τ is the PH

curve parameter. This characteristic provides some properties
for the PH curve that can be considered advantageous in
the path planning problem: (i) uniform distribution of points
along the curve, which contributes to the smoothness of the
path; (ii) elimination of numerical squaring in computing the
path-length, which allows its determination by an exact form;
(iii) the parametric speed ṡ(τ) is a polynomial function of its
parameter which means that the velocity profile of the curve
is continuous; and finally (iv) the curvatures and offset curves
are in exact rational form, which enables PH curves to admit
real-time interpolator algorithms for computer numerical
control.

The length of the path, s, can be exactly calculated as

s =
∫ τf

τi

√
ẋ(τ)2 + ẏ(τ)2 dτ =

∫ 1

0

|h(τ)| dτ, (5)

and the PH curves are still shaped as fifth order Bézier curves

~p(τ) =
5∑
k=0

pk

(
5
k

)
(1− τ)5−kτk; τ ∈ [0, 1], (6)

where pk = [xk, yk] is the k-th control point of the Bézier
curve.

The path planning problem is then reduced to finding a
solution to the Hermite Interpolation problem described in
[13]. One important advantage of using this model is that the
resulting curve is infinitely continuous, so that the curvature
function is always smooth.

Another advantage is related to the offset curve of a PH,
~po(τ). This can be used to define a safety navigation region
or still a sensor uncertainty for the position and orientation of
the vehicle along the path. The offset curve can be computed
as

~po(τ) = ~p(τ)± dN(τ), (7)

where N(τ) represents the unit normal vector of the robot
acceleration,

N(τ) =
Ṫ(τ)

h(τ)κ(τ)
,

that is a function of the variation of the unit tangent vector
T(τ) of the path, and d is the distance of the offset. As the
offset curve self-intersects when the path is too convex or
too concave, d must be chosen as a value less than the local
radius of curvature to avoid this problem.

In the next section we show how to compute the
Pythagorean Hodograph curve between two arbitrary poses.
This principle will be used when we generate a RRT tree
whose vertices are connected by this Bézier curve. The total
path for a single robot will be a composition of PH curves,
which can be stated as

~r(t) = [~p1(τ), ~p2(τ), ..., ~pV (τ)] , (8)

where V is the number of vertex in the tree that belongs to
the correct path.

3382

D. Realizable Path Calculation

In this section we discuss the generation of paths that are
attainable by a robot in a plane using the principles of PH
curves. Those paths comply with the curvature constraints
imposed by a given robot. Thus, assuming the model de-
scribed by Equation 6, the path planning problem reduces to
determining the six control points of the Bézier curve.

Four of these points can be calculated by the following
set of equations (derived from [14]), which depends only
the initial and final configuration of the robot:

p0 = [xi, yi],

p1 = p0 +
k0

5
[cos(ψi), sin(ψi)],

p4 = p5 −
k5

5
[cos(ψf), sin(ψf)],

p5 = [xf , yf],

(9)

where k0 and k5 are gain factors that have unit value for PH
with no constraints.

There are two problems to be solved at this point. First,
we must be able to calculate the remaining points, p2 and
p3 of the Bézier curve. The determination of these points
is closely related with the Pythagorean condition (Equation
4). Second, we must choose the best values of k0 and k5 in
order to comply with the curvature constraint of the robot.

To find the remaining points, we should solve the follow-
ing equation, derived form the Hermite Interpolation system
presented in [14]:

p2 = p1 +
1
5

[
u0u1 − v0v1
u0v1 + u1v0

]T
,

p3 = p2 +
1
15

[
2u2

1 − 2v2
1 + u0u2 − v0v2

4u1v1 + u0v2 + u2v0

]T
.

(10)

The parameters [u0, u1, u2] and [v0, v1, v2] represent
coefficients of the polynomial function u(τ) and v(τ) re-
spectively, used in the fifth order PH design. They can be
calculated as»

u0

v0

–
=

r
5

2

" p
‖∆p0‖+ ∆x0

sign(∆y0)
p
‖∆p0‖ −∆x0

#
, (11)

»
u2

v2

–
= ±

r
5

2

" p
‖∆p4‖+ ∆x4

sign(∆y4)
p
‖∆p4‖ −∆x4

#
, (12)

»
u1

v1

–
= −3

4

»
u0 + u2

v0 + v2

–
±
r

1

2

» √
c+ a

sign(b)
√
c− a

–
, (13)

where
∆xk = xk+1 − xk,
∆yk = yk+1 − yk,

and

∆pk = [∆xk, ∆yk].

The a, b and c parameters can be determinated by follow-
ing:

a =
9

16
(u2

0 − v2
0 + u2

2 − v2
2) +

5

8
(u0u2 − v0v2) +

15

2
(x4 − x4),

b =
9

8
(u0v0 + u2v2) +

5

8
(u0v2 + v0u2) +

15

2
(y4 − y1),

c =
√
a2 + b2.

As stated before, there are four solutions for the PH
calculation between any initial and final waypoints, Pi and
Pf , as it can be readily seen in the ambiguity of equations
12 and 13. They represent an underdetermined system, for
which the best solution of the combinatorial arrangement is
the one that minimizes the cost function of the path, or the
bending elastic energy function [15],

E =
∫ 1

0

κ(τ)2 |~̇p(τ)| dτ. (14)

Once the Bézier points are computed, we must guarantee
that the PH does note violate the kinematic constraints of
the vehicle. For this, we must determine the values of k0

and k5 in Equation 9. As there is no closed form solution,
these values are increased iteratively, until that ~p(τ) becomes
realizable.

At this point we just monitor the maximum curvature
and the minimum parametric speed of the PH. The global
constraints will be obtained by a variation of the RRT
algorithm described in the next section.

E. Tree Generation

The first step in calculating the RRT consists of initializing
the tree, which is accomplished by placing a node with the
specifications of the initial pose of the robot Pinit. This pose
not only describes the starting point of the tree but it also
includes the initial orientation of the vehicle.

Then, a new random state Prand is chosen for the expan-
sion of the tree. There are many ways to achieve this step,
as shown in [8]. According to the authors, a good approach
is to perform a biased random choice of this state so that
the goal Pgoal is used some of the time. That helps in a
more rapid conversion to the final result. In this work, the
goal was chosen as a new position 50% of the time, with a
completely random state in the rest of the time.

After choosing the random state, the next step is to identify
which node already inserted in the tree is the closest to the
generated one. Such proximity is measured by a metric ρ,
determined for each specific issue dealt with by the RRT.
The most common way to measure the proximity between
two points in space is through the Euclidean distance D.
However, this calculation does not take into account the
orientation at these points in space.

When dealing with the navigation of nonholonomic ve-
hicles (as those considered here), it is important to also
consider the orientation, as the real distance between two
states can vary greatly between two positions. For this reason,
a nonholonomic distance calculation is used, which is the

3383

same applied in the determination of the Dubins’ Path [3].
The metric, ρ, that we use is described below.

It is known that there are six different kinds of paths
between two configurations Pi and Pf as calculated by the
Dubins’ method. Among those, four represent an approxima-
tion for the length of the PH curve, while the other two paths
generate configurations that can compromise the convergence
of the PH curve. Therefore, the following condition will be
used:

ρ =

{
min (Li) i = 1...4, if d > dmin,

∞ elsewhere,
(15)

where d = D/ρmin represents the Euclidean distance be-
tween the points, and

dmin =
√

4− (| cos(α)|+ 1)2 + | sin(α)|, (16)

is a parameter used as a minimum distance between the two
poses. In this specific case, it is considered that the angle of
arrival at the final pose is always zero, and

α = ψi − tan−1

(
yf − yi
xf − xi

)
. (17)

Each of the four possible distances can be calculated as
follows [16]:

L1 =
p
d2 + 2− 2 cos(α) + 2d sin(α)− α,

L2 =
p
d2 + 2− 2 cos(α)− 2d sin(α) + α,

L3 =
p
d2 − 2 + 2 cos(α) + 2d sin(α)− α− 2µ− γ,

L4 =
p
d2 − 2 + 2 cos(α)− 2d sin(α) + α+ 2ν − γ,

(18)

where

µ = tan−1

(
−2

d2 − 2 + 2 cos(α) + 2d sin(α)

)
,

ν = tan−1

(
2

d2 − 2 + 2 cos(α)− 2d sin(α)

)
,

and
γ = tan−1

(
cos(α) + 1
d− sin(α)

)
.

Minimizing the function ρ gives an approximation to the
nearest node Pnear of the chosen random state. The last
step is the creation of new state Pnew, which will be used
to expand the tree. This will use the principles of the PH
curve, as follows:

Pnew = PH CURVE(Pnear, Prand, ρmin).

In that stage, the orientation ψrand of the random point is
chosen such that it sets the direction of arrival in Pnew to
zero,

ψrand = tan−1

(
yrand − ynear
xrand − xnear

)
.

This is an arbitrary choice that aims at reducing the num-
ber of iterations of a regular RRT calculation (determination
of the unew entries), by the use of an analytic function. The
problem is that the generated PH curve may lead to a critical

point where obstacles may hinder the progress of the tree in
the direction of the new point. In the event of a collision like
this, a random value can be added to ψrand in order to avoid
the obstacles.

The entry vector is given by the control points of the
Bézier curves, as follows

unew = pk, k = [0...5].

Finally, the curve can be defined by Equation 8.

IV. EXPERIMENTS

Our technique was used to plan paths for a simulated
small unmanned aerial vehicle. The robot was modeled as
fixed-wing aircraft based on a UAV named AqVS (Figure 1),
developed at Universidade Federal de Minas Gerais/Brazil.
It is a small hand launched hybrid electric motor sail plane,
equipped with GPS receptor, barometric altimeter, infrared
inclinometer, airspeed sensor and CCD camera, and con-
trolled by a set of PID stabilizators running on a Palm R©

PDA for autonomous navigation [17]. The AqVS presents
the following characteristics:

• ρmin: about 30 meters,
• maximum cruising speed: approximately 50 km/h,
• uncertainty of localization: 12 meters.

The above values were determined using data from actual
flights, considering a speed of approximately 50 km/h. The
first value is directly considered in the path calculation, while
the third value is used to compute the offset PH curves as
the parameter d for determination of the safety-flight area.
This vehicle has shown to be a good choice for testing
our methodology because of the large uncertainty of its
localization.

Fig. 1. AqVS, a UAV from the Universidade Federal de Minas Gerais-
Brazil.

Figure 2 presents the evolution of a RRT tree with the
Pythagorean Hodograph interpolation between its vertices for
an AqVS/UAV.

We can see in Figure 2(a) that the use of an analytical
function as edges for the tree provides a fast convergence
to the final result, since there is no need to limit the reach
of Pnew. Compared with the traditional RRT algorithm, we
found a much smaller number of vertices.

Figure 2(b) still shows the offset path to each PH curve
that composes the path, which was calculated by means
of Equation 7. This represent a safety-flight area for robot
navigation because any uncertainty on the robot localization
is likely to be contained inside Pfree(t).

3384

(a)

(b)

Fig. 2. Example of a RRT with Pythagorean Hodograph interpolation.
(a) Path calculation with the black lines representing the RRT tree, and the
circles representing its vertices. (b) Final path, in red line, with the PHs and
its offset curves.

V. CONCLUSION AND FUTURE WORKS

We have described a novel technique that allows the
planning of paths for robots in environments with a variable
number of obstacles. While the technique of RRT already
allows the generation of smooth paths for nonholonomic
vehicles, in some cases, the kinematic and dynamic models
used in the integration step of the algorithm can become very
complex. There is a great need for a reliable model of the
vehicle, otherwise there is a chance that the generated path
may not be achieved by a real robot. This is the case a real
aircraft, where some of its aerodynamic coefficients and the
external disturbances (e.g. wind) are very difficult to model.

The use of analytical curves, such as Bézier curves, allows
for greater flexibility of this model with a low computational
cost. The PH curves, in particular, allows for the calculation
of offset curves and the parametric speed functions directly.
The project of these curves takes into account very simple
kinematics and dynamics constraints, which implies the
simplification of the model of the vehicle at few points of
operation.

An important advantage of our method is the reduction
in the computational time to convert the RRT algorithm,

because the use of PH curves enable connections between
vertices of the tree with unlimited range. In an environment
with few obstacles, a very small quantity of vertices (some-
times only two) is sufficient to take the robot from Pinit to
Pgoal.

As future work, we plan to expand the use of the technique
for the three-dimensional space, considering other kinematic
constraints, as the maximum torsion and maximum climb
(or dive) angles. Initial results have shown that it is possible
to use an extension of the PH curve into three dimensions,
while maintaining most of the advantages described in this
paper.

VI. ACKNOWLEDGMENT

The authors gratefully thank prof. Paulo Iscold for the
flight model of the AqVS/UAV. This work was developed
with the support of CNPq, CAPES and FAPEMIG.

REFERENCES

[1] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots. The MIT Press, 2004.

[2] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[3] L. E. Dubins, “On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents,” American Journal of Mathematics, vol. 79, pp. 497–
516, 1957.

[4] Y. Kuwata, A. Richards, T. Schouwenaars, and J. P. How, “Robust
constrained receding horizon control for trajectory planning,” in Pro-
ceedings of the AIAA Guidance, Navigation and Control Conference,
2005.

[5] M. Wzorek and P. Doherty, “Reconfigurable path planning for an au-
tonomous unmanned aerial vehicle,” Hybrid Information Technology,
2006. ICHIT ’06. International Conference on, vol. 2, pp. 242–249,
Nov. 2006.

[6] S. A. Bortoffl, “Path planning for uavs,” in Proceedings of the
American Control Conference, 2000.

[7] A. Dogan, “Probabilistic path planning for uavs,” in Proceedings of
2nd AIAA Unmanned Unlimited Systems, Technologies, and Opera-
tions, 2003.

[8] P. Cheng, Z. Shen, and S. LaValle, “RRT-based trajectory design for
autonomous automobiles and spacecraft,” 2001.

[9] S. Griffiths, J. Saunders, A. Curtis, B. Barber, T. McLain, and
R. Beard, “Maximizing Miniature Aerial Vehicles,” Robotics and
Automation Magazine, IEEE, vol. 13, no. 3, pp. 34–43, Sept. 2006.

[10] M. Shanmugavel, A. Tsourdos, R. Zbikowski, B. A. White, C. A.
Rabbath, and N. Léchevin, “A Solution to Simultaneous Arrival of
Multiple UAVs using Pythagorean Hodograph Curves,” in Proceed-
ings of the IEEE American Control Conference (ACC), Minneapolis,
Minnesota, USA, June 2006, pp. 2813–2818.

[11] E. Kreyszig, Differential Geometry. New York: Dover Publications,
June 1991, vol. 1.

[12] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., Iowa State University, Tech. Rep.,
1998.

[13] R. T. Farouki and T. Sakkalis, “Pythagorean Hodographs,” IBM
Journal of Research and Development, vol. 34, no. 5, 1990.

[14] R. T. Farouki and C. A. Neff, “Hermite Interpolation by Pythagorean
Hodograph Quintics,” Mathematics of Computation, vol. 64, pp. 1589–
1609, 1995.

[15] R. T. Farouki, “The Elastic Bending Energy of Pythagorean Hodo-
graph Curves,” Comput. Aided Geom. Design, vol. 13, pp. 227–241,
1996.

[16] A. M. Shkel and V. Lumelsky, “Classification of the Dubins Set,”
in Robotics and Autonomous Systems, vol. 34, September 2001, pp.
179–202.

[17] P. Iscold, “Development of a Small Unmanned Aerial Vehicle for
Aerial Reconaiscence,” in International Congress of Mobility Engi-
neering, São Paulo, Brazil, 2007.

3385

