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Abstract— Tumbling is an exciting new area of robotic
locomotion that takes advantage of ground-body interactions to
achieve rich motions with minimal hardware complexity. The
increased mobility of tumbling robots, however, comes at the
price of increased control complexity. In this paper, we propose
a novel method to handle the issues of tumbling locomotion
which takes the problem and separates into locally independent
subproblems. Our approach provides an intuitive geometric
solution to the tumbling control problem without sacrificing
performance. We provide a running example throughout the
paper to help solidify the ideas presented.

I. INTRODUCTION

Tumbling robots make up a new and largely unexplored
area of robotic locomotion that takes full advantage of
the robot’s body to aid in locomotion [1]–[3]. This allows
tumbling robots to traverse significantly complex terrain
while keeping the overall size and complexity of the re-
quired hardware small. In this sense we see tumbling as
a minimalistic approach to robot locomotion similar to the
ideas in [4], [5]. What tumbling robots gain in hardware
simplicity, however, they pay for with increased software
complexity. The utilization of ground-body interaction, while
greatly increasing the potential set of motions, makes control
and planning tasks difficult.

The control of tumbling robots in inherently hard due
mostly to the nonholonomic nature of tumbling. Additional
issues involve high angular velocities during tumbles and
the resulting impact along with the fact that many tumbling
designs require sliding contacts with the ground, all of which
make accurate state estimation and prediction difficult. To
the authors’ knowledge there are currently no acceptable
solutions to the tumbling control problem.

In [6] the authors briefly mention Turbot 2, a Biomor-
phic two-armed tumbling robot that exhibits phototaxis in
generally lit environments. Although the exact details of the
control circuit are not mentioned, the authors describe the
general Turbot control topology as two chaotic oscillators
(one for each arm) weakly coupled by a single analog neuron.
In [7] we see a similar two-armed tumbling robot that uses
a simple state machine based on relative values from two
pairs of photosensors along with motor stall detection. The
robot activates one motor at a time based on which of the
six possible states it is currently in, resulting in positive
phototaxis. The above methods succeed in producing directed
tumbling motion, however they require significant expertise

to apply, lack the plasticity required by complex tasks, and
fail to generalize to other tumbling platforms.

In a previous work [8], we proposed a method for deriving
motion primitives for a given tumbling robot by discretizing
over the control inputs. The resulting motion of the primitives
can then be modeled and stored as a graph allowing the use
of traditional search methods for planning. This approach
generalizes to other platforms and allows user-defined direc-
tional targets, however, it is suboptimal due to discretization
of the controls.

In this paper we outline a new approach for control of
tumbling locomotion where we break the problem up into
separate subcomponents that results in a natural discretiza-
tion of the overall task. In this manner, we create several
subproblems, or modules, that can be solved separately
and then combined as a final solution. Specifically, the
subproblems involve calculating possible tumbles, predicting
future states based on robot/terrain dynamics, and high-level
planning using sets of feasible tumbles. We believe that
our approach provides an intuitive geometric solution to the
tumbling control problem without sacrificing performance.

A. Running Example

For this paper we use the Adelopod [9] (see Figure 1) as a
running example to demonstrate our proposed approach. The
Adelopod is a small two-armed tumbling robot physically
similar to those discussed in [6], [7] with an additional actu-
ated degree of freedom per arm. Electronically the Adelopod
is significantly more advanced; it has an onboard 600MHz
ARM processor with 128MB of RAM, over 2GB of data
storage, and wireless connectivity along with full inertial
measurement.

II. PRELIMINARIES

We find it useful to include our definitions of tumbles and
tumbling robots before proceeding.

Definition A tumble is a dynamic state of instability during
which the robot pivots about an axis formed by two or more
contact points with the ground, accelerating downward with
gravity and thus behaving as an inverted pendulum.

Definition A tumbling robot is any robot that, by the previ-
ous definition, tumbles as its primary means of locomotion
with the body playing an active role in achieving such
motion.
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Fig. 1. Two Adelopod tumbling robots shown next to each other.

Additional discussion of the above definitions can be found
in [8].

Here we introduce briefly some of the important sets used
later in the paper.
• Let V = {v1(φ), . . . ,vn(φ)} be an appropriately cho-

sen finite set of vertices that serve as an approximation
to the hull of the robot; points in V are, in general,
functions of the control inputs. The construction of this
set is at the discretion of the implementer, however it
should generally include all points of the robot that
commonly come in contact with the ground and/or
obstacles. For level terrain these points are simply the
vertices of the convex hulls of each component (arm,
body, etc.) of the robot.

• Let C be the set of vertices from V currently in support.
A vertex in support is one that exists in the plane of
an arbitrarily chosen face from the convex hull of V ,
CH(V ).

• Let S = {s1(φ), . . . , sm(φ)} be the set of vertices
from V that are the extreme vertices of the support
polygon CH(C).

From the above we have the following relation

S ⊆ C ⊆ V. (1)

A. Running Example: Choice of V

In this section we describe and motivate our choice of V
for the Adelopod. Vertices of the Adelopod can take one of
two forms; Each vi ∈ V is either a body vertex (static in the
robot’s frame) or an arm vertex (functions of control inputs).
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Fig. 2. Selection of points in V for the Adelopod robot.

As mentioned previously, the Adelopod has four actuated
degrees of freedom (two per arm). The control vector φ ∈
[−180, 180]4 is then

φ = (φ1, φ2, φ3, φ4) (2)

where φ1 and φ2 are the variables for the left arm and φ3

and φ4 are the variables for the right arm.
The body (static) vertices take the form

vbody = (vx, vy, vz) (3)

where all coordinates are in the robot’s body frame. The arm
(kinematic) vertices take the form
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(4)

where varm is expressed in the robot’s body frame; (i, j) ∈
{(1, 2), (3, 4)}; ck and sk represent sin(φk) and cos(φk)
respectively; v′ represents the coordinates of vertex varm

in the arm’s coordinate frame; and d and a are Denavit-
Hartenberg parameters for the arm.

Our choices of V are depicted graphically in Figure 2
where vertices are labeled with circled letters. In constructing
V we have, as suggested previously, included all of the
extreme vertices of the convex hull of the body. For the
arms, however, we have included only one vertex for each.
This counteracts our previous suggestion however this greatly
simplifies the math for the purpose of this paper and, in
practice, doesn’t sacrifice much accuracy on simple terrains.

III. SCHEMA

Tumbling locomotion operates through repeatedly driving
the system into states of instability, inducing dynamic motion
that brings the system from the current state to another
of lower energy, where energy is added through actuation.
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The result is a series of tumbles that produce a net dis-
placement of the robot through its environment. We can
think of such locomotion as alternating periods of stable and
unstable (tumble) states where a majority of the net motion
is achieved through tumbles. Therefore we see that, in a
tumbling system, instability, or rather planned instability is
desirable and even necessary. The fact that tumbling robots
leverage periods of instability might seem obvious from the
definitions however we find it interesting to note that this is in
stark contrast with much of the existing literature on legged
systems where stability (static or dynamic) is maintained or
even maximized. Although the goals of the two genres are
different, the notion of stability remains unchanged, allowing
the use of many pre-existing tools.

The main goal of this paper is to motivate a new way of ap-
proaching the tumbling robot control problem that addresses
previous shortcomings. Effective control for tumbling robots,
as with all mobile robots, requires generating appropriate
control sequences that bring the robot from its current state to
a target global state; the problems can vary greatly depending
on the robot kinematics/dynamics, environment, and pres-
ence and character of impeding obstacles. Tumbling has its
own set of issues that include nonholonomic motion, sliding
ground contacts, high angular velocities during tumbles, and
the resulting collisions with the ground and/or obstacles.
The nonholnomic motion affects planning while the rest of
the aforementioned issues complicate state estimation and
prediction.

We propose a novel method to handle the issues of tum-
bling locomotion which takes the problem and separates into
locally independent subproblems including calculating feasi-
ble tumbles, predicting future states based on robot/terrain
dynamics, and high-level planning. Each subproblem is
addressed by a separate module; the various modules and
their relationships are depicted graphically in Figure 3. The
modules are separated into two groups, pre-processing and
planning. The overall idea is to produce a set of feasible
tumbles in the pre-processing section that are then passed
to a planner which assembles sequence of control inputs
from the feasible set. By solving for discrete tumbles, the
nonholonomic phenomena inherent to tumbling locomotion
are effectively removed from the planning problem. Addi-
tionally, this method enables the use of discrete planning
methods such as A? or dynamic programming [10]. A typical
implementation of the schema outlined in Figure 3 would
proceed as follows:

• For a given state q0, calculate a set of feasible tumbles
using information of the robot morphology.

• Propagate all tumbles to the global frame using a
dynamic model of the robot. This produces a set of
tumble axes in the global frame as well as a set of new
states resulting from the tumbles.

• Iterate as desired for increased look-ahead.
• Plan trajectory using set of tumble axes from pre-

processing.

In the following subsections we describe in detail each of

Tumble Calculations

Dynamics Model

Planner Goal
qo

{(φi , ei , qi)}

{(φi , vi)}

Control Sequence

Polygon Transitions Kinematics

Pre-Processing

Planning

Fig. 3. Flow diagram of proposed modular schema for control of tumbling
robots.

the modules.

A. Tumble Calculations

The tumble calculation module represents the core of our
proposed schema. Its functionality consists of building a set
of control inputs that will result in a tumble or, in other
words, what inputs make the system unstable. Its inputs
consist of the state of the robot along with information
regarding the robots morphology (this will be discussed in
section III-D).

To solve this problem we turn to the theory of stability
margins from the field of legged robots. When it comes
to measuring stability there are a number of metrics to
choose from. For the static case the major metrics include
the Static Stability Margin [11], the Energy Stability Margin
[12], and the Normalized Energy Stability Margin [13]. The
Static Stability Margin relies solely on a projection of the
center of gravity (COG) while the latter two methods are
based on the amount of energy required to tip the robot.
These methods fail to take dynamics into account and are
therefore only useful under static or quasi-static (near static)
assumptions. Dynamic stability margins include the Effective
Mass Center Stability Margin [14] (this is an analog to
the Zero Moment Point in the biped literature) and the
Normalized Dynamic Energy Stability Margin [15] along
with many other momentum-based margins. For a more
complete list and detailed comparison of stability margins
we refer the reader to [16].

After an appropriate stability margin is chosen, the prob-
lem becomes finding where stability vanishes, or more
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Fig. 4. Sample configuration of the Adelopod tumbling robot with S =
{vE , vD, vN}. The projected barycentric center of mass is depicted as
pproj . The dashed lines correspond to the stability margin for each edge
of the support polygon.

specifically {φ|s = 0} where s is some stability margin.
In the following subsection we discuss this calculation for
the Adelpod robot.

1) Running Example: Tumble Calculations: In this sec-
tion we discuss the tumble calculations for the Adelopod
tumbling robot. For the purposes of this example we have
chosen to use the Static Stability Margin, SSM . From [11]
we have the following definition for SSM :

Definition The magnitude of the Static Stability Margin,
SSM at time t for an arbitrary support pattern is equal
to the shortest distance from the vertical projection of the
center of gravity to any point on the boundary of the support
polygon. If the pattern is statically stable, the stability margin
is positive. Otherwise, it is negative.

For the Adelopod robot on level terrain, the SSM as
defined above corresponds to the shortest dashed line in
Figure 4. The dashed lines represent the distances from the
center of vertical projection of the center of gravity, pproj

to each of the three edges (s1s2, s2s3, and s3s1) of the
support polygon. Expressing SSM in terms of pproj and S
we get the following relation:

|SSM | = min
si,sj∈S

√
‖pproj − si‖2 − 〈pproj − si, sj − si〉2,

(5)
where

pproj = p− p⊥ (6)

and

p⊥ = n̂〈n̂,p− s1〉 (7)

n̂ =
(s2 − s1)× (s3 − s1)
‖(s2 − s1)× (s3 − s1)‖

. (8)

Note that it is possible to express SSM in terms of its
absolute value due to the fact that we are interested only
in finding where SSM = 0 (this is in contrast to maximizing
the stability margin in legged robots).

(a) f(φ) for edge vEvD . (b) f(φ) for edge vDvN .

(c) f(φ) for edge vNvE .

Fig. 5. Distances of projected center of gravity, pproj , to specified edges.
Tumbles occur when f(φ) = 0.

Because tumbles can only occur over edges, we can
examine each edge individually to test for feasible tumbles,
thus removing the minimization from Equation (5). On a
per edge basis, tumbles occur at the zeros of the following
expression:

f(φ) = ‖pproj − si‖2 − 〈pproj − si, sj − si〉2. (9)

It is important to note that the above expression only holds
for the given support polygon defined by S. If the support
polygon changes, stability must be redefined in terms of
the new polygon. Therefore when evaluating f(φ) for a
particular S the following constraints must hold (assuming
level terrain):

〈s3 − s1, (s2 − s1)× (si − s3)〉 = 0, i = 4, . . . ,m (10)
n̂(vi − s1) < 0, ∀vi ∈ V \C (11)
n̂(ci − s1) ≤ 0, ∀ci ∈ C. (12)

The first constraint ensures that all points in S remain
coplanar (no vertices leave the support polygon) while the
second and third ensure that all points not in C remain above
the support polygon (no new vertices are added to the support
polygon).

We plot f(φ) from Equation (9) for S = {vE , vD, vN}
in Figure 5 where each subplot represents an edge of the
support polygon. For clarity, we have plotted f(φ) versus
only φ2 and φ4; the shoulder variables have been set to
the fully contracted position (φ1 = 57◦ and φ3 == 123◦)
as seen in Figure 2. Only values for which φ satisfies the
constraints in Equations (10)-(12) are shown. This figure
provides insight on the behavior of the robot for the given
support polygon. We can see from Subfigure 5(b) that the
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robot can tumble over edge vEvD for appropriate values
of φ2 and φ4. Conversely, Subfigures 5(b) and 5(c) indicate
that it is not possible to tumble about edges vDvN or vNvE

from the support polygon defined by S = {vE , vD, vN}.
Additionally we can see that φ4 (rotation of arm in contact)
has a much greater impact than φ2 on the stability. In fact, the
only effect φ4 has on the stability comes from its influence
on the (barycentric) center of gravity for the robot,

p =
m`p` +mrpr +mbpb

m` +mr +mb
, (13)

where m`,mr,mb are the component masses of the left arm,
right arm, and body respectively. Similarly p`,p`,p` are the
component centers of gravity.

It turns out that there is no analytical solution for the
zeros of Equation 9 and therefore we must resort to mini-
mization techniques. This is made somewhat easier with the
knowledge that our objective function is lower-bounded at
zero. Additionally, if we make the assumption that the arms
are massless (this could be made feasible by using lighter
materials such as carbon fiber for the arms in comparison to
the steel used in generating Figure 5), we get the surfaces of
Figure 6. Here we see that stability is strictly a function of
only the variables appearing in the equations of the kinematic
contacts (φ4 for vN in this case); this is evident from the
contour lines parallel to the x-axis. This assumption reduces
the complexity of the surface and eliminates some local
minima for certain support polygons.

With some assumptions such as level terrain, it is often
possible to solve for the tumbles offline though minimization
(with random starting points) and store them in a lookup
table on the robot to be accessed at runtime.

B. Dynamics Propagation

The solutions from the tumble calculation module are
relative to the robot’s frame and take into account only the
robot’s kinematics. In order to use these calculations for any
useful planning, we must predict how the robot will react in
the real world as the control vector φ changes with time. The
purpose of the dynamics propagation module is just that, it
is responsible for transforming the feasible tumbles into the
global frame, taking into account the robot’s interaction with
the environment (ground reaction forces and sliding friction).
Such behavior is explained by the equations of motion for
the robot. The equations of motion can be written in the
following generalized form:

A (q) q̈ = B (q, q̇) , (14)

where q̈ is the column matrix of generalized accelerations
of the system. By modeling the robot as a rigid multibody
it is possible to derive matrices A and B by a variety of
methods including the application of the principle of virtual
power (Jourdain’s principle) [17].

C. Planning

By the time control reaches the planning stage much of
the difficult work has been done. The planner module takes

(a) f(φ) for edge vEvD . (b) f(φ) for edge vDvN .

(c) f(φ) for edge vNvE .

Fig. 6. Distances of the projected center of gravity, pproj , to specified
edges assuming massless arms. Resulting surfaces are functions only of
arms in contact (φ4 in this case). Tumbles occur when f(φ) = 0.

the set of discrete global tumbles and chooses a sequence
accordingly to reduce the distance from the desired goal
state. In Figure (7) we show a sample scenario where the
dashed lines represent the sequence of tumbles chosen by
the planner. Because the tumbles are discrete at this point
any form of discrete planning can be used. Due to the issues
regarding accurate state propagation in tumbling robots we
highly suggest using a receding horizon planning scheme
where planning happens periodically during the task. If the
horizon is chosen appropriately the inaccuracies of the state
estimation can be managed.

Fig. 7. A sample depiction of tumble axes chosen by the planner.

1) Running Example: Heuristics: We have discovered in
our experiences with the Adelopod that rapid progress in
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a straight line can be achieved over a variety of terrain
by bringing the arms into phase as they rotate about the
body. From this we have concluded that, in certain scenarios,
planning resources might best be spent trying to align the
Adelopod’s sagital plane with the target destination. After
acceptable alignment has been achieved the forward gait can
be executed until external disturbances require replanning.
This is just one instance of a useful heuristic applicable to
our approach.

D. Polygon Transitions

We have discussed the actual calculation of tumbles and
have shown that constraints are necessary to ensure that
the solution is valid for the support polygon in question.
For almost every support polygon it is possible to alter
the support polygon without inducing a tumble (adding or
removing contact points so that the cardinality of S remains
greater than or equal to 3) extended the set of feasible
tumbles. This is necessary for states without tumbles (e.g.,
S = {vJ , vK , vD, vE}) and often desirable for others as it
increases the number of feasible tumbles at the planner’s
disposal.

Although this calculation can theoretically be done online,
we believe that an adjacency graph of the support poly-
gons would be more suitable for implementation purposes.
Currently we are unsure about how to generate such a
graph efficiently, however, we believe that the problem is
closely related to finding all possible convex hulls of the
robot for changing φ. Alternate methods include on-the-fly
construction where adjacent support polygons are added to
the graph as they are encountered. This same effect could
also be achieved by a random walk over φ in a simulation
environment (our current method of choice).

E. Running Example: Adjacent Support Polygons

As previously mentioned, the Adelopod in a state
with S = {vJ , vK , vD, vE} has no feasible tum-
bles. By bringing one of the arms into contact how-
ever, an adjacent support polygon with feasible tum-
bles can be obtained. Adjacent support polygons for this
scenario include {vE , vN , vD}, {vE , vM , vD}, {vJ , vK , vN},
and {vJ , vK , vM} which are achieved by bringing one of the
arms into contact with the ground either in front of or behind
the robot.

IV. CONCLUSION

In this paper we outlined a new schema for control of tum-
bling locomotion where we break the problem up into sep-
arate subcomponents, resulting in a natural discretization of
the overall task. We discussed each subcomponent (module)
and provided examples where applicable using the Adelopod
robotic platform. In general, we believe that the proposed
schema provides a promising solution to the tumbling control
problem. By providing sets of feasible tumbles to the planner
we effectively separate the kinematics and dynamics from the
planner, significantly reducing complexity and enabling the
use of discrete planning methods.

A. Future Work

Currently we are working on completing an implemen-
tation of our proposed modular schema on the Adelopod
robotic tumbling platform for evaluation. We are using many
of the ideas provided in the running example discussed
throughout the paper. Additionally we are presently exploring
the use of stability margins other than the Static Stability
Margin in hopes to find an analytic solution to the tumble
calculations. We also believe that an efficient method of
calculating the graph of adjacent support polygons from
Section III-D is worth exploring. Such a method would
greatly benefit our research.
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