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Abstract—Standard kinematics prioritized task based mo-
tion control solutions do not take into account the physical
limitations in terms of maximum actuator speed of robots.
In this paper, a prioritized task based kinematics control
solution is presented that, under given conditions on the kind of
concurrent tasks to be pursued, guarantees task error stability
and convergence. Moreover the joint velocities are guaranteed
to be bounded by a desired threshold. As for other a null-
space projection techniques known in the literature, joint speed
commands are computed in such a way that lower priority tasks
do not interfere with higher priority ones in the assumption that

joint speeds can be arbitrarily large: in addition, if joint speeds
are to be bounded by a desired value, joint velocity commands
are limited by dynamically chosen values depending on the task
priority. As a result, joint velocities are always bounded such
that, if necessary, higher priority tasks are executed first.

I. INTRODUCTION

Kinematic task redundancy occurs in a robotic system when

the available Degrees of Freedom (DOFs) exceed the mini-

mum number required to perform a given task. Redundancy

can be exploited to perform the task while optimizing some

criteria or eventually to perform more tasks concurrently.

Several control law architectures have been proposed in the

literature to exploit redundancy for the execution of multiple

tasks such as, e.g., [1], [2], [3] that share the main approach

in the definition of a primary task which is fulfilled with

higher priority with respect to a secondary task. Extensions

of the algorithm proposed in [2] to a large number of tasks is

given in [4]. Within the same framework, the work presented

in [5] investigates the use of a proper weighted pseudo-

inverse. In [6] the null-space projector is used together with

a projection based on the transpose of the Jacobian and the

stability analysis is presented for the two-task case.

A common feature to many of these approaches consists

in defining a task-priority such that lower priority tasks can

be filtered by proper null-space projectors of higher priority

ones before being commanded. The spirit of these solutions

is to assure the compatibility between tasks by projecting

lower priority ones in the null-space of higher priority ones.

Yet only recently a rigorous Lyapunov based stability and
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convergence analysis was provided in [7], [8] where tasks are

classified according their Jacobian matrices and conditions

for Lyapunov stability of the tasks error are described. All

previous results, including the ones in [7], [8], are based on

the assumption that the commanded joint velocities can be

actually implemented on the robot. In practice, due to the

physical limitations of actuators, the maximum velocity that

a given actuator can provide is upper bounded. In this paper,

building on the results in [9], the solution proposed in [7], [8]

is extended to include upper bounds on actuator velocities.

As a result, a general solution for assuring Lyapunov stability

of the tasks errors in regulation task-prioritized problems is

presented.

II. MATHEMATICAL BACKGROUND

By defining as σ∈ IRm the task variable to be controlled and

as q∈ IRn the vector of the system configuration, it is:

σ = f(q) (1)

with the corresponding differential relationship:

σ̇ =
∂f(q)

∂q
q̇ = J(q)q̇ , (2)

where J(q) ∈ IRm×n is the configuration-dependent task

Jacobian matrix and q̇ ∈ IRn is the system velocity. Notice

that n depends on the specific robotic system considered, in

case of an industrial manipulator n is generally n = 6 and

q is the vector of joint positions. For a differential mobile

robot n = 3, and the term system configuration simply refers

to the robot position/orientation. For a multi-robot system n

is related to the number of robots, in case of a full actuated

underwater vehicle n = 6, finally, an anthropomorphic robots

can reach very large value of n.

Motion references qdes(t) for the robotic system starting

from desired values σdes(t) of the task function are usu-

ally generated by inverting the (locally linear) mapping in

eq. (2) [10]. A typical requirement is to pursue minimum-

norm velocity: when n ≥ m and J(q) has full rank,

this leads to the least-squares solution (dependencies in the

Jacobian are dropped out to increase readability):

q̇des = J†σ̇des = JT
(
JJT

)−1

σ̇des . (3)

In order to avoid the well known problem of numerical

drift, a Closed Loop Inverse Kinematics (CLIK) version of
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the algorithm is usually implemented [11], namely,

q̇des = J†
(
σ̇des + Λσ̃

)
, (4)

where Λ is a suitable positive-definite matrix of gains and

σ̃ is the task error defined as

σ̃=σdes−σ.

In case of system redundancy, i.e., if n > m, the classic

general solution contains a null projector operator [1]:

q̇des = J†
(
σ̇des + Λσ̃

)
+

(
In − J†J

)
q̇null, (5)

where In is the (n×n) Identity matrix and the vector q̇null ∈

IRn is an arbitrary system velocity vector. It can be rec-

ognized that the operator
(
In − J†J

)
projects a generic

velocity vector in the null space of the Jacobian matrix. This

corresponds to generate a motion of the robotic system that

does not affect that of the given task; this is usually named

as internal motion inheriting its meaning from the original

application of these techniques where the primary task was

the end-effector position of a manipulator.

For highly redundant systems, multiple tasks can be ar-

ranged in priority in order to try to fulfill most of them,

hopefully all of them, simultaneously. Let us consider, for

sake of simplicity, 3 regulation tasks (i.e. σ̇des = 0 for each

task), that will be denoted with the subscript a, b and c,

respectively:

σa = fa(q)

σb = fb(q)

σc = fc(q)

where σa ∈ IRma , σb ∈ IRmb and σc ∈ IRmc . For each of

the tasks a corresponding Jacobian matrix can be defined, in

detail Ja ∈ IRma×n, Jb ∈ IRmb×n and Jc ∈ IRmc×n. Let us

further define the corresponding null space projectors as

Na =
(
In − J

†
aJa

)

Nb =
(
In − J

†

b
Jb

)
.

A generalization of the singularity-robust task priority

inverse kinematic solution proposed in [12] and [13] leads

to the following equation:

q̇des = J
†
aΛaσ̃a + NaJ

†

b
Λbσ̃b + NabJ

†
cΛcσ̃c (6)

where

Jab =

[
Ja
Jb

]
, Nab =

(
In − J

†

ab
Jab

)
(7)

the approach in eq. (6) will be denoted as augmented

projections method.

In what follows, the assumption that the Jacobians are full

rank will be made.

A. Proposed modified inverse kinematics

Eq. (6) can be written as:

q̇des = q̇a + q̇b + q̇c (8)

where

q̇a = J
†
aΛaσ̃a

q̇b = NaJ
†

b
Λbσ̃b

q̇c = NabJ
†
cΛcσ̃c.

In the presence of actuator saturations, commanding the

joint velocities given by eq. (8) may result in a very poor

performance: consider the case, by example, where the

highest priority task command q̇a is compatible with the

joint velocity thresholds, but q̇des is not. Assume that when

commanding q̇des some joint velocities saturate and other

do not. In this case the command q̇des would not guarantee

the fulfillment on any task (not even the first) in spite of the

null space projection and in spite of q̇a alone being feasible

w.r.t. to the joint velocity saturation thresholds. To overcome

this limit, the solution in eq. (6) is modified in the following

q̇des = αaq̇a + αbq̇b + αcq̇c (9)

where the scaling factors αa, αb and αc belong to [0, 1] and

are defined as described in the following. Indicating with

caj and caj the lower and upper velocity bounds of joint j

for the highest priority task a, consider the set of candidate

scaling factors:

Ωa :=
{
βa ∈ (0, 1] : βa q̇aj ∈ [ caj , caj ] ∀ j

}
. (10)

Then αa is computed as:

αa =

{
max Ωa if Ωa is not empty

0 otherwise,
(11)

so that the task a velocity command is eventually scaled

down or totally canceled to match the thresholds caj and

caj ∀ j. Consequently, the thresholds for the priority 2 task

b are computed as

cbj
= c aj − αa q̇aj (12)

cbj
= c aj − αa q̇aj (13)

and the scaling factor αb is defined as:

αb =

{
maxΩb if Ωb is not empty

0 otherwise,
(14)

where

Ωb :=
{
βb ∈ (0, 1] : βb q̇bj

∈ [ cbj
, cbj

] ∀ j
}

. (15)

Similarly, the thresholds ccj and ccj ∀ j and the scaling

factor αc are computed through equations corresponding to

(12) - (15) by replacing the subscript b with c and a with b.
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B. Definitions

Applying basic geometric similarities, some definitions con-

cerning the relationships between two tasks will also be given

in this Section.

Given two generic tasks, denoted with the lower scripts x

and y, they will be defined as orthogonal if:

JxJ
†
y = Omx×my

(16)

where Omx×my
is the (mx × my) null matrix. The two tasks

will be defined as dependent if

ρ(J†
x) + ρ(J†

y) > ρ ([ J†
x J

†
y ]) . (17)

where ρ(·) denotes the rank of the matrix. Finally, they will

be defined as independent if

ρ(J†
x) + ρ(J†

y) = ρ ([J†
x J

†
y ]) (18)

and they are not orthogonal.

It is worth noticing that the three conditions of orthogo-

nality, dependency and independency given may be verified

by resorting to the transpose of the corresponding Jacobians

instead of the pseudoinverse, in fact, they share the same

span. Thus, the independency condition becomes:

ρ(JT
x ) + ρ(JT

y) = ρ ([ JT
x JT

y ]) . (19)

In the following section it will be demonstrated that these

definitions, and condition in eq. (19), play an important role

in the eventual convergence of the task errors.

III. STABILITY ANALYSIS

Let us define a candidate Lyapunov function as

V =
1

2
σ̃T
a σ̃a (20)

whose time derivative is

V̇ = σ̃T
a

˙̃σa = σ̃T
a

(
σ̇a,des−σ̇a

)
(21)

that for the regulation problem at hand yields

V̇ = −σ̃TJaq̇ = −αaσ̃
TJaq̇a (22)

notice, in fact, that all the remaining terms are null since,

even if scaled, are still projected onto the null space of the

primary task a.

Noticing that if αa > 0 at all times and Λa is positive

definite, also Λa αa will be positive definite at all times, the

time derivative of V given in eq. (22) will result in

V̇ = −αaσ̃aΛaσ̃a < 0 (23)

and it is possible to say that

∃ ta : ∀ t > ta ⇒ ‖q̇a‖ < εa (24)

that comes directly from the observation that the task error

is decreasing to zero and the Jacobian pseudoinverse is

bounded.

Let us define σ̃ ∈ IRma+mb as

σ̃ =

[
σ̃a
σ̃b

]
, (25)

that is the stacked vector of first two tasks’ errors. A possible

Lyapunov function candidate is given by

V =
1

2
σ̃Tσ̃ (26)

whose time derivative is

V̇ = −σ̃T

[
Ja
Jb

]
q̇ (27)

i.e.,

V̇ = −σ̃T

[
Ja
Jb

] (
αaq̇a + αbq̇b

)
(28)

showing that the term in αcq̇c, being projected onto the

null space of the higher priority terms, does not affect the

dynamics of the tasks a and b. The time derivative of V can

be rewritten as

V̇ = −σ̃T




αaΛa Oma,mb

αaJbJ
†
aΛa αbJbNaJ

†

b
Λb


 σ̃.

It is worth noticing that it is possible to consider the

scaling factors α∗ as part of the gains: consequently the task

b is characterized by a gain

Λ′

b = αbΛb (29)

According to the results presented in [7], [8] the above

reported V̇ function is negative definite with a proper choice

of the gains and if the tasks are independent. However, due

to the velocity saturation, this is not guaranteed anymore

∀t. It is worth noticing that ∀t > ta the velocity associated

with task a is smaller than a given εa; this implies that the

thresholds cbj
and cbj

of the task b are approaching the

corresponding thresholds of task a. Assuming that αb > 0

∀t > t∗
b
, then V̇ < 0 and the tasks errors of the first two

tasks are guaranteed to converge to zero.

A consequence is that the following arise

∃tb > ta : ∀t > tb ⇒
∥∥q̇b

∥∥ < εb (30)

It is now possible to consider the task c in the stability

analysis by defining σ̃ ∈ IRma+mb+mc as

σ̃ = [ σ̃T
a σ̃T

b σ̃T
c ]

T
, (31)

A possible Lyapunov function candidate is given by

V =
1

2
σ̃Tσ̃ (32)

whose time derivative is

V̇ = −σ̃
T

M σ̃ (33)

M =




αaΛa Oma,mb
Oma,mc

αaJbJ
†
aΛa αbJbN aJ

†
bΛb Omb,mc

αaJcJ
†
aΛa αbJcN aJ

†

b
Λb αcJcN abJ

†
cΛc



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By repeating the same line of reasoning applied to the

analysis of stability and convergence of the first two tasks

only, it can be concluded that under the hypothesis that

αc > 0 ∀t > t∗c, there will exist a time instant tc > tb > ta
such that ∀ t > tc the time derivative of the Lyapunov

function V of the three tasks (eq. (32)) is negative definite

provided that the gain conditions derived in [7], [8] are also

satisfied.

IV. NUMERICAL CASE STUDY

To verify the effectiveness of the smart inverse kinematics

saturation proposed a numerical case study has been de-

veloped. A 6-DOFs planar manipulator with revolute joint

positions q ∈ IR6 is considered. All the manipulator’s links

are assumed to have length li = 1m.

The case study considers three independent tasks arranged

in priority according to the following table:

priority task’s description task’s dim.

a end-effector position 2

b end-effector orientation 1

c robot intermediate position 2

this might represent, e.g., a simplified version of a macro-

micro manipulator.

The first-task analytical function σa ∈ IR2 and its Jacobian

Ja ∈ IR2×6 are given by:

σa =




6∑

i=1

li cos




i∑

j=1

qj





6∑

i=1

li sin




i∑

j=1

qj







and

Ja =




· · · −

6∑

i=k

li sin




i∑

j=1

qj


 · · ·

· · ·

6∑

i=k

li cos




i∑

j=1

qj





︸ ︷︷ ︸
k column

· · ·




where k is a generic column of the matrix ranging from 1

to 6. The rank of Ja is always ρ(Ja) = 2 except when

the manipulator reaches a singular configuration given by an

alignment of all the 6 joint positions. The possible occurrence

of kinematic singularities will be handled by resorting to the

damped least squares technique.

The second-task analytical function σb ∈ IR and its

Jacobian Jb ∈ IR1×6 are given by:

σb =

n∑

i=1

qi

and

Jb = [ · · · 1 · · · ]

whose rank is always full: ρ(Jb) = 1.

The third-task analytical function σc ∈ IR2 is given by

σc =




2∑

i=1

li cos




i∑

j=1

qj





2∑

i=1

li sin




i∑

j=1

qj







its Jacobian Jc ∈ IR2×6 can be easily derived and it is

omitted for seek of brevity.

According to the stability analysis performed in [7], [8],

with a proper choice of the gains, the convergence to zero

of the tasks errors is guaranteed for equation (6), moreover,

according to the results presented in this paper, even the sat-

urated version of eq. (6), i.e., eq. (9), guarantees convergence

to zero of the tasks errors.

For the three tasks the following desired values are com-

manded:




σa,des = [ 3 2 ]T [m]

σb,des = π/6 [rad]

σc,des = [ 1 1 ]T [m]

(34)

with gains:

λa = 50

λb = 200

λc = 100 (35)

Three different simulations have been presented discretiz-

ing the inverse kinematics algorithm with a sampling time

T = 1ms, namely without any kind of saturation, with an

uncontrolled saturation at the joints and finally with the smart

saturation proposed in this paper.

Figure 1 reports the time history of norm of the tasks’

errors by resorting to the eq. (6) and without any velocity

saturation. It can be observed that the primary task error

converges monotonically to zero, coherently with the theo-

retical analysis, the second and third task errors do not have

a negative time derivative during all of the transient, but they

finally converge to zero as well.

The joint velocities are not saturated and thus they reach

very large values in the initial transient. Figure 2 shows a

zoom in the first time instants of the 6 velocity components.

Let us now apply a saturation of

q̇max = 10
rad

s

on the scalar components of the joint velocity vector; this

corresponds to a value of caj = −10 rad/s and caj =

10 rad/s. Figure 3 and 4 report the errors and the velocities,
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Fig. 1. Norm of the tasks errors by applying eq. (6) without any velocity
saturation.
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Fig. 2. Joint velocities by applying eq. (6) without any velocity saturation.

respectively. It can be noticed that there isn’t any analytical

guarantee that the task errors converge to zero, in fact, even

the primary task, during the initial transient, experiences

a positive time derivative meaning that its priority is not

satisfied.

Figure 5 reports the norm of the tasks errors for the

saturated inverse kinematics algorithm proposed in this pa-

per, i.e., eq. (9). It is worth noticing that all the tasks

errors converge to zero, the primary with a monotonically

decreasing shape, the second and third task need to wait

that the respective scaling factors α∗ increase their values

and finally converge to zero. The time history of the scaling

factors α∗ is given in Figure 6. The comparison of figures 3

and 5 reveals that the proposed control method guarantees

(as expected) a faster execution of the highest priority task

with respect to what would occur without a proper handling

of the joint speed saturations.

time [s]

er
ro
rs
’
n
o
rm

[m
]-
[r
ad
]

a
bc

0.00 0.10 0.20 0.30 0.40 0.50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fig. 3. Norm of the tasks errors by applying eq. (6) with a velocity
saturation on the single joints components.
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Fig. 4. Joint velocities by applying eq. (6) with a velocity saturation on
the single joints components.
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Fig. 5. Norm of the tasks errors by applying eq. (9) with the velocity
saturation proposed in this paper.
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Figure 7 reports the joint velocities by applying eq. (9)

with the velocity saturation proposed in this paper, it can be

noticed that the velocities bounds are satisfied.
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Fig. 7. Joint velocities by applying eq. (9) with the velocity saturation
proposed in this paper.

V. CONCLUSIONS

A novel inverse kinematics control strategy is presented to

command prioritized tasks in the presence of joint veloc-

ity saturations. Standard solutions based on similar null-

space projection methods without taking care of velocity

saturations may exhibit poor performance if the commanded

joint speeds exceed the feasible bounds. A common work

around of this issue consists in scaling the commanded

speed so that the infinity norm of q̇des is compatible with

the maximum joint speed: the drawback of this solution

is that eventually the execution of higher priority tasks is

slowed down due to the presence of lower priority ones

that demand extra joint speed. In short, lower priority tasks

may end up ”disturbing” (i.e. slowing down) higher priority

ones. The proposed solution, instead, guarantees that if the

total commanded speed exceeds the maximum possible upper

bound, only the lower priority tasks are slowed down to a

value allowing the higher priority ones to be accomplished

first.

Although the effectiveness of the proposed solution was

demonstrated for 3 tasks only (for the sake of simplicity),

the extension to N tasks is straightforward. Moreover it can

be easily shown that the use of the transpose instead of

pseudoinverse gives similar results.

Building on previous results, it was shown that under

suitable hypothesis the proposed solution guarantees stability

and convergence of the task errors to zero.
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