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Abstract— EMG-to-force estimation for voluntary muscle
contraction has many applications in human-machine interac-
tion, motion analysis, and rehabilitation robotics for prosthetic
limbs or exoskeletons. EMG-based model can account for a
subject’s individual activation patterns to estimate muscle force.
For the estimation, so-called Hill-type model has been used
in most of the cases. It already has shown its promising
performance, but it is still known as a phenomenological model
considering only macroscopic physiology. We have already
developed the physiological based muscle model for the use
of functional electrical stimulation (FES) which can render
the myoelectrical property also in microscopic scale. In this
paper we discuss EMG-to-force estimation based on this full
physiological based muscle model in voluntary contraction. In
addition to Hill macroscopic structure, a microscopic phys-
iology originally designed by Huxley is integrated. It has
significant meaning to realize the same kind of EMG-to-
force estimation with a physiological based model not with a
phenomenological model, because it brings the understanding
of the internal biophysical dynamics and new insights about
neuromuscular activations. Using same EMG data of isometric
muscle contraction, the force estimation results are shown by
classical approach and new physiological based approach. Its
interpretation is also discussed.

I. INTRODUCTION

Results of complex information processing in the human

brain can be observed as the human motions originated

by skeletal muscle contractions. Central nervous system

has a fundamental role in the control of skeletal muscle

together with peripheral nervous system. For the detailed

understanding of brain mechanism, there is still a very long

way to be taken for the future. At least for the prepara-

tion, neuromusculoskeletal system should be analyzed and

modeled from microscopic scale to macroscopic scale as the

pathway from neural activity to muscle activity. Thus, neu-

romusculoskeletal modeling is important for brain science

to understand how limb movements are controlled smoothly

and effectively[1][2]. It has also significant meanings for the

clinical research of tremor [3] concerning spasticity induced

by stroke or cerebral palsy. In addition, quantitative analysis

between neural activity and muscle force can contribute to

the design of Functional Electrical Stimulation (FES) for

paralyzed muscles and myoelectrical limb control [4][5],

and also to the design of robotic prosthetic limbs and

exoskeletons. The general musculoskeletal model of whole

body and its dynamics computation method were established

and available [6]. The efficient computational algorithms

were pursued for inverse and forward dynamics on the basis

of efficient multibody dynamics computations [7].
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In this paper, we focus on the physiological details of

activated muscle unit. Especially we aim at developing EMG-

based muscle model to study voluntary muscle contraction.

EMG-based model relies on measured muscle activity to esti-

mate muscle force. This method can account for a subject’s

individual activation patterns and its characteristics. EMG-

based models have been used to estimate torques around the

joints [8]. Most of their muscle model have been based on

phenomenological models derived from A. V. Hill’s classic

work [9] and well summarized by Zajac [10]. This muscle

model has been used for a long time and by many groups.

It can represent the muscle force accounting for the muscle

activation level. It was modified and improved to be used

for EMG-based muscle model. Many studies have shown

the promise of EMG-driven musculoskeletal models to pre-

dict human joint moments [11][12]. Hill-Zajac macroscopic

model is the standard promising muscle model for practical

use. For the more physiologically and biophysically detailed

model, a microscopic model was designed by Huxley in 1957

[13]. He proposed an explanation of the interaction cross-

bridge in a sarcomere. The distinctions between microscopic

and macroscopic are not absolute; thus a sarcomere model

can be used to represent a whole muscle which is assumed

to be a homogeneous assembly of identical sarcomeres.

Conversely, the Hill model which is developed originally for

whole muscles have been used to represent the dynamics of

individual sarcomeres within a fiber [14]. The distribution-

moment model of Zahalak [15] is a model for sarcomeres or

whole muscle which is extracted via a formal mathematical

approximation from Huxley cross-bridge models. This model

constitutes a bridge between the microscopic and macro-

scopic levels. Based on Huxley and Hill-type models, Bestel-

Sorine [16] proposed an explanation of how the beating of

cardiac muscle may be performed, through a chemical con-

trol input, connected to the calcium dynamics in muscle cell,

that stimulates the contractile element of the model. Starting

with this concept, we first adapted it to the striated muscle

under FES [17]. In this paper, we try to realize EMG-to-force

estimation based on this physiological based muscle model

in voluntary contraction. It is already known that EMG-to-

force estimation by classical Hill approach is promising. It

has significant meaning to realize the same kind of EMG-to-

force estimation with a physiological based model not with a

phenomenological model because it brings the understanding

of the internal biophysical dynamics and new insights about

neuromuscular activations. Using same data set of isometric

muscle contraction, the force estimation results are shown by

classical approach and new physiological based approach.
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II. CLASSICAL MUSCLE MODEL

The transformation from EMG to muscle activation is an

essential process in classical approach. Especially in Hill-

type models, it is dominant process because the estimated

muscle force is assumed to be proportional to the muscle

activation. How to obtain the activation level from EMG

influences a lot in this approach. Here, we describe typical

steps to perform this transform. One should keep in mind

that most researchers use a subset of the described method.

A. EMG Processing

Here, we summarize the employed EMG processing

method. For the detail, you can refer to the literature [8][11].

1) high-pass filtering of the raw EMG using zero-lag 4th

Butterworth filter (30Hz) to remove movement artifact

2) wave rectification

3) low-pass filtering with a 2-10 Hz cut-off frequency

4) normalization with the peak of Maximum Voluntary

Contraction (MVC)

The normalized, rectified, filtered EMG is referred as e(t).
There exists a time delay for the muscle activation. The

process of transforming e(t) to neural activation p(t), is

called activation dynamics. When a muscle fiber is activated

by a single Action Potential (AP), the muscle generates a

twitch response. This response can be well represented by

a critically damped linear second-order differential system.

Its recursive discrete filter can be obtained as in Eq. 1 to

calculate p(t).

p(t) = γe(t − d) − β1p(t − 1) − β2p(t − 2) (1)

where d is the electromechanical delay and γ, β1 and β2

are the coefficients that define the second-order dynamics.

To realize a positive stable solution, a set of constraints was

employed, i.e. β1 = C1 + C2, β2 = C1C2 where |C1| <
1, |C2| < 1. In addition, the unit gain of this filter should be

maintained by ensuring γ − β1 − β2 = 1.

B. Nonlinearization for neural to muscle activation

Many researchers assume that the above p(t) is a reason-

able approximation of muscle activation. However, nonlinear

relationship has been reported between individual muscle

EMG and joint moment for some muscles especially at lower

forces [18]. In studies on single motor units, multiple APs

cause multiple twitch responses. If the time between APs

decreases, the twitches start to merge into each other and the

muscle force increases steadily. However, at high frequency

the twitches get closer to tetanus, where no further force is

produced even if the frequency increases. This means there

is a nonlinear relationship between frequency and force for

single motor units.

Therefore, nonlinearization from neural activation p(t)
to muscle activation a(t) should be considered. As the

simple and adequate solution, Lloyd and Besier [8] proposed

following formulation:

a(t) =
eAp(t) − 1

eA − 1
(2)

Contractile

Element

Tendon

Lt Lc cos

Ft  Fc cos

φ

φ

φ

Fig. 1. typical muscle-tendon macroscopic model.

where A is the nonlinear shape factor allowed to vary

between -3 and 0, with A = −3 being highly exponential

and A = 0 being linear.

C. Hill-type muscle model

The muscle-tendon unit is modeled as a contractile ele-

ment in series with a elastic tendon as in Fig. 1. The Hill-type

muscle model is used to estimate the force Fc(t) that can be

generated by the contractile element with general form of

the function by

Fc(t) = a(t)fl(εc)fv(ε̇c)F
m
0 (3)

where εc is the strain of contractile element, fl(εc) and

fv(ε̇c) are the normalized force-length and force-velocity

relationship respectively. Fm
0 is the maximum isometric mus-

cle force. φ is the pennation angle between the tendon and

the muscle fibers. In this paper, only concentric contraction

is considered, thus parallel elastic element is not introduced.

The force length relationship shows a Gaussian distribu-

tion around the optimal length and is formulated as

fl(εc) = exp
{

−
(εc

b

)2}

(4)

where b is a constant parameter.

fv(ε̇c) represents the relationship between velocity and

normalized force. The muscle can contract at its maximum

velocity vmax without load and slows down as the load

increases. In the case of concentric contraction, this rela-

tionship is formulated as follows:

fv(ε̇c) =
Vsh(vmax + Lc0ε̇c)

Vshvmax − Lc0ε̇c

(5)

where Vsh is a constant parameter.

In every time step, fiber velocity should be solved and

muscle fiber length can be calculated by forward integration

using Runge-Kutta algorithm. Since the value for εc has

changed, the calculation should continue iteratively until the

end of input time series of a(t).
Muscle tendon parameters were adopted from Delp [19].

The optimal lengths of contractile element (Lc0) are 3cm
for soleus and 5.1cm for gastrocnemius. The tendon slack

lengths (Lt0) are 26.8cm for soleus and 40cm for gastroc-

nemius. For gastrocnemius, parameters are averages of two

heads (med/lat). Only EMG of medial head is measured

for its input, but the force of both heads is computed

using the sum of maximum force of two heads as Fm
0 .

Also for Fm
0 and pennation angle φ, these parameters are

obtained from this reference, but final result is normalized

by maximum contraction, so the effect of these parameters

can be neglected.
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Fig. 2. Huxley Sliding filaments model.

III. PHYSIOLOGICAL MUSCLE MODEL

A. Sarcomere scale

All the sarcomeres are assumed to be identical, and

the deformation of both sarcomere and muscle scale is

proportional. If S is the sarcomere length, we can write

(S − S0)/S0 = (Lc − Lc0)/Lc0 = εc.

Huxley proposed that a cross-bridge between actine fil-

aments and myosine heads could exist in two biochemical

states, attached and detached states. He postulated that one

myosine head could attach to only one actine site. Then, the

dynamics of the fraction n(y, t) of the attached cross bridges

is given by

∂n

∂t
+

S0

h
ε̇c

∂n

∂y
= f(y, t) [1 − n(y, t)] − g(y, t)n(y, t) (6)

where h is the maximum elongation of the myosine spring,

x the distance and y the normalized distance between actine

binding site and myosine head: y = x
h

. n(y, t) is a distri-

bution function representing the fraction of attached cross

bridges relative to the normalized position y. To ensure a

one way displacement, this attachment is considered possible

only when y is between 0 and 1. S0ε̇C represents the velocity

of the actine filament relative to the myosine filament. f and

g denote the rate functions of attachment and detachment

respectively.

From the Huxley paper in 1957, this dynamics has never

been drastically changed; researches focused mainly on the

definition of f and g. Several f and g functions have been

defined and recently the chemical input was introduced by

Bestel-Sorine [16] to modify the ability of the cross bridge

to attach or not. Moreover, they proposed that these rates

depend on the relative velocity between actine and myosine.

Indeed, the higher the velocity is, the greater the probability

to break bridges is. f and g can thus be defined by:

Contraction phase
{

f(y, t) = Uc

g(y, t) = Uc + |ε̇c| − f(y, t)
(7)

Relaxation phase
{

f(y, t) = 0
g(y, t) = Ur + |ε̇c|

(8)

Uc and Ur are the level of chemical kinetics under contrac-

tion and relaxation phase respectively. That can be resumed

as below

u(t) = Πc(t)Uc + (1 − Πc(t))Ur

Πc(t) = 1 during contraction, 0 else

(f + g)(y, t) = u(t) + |ε̇c|
(9)

To complete the description at the sarcomere scale, we

assume that the force generated by one attached cross bridge

is modeled by a linear spring with a constant stiffness. All

the cross bridge are in parallel so that the global stiffness

and force generated by the whole sarcomere is proportional

to the number of formed bridges. Let’s note k0 (Nm−1) the

maximum stiffness obtained when all the available bridges

are attached. Let’s define ξ(y, t) the elongation of a cross

bridge due to the contribution of the global extension of

the sarcomere, considering εc(0) the initial value, and to the

local distribution of elongations y:

ξ(y, t) = y +
S0

h
(εc(t) − εc(0)) (10)

Stiffness and force generated by a muscle sarcomere is

obtained by computing the first and second moment of the

distribution n(ξ(y, t), t). The moments are defined as:

ks(t) = k0

∫ +∞

−∞
n(ξ(y, t), t)dy

Fs(t) = k0h
∫ +∞

−∞
ξ(y, t)n(ξ(y, t), t)dy

(11)

From Eq.6, it can be rewritten as follows:

k̇s = − (f + g) (y, t)ks + k0f(y, t)

Ḟs = − (f + g) (y, t)Fs + ksS0ε̇c + 1
2k0hf(y, t)

(12)

B. Myofiber and muscle scale

This set of differential equations is easily extended to the

whole muscle fiber considering that each fiber is composed of

identical sarcormeres in series. Then kf = ks
S0

Lc0

and Ff =
Fs. In addition, the maximum available cross bridges could

be varied depending on the relative length of the contractile

element. It is known as the force-length relationship (fl(εc)).
Contrary to previous studies where this effect is introduced

at the macroscopic level, we take into account this relation at

the microscopic scale. Indeed, this relation is directly linked

to the maximum available actine and myosine sites [14]. For

the stiffness kf and the force Ff at the fiber scale we get

including Eq.9:

k̇f = − (u + |ε̇c|) kf + S0

Lc0

k0Πc(t)Ucfl(εc)

Ḟf = − (u + |ε̇c|) Ff + kfLc0ε̇c + 1
2k0hΠc(t)Ucfl(εc)

(13)

Next, the recruitment process is introduced to muscle scale

because MUs have an all-or-nothing response to APs. At

each contraction phase, the recruitment ratio is updated but

remains constant during its phase itself. Let’s define kc and

Fc the stiffness and the force for whole contractile element,

and N the number of all MUs. The recruited number is

written as αN using recruitment ratio α. Finally the desired

model of contractile element is a set of differential equations

as below:

k̇c = −(u + |ε̇c|)kc + αkmΠc(t)Uc

Ḟc = −(u + |ε̇c|)Fc + αFmΠc(t)Uc + kcLc0ε̇c

(14)

where km = S0Nk0fl(εc)/Lc0, Fm = Nk0hfl(εc)/2.

For the macroscopic representation, the same configuration

with Fig. 1 is used including the muscle tendon parameters.

The contractile element is only replaced with the above

nonlinear differential equations.
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Fig. 3. Appearance of the experiment to measure EMGs and forces.

IV. RESULTS

Two subjects were seated on a chair with their right foot

fixed on a Biodex dynamometer (Biodex Medical Systems,

Inc., New York, USA) as shown in Fig.3. The torque around

ankle joint was measured when it is voluntarily generated

for the extension position. For EMG measurements, bipolar

surface Ag/AgCl-electrodes were placed on the muscle belly

of the medial Gastrocnemius (GAS) and Soleus (SOL).

Synchronous acquisition of the force and differential EMG

signal was done with a sample frequency of 2048 Hz by the

Biopac MP100 (Biopac Systems, Inc., Santa Barbara, USA).

Here, isometric moment was estimated only from EMG

signals by the classical Hill approach and the proposed

physiological based muscle model. The predicted torque was

compared with the directly measured torque around the ankle

by Biodex system. For this preliminary trial, we make the

comparison for the normalized torque against the one of

maximum voluntary contraction (MVC). For the conversion

from force to moment, moment arm for each muscle has to be

multiplied by the muscle force. The normalized moment was

used in this result, therefore the absolute value of moment

arm can be omitted. However, we still need to know the ratio

of the contribution among both muscles of GAS and SOL for

the resultant moment. The moment arm was estimated from

the Hawkins data [20] from the joint angle in the measured

condition. The contribution ratio was calculated using the

literature values of Delp [19] like maximum force by moment

arm considering pennation angle. The resultant ratio is MG

0.41 vs SOL 0.59. The SUM in the shown graphs is plotted

using the ratio as the sum of two muscles.

For the classical approach, the obtained EMG data was

processed as explained in Section II. The muscle force

was calculated considering force-length and force-velocity

relationship as in Eq.3. Finally, normalized estimated torque

by classical Hill approach was obtained as shown in Fig.

4. The normalized data of measured torque (red), normal-

ized estimated torque of SOL (green), normalized estimated

torque of GAS (magenta) and the sum of two muscles (blue)

are plotted.

For the new model, the rectified EMG was low-pass

filtered with 30Hz cut-off frequency. Then, chemical input

u(t) was created by thresholding the extracted EMG signals

as shown in Fig. 5. The thresholding can be assumed as

muscle cell’s all-or-nothing response to Action Potential

(AP). Muscle contraction is initiated by an AP along the
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Fig. 4. Normalized estimated torques by classical Hill approach and
measured torque (red:measured, magenta:GAS, green:SOL, blue:SUM).
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Fig. 5. Generation of chemical input. Top: filtered rectified EMG signal,
bottom: generated chemical input by thresholding for GAS.
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Fig. 6. Normalized estimated torque by physiological muscle model and
measured torque (red:measured, magenta:GAS, green:SOL, blue:SUM).

muscle fiber membrane, which goes deeply into the cell

through T-tubules. It causes calcium releases that induce the

contraction process when the concentration goes above a

threshold and is sustained till the concentration goes down

this threshold again. We use a delayed model to take into

account the propagation time of the AP and an average delay

due to the calcium dynamics. It is corresponding to e(t)
to p(t) conversion in Hill-type approach. The same value

of time delay was used for both estimation processes. For

recruitment ratio α, the amplitude of normalized EMG is

used.

The generated input command u(t) was given to the

contractile element of physiological model and the active

stiffness kc and the muscle force Fc were computed. Finally,

normalized estimated torque by physiological muscle model
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Fig. 7. Normalized torques for MVC by physiological muscle model.
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Fig. 8. Estimated active stiffness for MVC by physiological muscle model.

could be obtained as shown in Fig. 6. In order to confirm the

estimation ability both for short-term contraction and long-

term contraction, the result which includes two type contrac-

tions is presented here. The obtained RMS errors are given

in Table I for both contraction types and by both estimation

approaches. The estimation result by physiological model

for MVC can be seen as in Fig. 7 and 8. Same thresholding

level as in Fig. 5 is used. In the physiological model, active

stiffness also can be estimated along with the muscle force.

TABLE I

RMS ERRORS BETWEEN THE MEASURED AND THE ESTIMATED

Modified Hill Full Physiology
Subject short term long term short term long term

1 0.0519 0.0523 0.0313 0.0420
2 0.1015 0.0823 0.0705 0.0557

V. DISCUSSION

The first results highlight the effectiveness of EMG-to-

force estimation with physiological based muscle model and

its feasibility. In this paper, the identification of internal

parameters is not executed. For the classical approach, it

is known that the optimization to fit the experimental data

is possible using the calibration technique as written in [8].

Theoretically, it can be said that the optimization can be done

also for the proposed physiological model. Using the force

response of rabbit skeletal muscle by electrical stimulation,

identification of the physiological model could be achived in

[21]. Once the optimization is carried out, the comparison in

absolute force scale would be available.

Here, we estimated the normalized torque by both classical

Hill-Zajac model and novel physiological muscle model

based on the same EMG signals in voluntary case. For the

common parameters between two approaches, the same value

was used for its calculation like the value of electromechan-

ical delay 40ms in calcium dynamics and constant value

in force-length relationship. In order to keep the similar

condition, the common macroscopic model as in Fig. 1 was

used for both approaches. Only the contractile element was

replaced. Thus, the dynamics for force generation from EMG

signal is different as presented in Section II and III.

The aim to introduce the new physiologically detailed

model is not for the higher precision of force estimation.

Hill-type muscle is a phenomenological model based on the

experimental fact to represent the resultant relation between

length, velocity and force. There is no link to the microscopic

physiology. Even if the estimation ability is approximately

equivalent, it is meaningful to understand and capture the

muscle dynamics with more detailed representation. In this

paper, it is still qualitative validation, but same kind of

force generation could be obtained with the newly proposed

physiological model against voluntary EMG signal. If we

take a look carefully at the result of classical model as in Fig.

4, you can find the larger error for the estimation of short-

term contraction. The reason of this error can be considered

as follows. It is known that there is a nonlinear relationship

between frequency in contraction and force for single motor

units. In classical approach, this frequency dependency is

tried to be offset only by the nonlinear conversion from

p(t) to a(t) as written in Section II.B. This nonlinearization

was proposed recently to modify Hill model. Originally this

process has not been introduced in the initial method of Hill-

type approach. However, even with the modification, it is

not a time function so that it still can not correspond to

the varied frequency of muscle contraction. In the proposed

approach, the frequency property is internally integrated in

the generation process of chemical input u(t).
Additionally, the signal measured in EMG is the sum-

mation of the signals of all different motor units (MU).

So even in the short-term tetanic contraction, the amplitude

of EMG is the same level with the amplitude in long-

term tetanic contraction. However, the resultant force of

short-term contraction is actually much less than the one

of long-term contraction. It means that there is somewhat

time hysteresis regarding the neural command. In classical

approach, neural activation p(t) is dominantly decided by the

low-pass filtering with 2-10 Hz cut-off frequency. The choice

of the cut-off frequency is very sensitive to the obtained p(t).
Then, p(t) is more or less proportional to the resultant force

in Hill-type model. It does not include an effect of time

hysteresis, therefore classical approach can not estimate well

both the short-term and long-term contraction in the same

time with a certain cut-off frequency for EMG processing. In

the proposed approach, the derivative of the contraction force

is directly given by the neural command and it brings time

hysteresis in force generation. The choice of threshold level

is not so sensitive to the input generation. It is interesting to

see this kind of effect along with the introduction of Huxley

cross-bridge representation.

Furthermore, the physiological model verifies the well

established properties observed for the muscle’s behavior:

i) the force-length relation is included in the definition of

Eq.13, ii) the force-velocity relation can be expressed in iso-

tonic and tetanic conditions. Before the isotonic contraction
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could occur, the muscle contracts in an isometric condition

until the force generated by the muscle equilibrates the

imposed one. Then, isotonic contraction becomes possible.

When we assume Ḟc = 0 in Eq.14, it can be rewritten as

Fc = (αFmUc + kcLc0ε̇c)/(Uc + |ε̇c|).
At the beginning of this phase (t=0), kc(0) 6= 0 but

depends on the initial isometric contraction phase. If we

define A(0) = Lc0kc(0)
UcαFm

, B = 1
Uc

, in a concentric contraction

where ε̇c < 0, we get a Hill type force-velocity relation:

Fc = αFm

1 + A(0)ε̇c

1 − Bε̇c

(15)

You can find the correspondence in the relation of Eq.

5. It can be verified that this physiological muscle model

integrates the force-velocity relation naturally from the con-

sideration of actin-myosin cross bridge.

Finally, EMG signal of one muscle is formed of the

contributions of all different Motor Units (MUs) active at

a certain time. During voluntary contraction, in general

the active MUs will have different fire frequencies and

their activity is not synchronized. Therefore, in strict sense

chemical input u(t) of the proposed model also should not be

synchronized. However in this first trial, one chemical input

was used for the calculation to confirm the validity of one

model as the single MU. The resultant force in this work can

be seen as the contribution of representative MUs. In reality,

the muscle is consisted of numerous MUs. If we consider

the extracted EMG signal as mean MU action potential and

the unsynchronized chemical input u(t) are generated for

each MU with the time delay of Gaussian distribution, the

more realistic modeling would be possible. For the future

work, we will try the simulation with many sets of model

corresponding to multiple MUs for one muscle.

VI. CONCLUSION

In this paper we have presented a method that allows to

estimate the muscle force from EMG signal with physiology

based model which has the link to underlying microscopic

filament dynamics. The proposed method features:

• a novel physiologically detailed model for EMG-to-

force estimation instead of a phenomenological Hill-

type muscle model,

• the estimation improvement both for short-term and

long-term contraction with the integration of the fre-

quency property of neural activation and muscle force,

• the consideration of firing rates of motor units in the

generation of chemical command input.

The summation of electrical activity created by each MU

appears in EMG. Strictly, EMG signals should be decom-

posed into constituent MU action potentials to obtain the

map of MU firings. However, the generation of chemical

command by thresholding EMG can at least capture the fact

that the firing rates of MUs increase, the twitches associated

with each firing will eventually fuse to yield large force.

Future work will focus on increasing the number of tests

and the further interpretation of neuromuscular system both

in voluntary and artificial activation in FES. Identification of

internal parameters would also contribute to the optimized

modeling for different properties of subjects.
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