
  

  

Abstract—In our previous work, we have realized Virtual 
Slope Walking that a robot can walk on level ground as it walks 
down a virtual slope by leg length modulation. In this paper, we 
present the instantaneous leg extension model of Virtual Slope 
Walking to analyze the essentials of Virtual Slope Walking. It 
has two straight massless legs and a point mass body at the hip. 
The stance leg is extended instantaneously while the swing leg is 
swung and shortened actively. We demonstrate that this model 
can exhibit stable walking cycles on level ground. We obtain the 
sufficient conditions for the existence of the fixed point. We then 
illustrate the effect of the model parameters on the fixed point to 
show how the fixed point can be determined by adjusting the 
parameters. Further, we theoretically proved that the fixed 
point is asymptotically stable, meaning that it is independent on 
the initial conditions. The validity of the proposed model has 
been examined by numerical simulations. 

I. INTRODUCTION 
ASSIVE Dynamic Walker can walk down a shallow slope 
without any control or actuation, which is first 

demonstrated by McGeer though simulations and 
experiments [1]. Since then, Goswami et al [2], Coleman et al 
[3], and Garcia et al [4] confirmed McGeer’s finding and 
studied various passive walking in detail. 

Since the passive walker performs nature and highly 
efficient gaits, its concept has been used as a starting point for 
designing actuated walkers that are able to walk on level 
ground [5]. The slope in Passive Dynamic Walking is not a 
fundamental property, but rather just a convenient energy 
source which can be replaced by a variety of other sources. 
As McGeer stated in [6], there are several options for adding 
power and control to the passive walking model for level 
walking, such as torque application between legs which is 
realized in the delft pneumatic biped Denise [7], torque on the 
stance leg ankle joint which is realized in Meta [8], impulse 
application on the trailing leg as it leaves the ground which is 
realized in the Cornell biped [9]. On the other hand, Goswami 
et al [10] studied the behavior of mechanical energy in 
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Passive Dynamic Walking and suggested a powered walking 
on level ground from the mechanical energy restoration point 
of view, leading to work by Spong [11]. Asano et al [12] also 
propose a level walking by pumping the swing leg.  

From the mechanical energy restoration point of view in 
Passive Dynamic Walking, we proposed Virtual Slope 
Walking by introducing the leg length modulation [13]. The 
swing leg is shortened relative to the stance leg prior to the 
heelstrike, and then the effect would be like taking a downhill 
step, which we named Virtual Slope. By actively extending 
the stance leg and shortening the swing leg, a balance 
between the complementary energy and the dissipation 
energy is realized in Virtual Slope Walking. 

In this paper, we propose the instantaneous leg extension 
model as the simplest special case of Virtual Slope Walking. 
This model allows the possibility to analyze the essentials of 
Virtual Slope Walking in the analytic way, without caring 
much about the detail of the control algorithm. The fixed 
point can be studied from an asymptotic solution. Moreover, 
it can be theoretically investigated how the fixed point is 
asymptotically stable in this simplest model. 

The remainder of this paper is organized as follows. In 
Section 2, Virtual Slope Walking is introduced. In Section 3, 
the instantaneous leg extension model of Virtual Slope 
Walking is presented. In Section 4, we analyze the walking 
model in the aspects of criteria of existence, characteristic and 
stability of the fixed point.  Section 5 presents the results with 
discussion and Section 6 the conclusion and future work. 

II. PRINCIPLE OF VIRTUAL SLOPE WALKING 
In Passive Dynamic Walking, a robot can descend a gentle 

slope with no energy input other than gravity, and have no 
active control, as shown in Fig. 1. The lost gravitational 
potential energy while the robot walks downhill is 
transformed to the walking kinetic energy and gets dissipated 
at heelstrike [1]. If the slope angle is appropriate, the 
complementary gravitational potential energy Es is equal to 
the dissipation energy Er, a stable gait can be synthesized [1].  
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We suppose that the robot leg length can be shortened 
infinitely and the swing leg can be swung around arbitrarily 
quickly to the position with constant inter-leg angle for 
heelstrike. In level walking, the swing leg is shortened by a 
constant ratio during each step. In this way, the center of 
gravity experiences a virtual slope as shown in Fig. 2(a). Just 
as in Passive Dynamic Walking, if the angle of the virtual 
slope is appropriate, a stable gait can be achieved 
continuously. However, in practical walking, the leg length of 
the robot cannot be shortened infinitely. So after heelstrike, it 
is required that the stance leg shortened in the previous 
walking step should be actively extended during the 
following swing phase with an amount of potential energy Ec 
added into the walking system, as shown in Fig. 2(b). If the 
complementary energy Ec is equal to the dissipation energy Er, 
a stable gait can be synthesized on level ground. 
 The Virtual Slope Walking is then defined as a combined 

process of actively extending the stance leg and actively 
swinging & shortening the swing leg. 
 We have built a planar biped robot named Stepper-2D as 
the test bed of Virtual Slope Walking, shown in Fig. 3. It is 
36.8cm by height and 780g by weight. Both the length of 
thigh and shank is 12.5cm. The leg length modulation can be 
realized by bending or unbending the knee joints. We 
introduce the simple sinusoids to generate the stance leg 
extension in a period of time. This prototype achieves a 
relative speed of 4.48 leg/s, which is the fastest relative speed 
among the known biped robot. We demonstrate the validity 
of the principle of Virtual Slope Walking in the prototype 
experiments, as can be found on our website 
www.au.tsinghua.edu.cn/robotlab/rwg/Robots/Stepper_2D.htm  

For the existence of comprehensive function of multiple 
effects in the prototype, it is hardly to analytically study the 
essentials of Virtual Slope Walking. We then present the 
instantaneous leg extension model as the theoretical 
investigation of Virtual Slope Walking in the following 
section. 

III. THE MODEL 

A. Model Description 
A cartoon of our walking model is shown in Fig. 4. We 

define a walking step starts when the new stance leg (lighter 
line) has just made contact with the ground in the upper left 
picture, namely instant I. The stance leg swings to the 
position in the upper right picture, namely instant II, and 
extends instantaneously in the bottom left picture, namely 
instant III. The swing leg (heavier line) is shortened and 
swings to the position with constant inter-leg angle before 
heelstrike in the bottom middle picture, and hits the ground in 
the bottom right picture, namely instant IV. 

The details of the model and the underlying assumptions are 
listed below: 

Mass: the model has two straight massless legs and a point 
mass body at the hip. This model is based on the basic 
assumption that humans have compact bodies and light legs. 
And the forces the legs exert on the upper body act through 
the center of mass, and therefore, applying very little 
rotational moment on the upper body. 

Leg: the two legs are modeled as a telescoping actuator with 
a point foot. The stance leg length is extended from rs to re, 
and the swing leg length is shortened from re to rs. The length 
shorten ratio is defined as β= rs / re. 

Actuation: the stance leg is actuated for instantaneous 
extension, while the swing phase is an unactuated inverted 
pendulum. The swing leg is actuated for shortening and 
swinging to the position with constant inter-leg angle. 

Instantaneous Extension Transition: the stance leg 
extends instantaneously as shown in Fig. 4 from instant II to 
instant III, which implies that during the instantaneous 
transition stage: 

--the robot configuration remains unchanged, except the 
stance leg length, 

--the angular momentum of the robot about the point of the 
support on the ground of its stance leg is conserved. This 
conservation law leads to a discontinuous change in the 
velocity of the point mass body. 

m
g

rs II

0 0

re rs

I II

III IV

rs

re

II

Fig. 4.  The instantaneous leg extension model of Virtual Slope 
Walking. The top-center picture gives a description of the variables and 
parameters that we use. m: the mass of the body, rs, re: the length of the 
stance leg before and after leg extension, θ: the angle of the stance leg 
with respect to the vertical with the negative sign, φ: the inter-leg angle, 
g: gravitational acceleration. 

(a) Center of Gravity Descending     (b) Actively Extending the Stance 
Through the Swing Leg                     Leg for Energy Complement 

Fig. 2.  Virtual Slope Walking 

 
Fig. 3.  Stepper-2D  

A planar biped with point foot. 
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Heelstrike: the impact of the swing leg with the ground is 
assumed to be fully inelastic (no slip, no bounce). This 
implies that during the instantaneous transition stage: 

--the robot configuration remains unchanged, 
--the angular momentum of the robot about the swing foot 

contact point is conserved. This conservation law leads to a 
discontinuous change in the velocity of the point mass body.  

--double stance is assumed to occur instantaneously. When 
the swing leg hits the ground and sticks, the previous stance 
leg lifts up. 

--for analyzing the main effect of stance leg extension, the 
inter-leg angle φ at heelstrike is always constant, which 
means that the swing leg can be swung around arbitrarily 
quickly to the position with constant inter-leg angle before 
heelstrike. Since the swing leg is modeled as having zero 
mass, this assumption exists distinctly. 

B. Governing Equations 
The governing equations of the robot consist of nonlinear 

differential equations for the swing phase and algebraic 
equations for the transitions of leg extension and heelstrike. 

1) Swing phase from I to II: Using the Lagrangian 
Equations, the second-order differential equation of motion is 
given below for the swing phase of the stance leg: 

( ) sin ( )
s

gt t
r

θ θ=
ii                            (1) 

Rescaling the time by defining dimensionless 
time eg r tτ = , (1) can be written as: 

1( ) sin ( )θ τ θ τ
β

=
ii                            (2) 

For the simplicity, we will refer to dimensionless time τ as 
the time variable, henceforward. 

2) Transition from II to III: From the conservation of 
angular momentum about the stance foot contact point in the 
instantaneous leg extension, we obtain the following 
transition equation: 

2
III IIω β ω=                                   (3) 

where ω is the angular velocity of the stance leg and the ‘II’ 
and ‘III’ subscripts denote the instant II and III 
respectively.  

3) Swing phase from III to IV: Similar to the equation in 1), 
the equation of motion for the stance leg with the length of re 
can be written as: 

( ) sin ( )θ τ θ τ=
ii

                               (4) 
4) Transition from IV to I of the subsequent step: The 

heelstrike from step n to the subsequent step n+1 occurs when 
the geometric collision condition 

I 0 IV

I IV

( 1) ( ( ))
cos ( 1) cos ( )

n n
n n

θ ϕ θ
β θ θ

+ = − −⎧
⎨ + =⎩

                   (5) 

is met, where the ‘I’ and ‘IV’ subscripts denote the instant I 
and IV respectively, φ0 is the constant of the inter-leg angle at 
heelstrike. Equation (5) also reflects a change of names for 
the two legs. The swing leg becomes the stance leg, and vice 

versa.  
 From the conservation of angular momentum about the 
swing foot contact point at heelstrike, we obtain the following 
transition equation: 

0
I IV

cos( 1) ( )n nϕω ω
β

+ =                            (6) 

 Equations (2)-(6) construct the dynamic equations of 
hybrid system of the instantaneous leg extension model. 

IV. ANALYSIS OF THE MODEL 

A. Poincaré Section and Walking Map 
The general procedure for the study of this model is based 

on interpreting a step as a Poincaré map, or, as McGeer 
termed it, a ‘stride function’ [1]. Gait limit cycles are fixed 
points of this function.  

Our Poincaré section is at the start of a step, namely instant 
I in Fig. 4, just after heelstrike. Given the state of the system 
at instant I, the Poincaré map f determines the state just after 
the next heelstrike. Note that in the geometric collision 
condition (5), the stance leg angle θI is constant with inter-leg 
angle φ0. So the heelstrike transition reduces this problem in 
2D state space {θI, ωI} to a one dimensional map f, only 
consisting of angular velocity ωI.  

So, while the system has only one independent initial 
condition, we need to specify ωI at the start of walking step n 
to fully determine the subsequent motion at steps n+1, n+2,… 
so that ωI(n+1)= f(ωI(n)). Applying energy conservation in 
the two swing stages (from instant I to instant II and from 
instant III to instant IV) and transition equations in leg 
extension and heelstrike, the walking map can be written as: 

2 2 2 2
0

2
0 2

( 1) cos ( )
1 12 cos [cos ( ) cos ( )]

I I

II I              

n nω β ϕ ω

ϕ θ β θ β
β β

+ =

+ − − −
 (7) 

where θII is the stance leg angle at leg extension. 
To simplify the definition of the map f, a new variable q is 

taken to be the square of the angular velocity 
2
Iq ω=                                     (8) 

Since the stance leg angle θI is constant, variable q indicating 
the kinetic energy can represent the total mechanical energy 
of the system. This state variable is different from that in 
Passive Dynamic Walking. With the change in variables, the 
Poincaré map f is linear in q  

2 2
0

2
0 2

( ) cos
1 12 cos [cos ( ) cos ( )]II I

f

        

q qβ ϕ

ϕ θ β θ β
β β

=

+ − − −
 (9) 

We will refer to q as the state variable, henceforward. 

B. Existence of Fixed Points 
A point qf is a fixed point of f if f(qf) = qf. So the fixed point 

of f is: 
2 3 3

0 II I
2 2 2

0

2 cos [cos (1 ) cos ( )]
(1 cos )

fq ϕ θ β θ β β
β ϕ β

− − −
=

−
  (10) 

The stance leg angle θI at Poincaré section can be obtained 
from (5) as follows: 
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0
I

0

cosarctan
sin

β ϕθ
ϕ

−
= −                        (11) 

Three sufficient conditions have to be satisfied for the 
existence of fixed point: 
1) Referring the definition of q in (8), the sign of q is always 

positive, this requirement is 
0fq >                                  (12) 

Combing (10) and (12), this inequality can be rewritten 
as a criterion relating the length shorten ratio β, the leg 
extension angle θII, and the inter-leg angle φ0 

3
II

3
I

cos
cos 1

θ β β
θ β

−
>

−
                      (13) 

where θI is the function of β and φ0 in (11). 
2) For a fixed point to exist, the robot must be able to pass 

the apex at mid-stance repeatedly after each heelstrike, 
i.e., the robot will not fall backward. This requirement 
can be described as a criterion relating the initial 
condition of each step 

I
II

II II I
II4

2(1 cos )   0

1 cos cos cos2[ ]   0
q

θ θ
β

θ θ θ θ
β β

−⎧ ≥⎪⎪> ⎨ − −⎪ + <
⎪⎩

   (14) 

3) Geometric restrictions are listed below: 
--the sign of the stance leg angle θI should be negative, 

this requires 
0cosβ ϕ>                               (15) 

--the stance leg angular velocity just after heelstrike 
should be greater than zero, this requires 

0 2
πϕ <                                  (16) 

--the stance leg should extend before heelstrike, this 
requires 

0
II 2

ϕθ <                                 (17) 

C. Effect of Model Parameters on the Fixed Point 
Referring the analytical expression of fixed point qf in (10) 

and (11), qf is determined by three parameters: the length 
shorten ratio β, the leg extension angle θII, and the inter-leg 
angle φ0. The influence of each parameter on qf is presented 
individually as follows. 
1)  qf is shown as a function of the length shorten ratio β in 

Fig. 5. 

It is indicated from Fig. 5 that qf decreases with an 
increase in the length shorten ratio β. An increase in β 
causes a net decrease in the extended leg length, resulting 
in a net decrease in the complementary energy Ec. On the 
other hand, the dissipation energy Er at heelstrike can be 
represented as the function of β and φ0 

2 2
0

1 tan
2r eE mgr q ϕ β=                         (18) 

Er increases as β increases. Consequently, the total 
mechanical energy E is lowered, and qf decreases. The 
main conclusion from this graph is that a decrease in β 
leads to a greater fixed point qf. However, there is a lower 
limitation of β shown in (15). And β is also restricted by 
the physical parameters of the real robot. 

2)  qf is shown as a function of the leg extension angle θII in 
Fig. 6. 

Fig. 6 shows a second order relationship between qf and 
the leg extension angle θII. As θII approaching zero from 
both side, qf increases and reaches a maximal value at θII 
=0o. As θII approaching zero, the vertical projection of 
leg length extension increases, and more potential energy 
is complemented. As a consequence, the total energy E 
increases, and qf increases. The vertical projection of leg 
length extension reaches its maximum at θII =0o. It can be 
concluded from this graph that extending the stance leg 
more close to mid-stance will result in a greater fixed 
point qf. 

3)  qf is shown as a function of the inter-leg angle φ0 in Fig. 
7. 

As shown in Fig. 7, qf decreases with an increase in the 
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Fig. 7.  The variation of qf with respect to the inter-leg angle φ0 for 
θII=0o and β=0.6, 0.7, 0.8, and 0.9. 
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inter-leg angle φ0. The dissipation energy Er increases as 
φ0 increases in (18). As a consequence, the total energy E 
decreases, and qf decreases. So we can conclude that a 
larger φ0 results in a smaller qf, but does not mean a 
slower walking for the step length is larger 
simultaneously. 

We can conclude that qf can be parameterized by β, θII, and 
φ0. The desired fixed point can be easily produced by 
adjusting these three controllable parameters, which is a 
significant improvement for Passive Dynamic Walking. 

D. Stability Analysis 
The eigenvalues of the jacobian J of the Poincaré map f 

govern the stability of the fixed point. If all eigenvalues are 
within the unit circle, rendering a small perturbation will 
decay with time, then the gait cycle is asymptotically stable. 

Considering the one dimensional map f in (9), the 
eigenvalues of the jacobian J can be represented as the first 
derivative of the map f at the fixed point 

2 2
0cosf

fq q

d
dq

λ β ϕ
=

= =                         (19) 

 Since the length shorten ratio β and cosφ0 are always less 
than one, the eigenvalue of the jacobian J is within the unit 
circle. The fixed point is asymptotically stable. 

E. Energy Analysis 
This walking model is not conservative holonomic system, 

since energy is gained in stance leg extension and lost at 
heelstrike, which is different from Passive Dynamic Walking. 
As discussed indirectly in [14], the dissipative collision 
allows the possibility of asymptotic stability. How asymptotic 
stability is approached can be seen by considering the energy 
of the system. The energy gained by the stance leg extension 
and the energy lost at heelstrike are linear functions of the 
state variable q. 

The complementary energy Ec is a net change of the total 
mechanical energy in stance leg extension transition, which 
can be represented below 

2 4

3 3
II I

1 ( )
2

      [(1 ) cos ( ) cos ]

c e

e

E mgr q

mgr

β β

β θ β β θ

= − −

+ − − −

 (20) 

Once given the model parameters m, re, β, θII, and φ0, Ec is 
proportional to the state variable q. 

 The dissipation energy Er is a net change of the total 
mechanical energy at heelstrike, which can be represented 
below 

4 2
0

2 3 3
0 II I

1 (1 cos )
2

     (1 cos )[(1 ) cos cos ]

r e

e

E mgr q

mgr

β ϕ

ϕ β θ β β θ

= −

+ − − − −（ ）

 (21) 

Once given the model parameters m, re, β, θII, and φ0, Er is 
also proportional to the state variable q. 
 We define EΔ as the net change of the total mechanical 
energy in one step. So EΔ can be represented as follows 

c rE E EΔ = −                               (22) 
Substituting (20) and (21) into (22), we obtain 

2 2 2
0

2 3 3
0 II I

1 (1 cos )
2

cos [(1 ) cos ( ) cos ]

e

e

E mgr q C

C mgr

β β ϕ

ϕ β θ β β θ

Δ = − − +

= − − −

(23) 

Once given the model parameters m, re, β, θII, and φ0, EΔ has a 
linear relationship with the state variable q. 

From the conservation of energy, EΔ should be zero at 
fixed point. Once there is a perturbation on q, the state 
variable will approach the fixed point qf at a rate of β2cos2φ0, 
which can be obtained in (19) by the linearization of Poincaré 
map f. As a consequence, EΔ will approach zero with the same 
rate, meaning that the complementary energy Ec and The 
dissipation energy Er will be balanced asymptotically. 

V. RESULTS AND DISCUSSION 

A. Typical Gait Cycles 
Stable gait cycles can be found if the existence criteria of 

the fixed point are satisfied. Using numerical simulation, a 
typical plot of the cyclic walking motion is shown in Fig. 8.  

 As shown in Fig. 8, a walking step starts at instant I, and 
the stance leg swings to instant II as an unactuated inverted 
pendulum, following the arrowheads in the phase trajectory. 
The phase trajectory from Instant II to instant III corresponds 
to the stance leg instantaneous extension, with a discontinue 
change of the stance leg angular velocity and unchanged 
stance leg angle. From instant III to instant IV, the stance leg 
also swings like an inverted pendulum. Heelstrike happens at 
the phase trajectory from instant IV to instant I, resulting in a 
discontinue change of the stance leg angular velocity and the 
exchange of the two legs. 

The dynamic behavior in Fig. 8 is the same as that in 
Passive Dynamic Walking, except the state jump in the stance 
leg extension. It is indicated that the effect of the stance leg 
extension is the same as the slope in Passive Dynamic 
Walking for energy complement. Moreover, there is more 
freedom to affect the fixed point by stance leg extension than 
that in Passive Dynamic Walking. 

B. Basin of Attraction 
The basin of attraction for each θII is shown in Fig. 9 from 

numerical simulations. All initial conditions leading to the 
fixed point are contained inside the basin of attraction. 
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Fig. 8.  A typical gait cycles in phase space. The transition instants 
match the plot of Fig. 4. At a gait cycle, heelstrike returns the system to 
its initial conditions. θII =0o, β=0.8, and φ0=45o. 
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 The left boundary in Fig. 9 is defined as the critical angular 
velocities that make the robot pass the apex at mid-stance, as 
shown in (14). Below this boundary, the robot falls backward. 
The right boundary is defined as the critical angular velocities 
that make the stance foot lose contact with the ground. Note 
that this is more or less equal to the commonly used boundary 
of Froude number (ω2r)/g>1 [15]. The upper limitation of leg 
extension angle θII is determined by (13) and (17). As shown 
in Fig. 9, any initial condition is attracted to the limit cycle 
motion, as long as the existence criteria are satisfied. This 
conclusion is identical with the stability analysis in section 
IV.  
 Comparing with the small region of BoA in passive 
Dynamic Walking [16], the BoA in this model is enlarged for 
the whole possible state space, which can be explained as 
follows. Firstly, the complementary energy by stance leg 
extension helps the robot approach to the fixed point once 
disturbed. Then, the effect of swing leg is neglected, and the 
inter-leg angle at heelstrike is constant, resulting in an 
asymptotically stable fixed point [17]. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we presented the instantaneous leg extension 

model of Virtual Slope Walking. The results of this study are 
summarized as follows: 
1) We demonstrate that the instantaneous leg extension 

model of Virtual Slope Walking can exhibit stable gait 
cycles. And three sufficient mathematical conditions for 
the existence of the fixed point are obtained in the 
analytical way. 

2) Based on the analytical expression of the fixed point, the 
effect of the model parameters on the fixed point can be 
concluded as follows. A decrease in the length shorten 
ratio β has a positive effect on increasing the fixed point 
qf. And the optimal leg extension angle θII=0o yields a 
maximum fixed point qf. An increase in the inter-leg 
angle φ0 has a negative effect on increasing the fixed 
point qf. Finally, the fixed point can be controlled 
flexibly by adjusting these three parameters. 

3) We theoretically proved that the fixed point is 
asymptotically stable, meaning that the fixed point is 
independent on the initial conditions. The BoA gives a 
validation of the theoretical result. 

The model we presented in this paper partly demonstrates 
the effect of stance leg extension in Virtual Slope Walking. 
We will introduce a compass-like biped model to investigate 
the effect of swing leg on mechanical energy restoration in 
Virtual Slope Walking for the future work.  

We find that the exact trajectories of the telescopic leg 
motion are of little concern in Stepper-2D’s experiment 
results. As long as the energy balance condition is satisfied, 
the robot can generate stable walking with various shapes of 
smooth trajectories. Our long term goal of this research is to 
prove that Virtual Slope Walking can generate a stable gait in 
a simple way without the elaborate trajectory control 
algorithm.  
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Fig. 9.  The basin of attraction for the fixed point with the variation of  
θII. β=0.8 and φ0=45o.  
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