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Abstract— Moving objects are present in many robotic appli-
cations. An accurate detection and motion estimation of these
objects can be crucial for the success and safety of the robot and
people surrounding it. This paper presents a new probabilistic
framework for clustering dependent or relational data, applied
to the problem of motion clustering and estimation. While
conventional techniques such as scan differencing perform well
in many cases, they usually assume that a good pose estimate
is available and fail when points belonging to dynamic objects
show some overlap in consecutive readings. The technique
proposed, CRF-Clustering, by explicitly reasoning about the
underlying motion of the object, is able to deal with poor
initial motion estimate and overlapping points. Moreover, it
is able to consider the dependencies between neighbor points
in the scans to reduce the noise in the clustering assignment.
The model parameters can be estimated from labeled data in a
statistically sound learning procedure. Experiments show that
CRF-Clustering is able to detect moving objects, cluster them
and estimate their motion.

I. INTRODUCTION

When operating in urban environments, detection and

correct motion estimation of cars, people and other dynamic

objects can be essential for the safety of the robot and

humans nearby. However, only the detection of moving

objects is not enough for reliable navigation in complex

environments. It is also necessary to estimate the motion

pattern of these objects so as to predict their positions ahead

in time, and avoid collisions during the decision making

process. Combined, these two tasks can be difficult specially

considering the variability of motion patterns. For example,

people move in a very nonlinear manner and can rotate and

translate without restrictions. Cars have a smoother motion

pattern but are much faster, therefore being difficult to track

when at high speed.

Most of the existing robotic systems used nowadays

possess ranging sensors such as laser range finders which

can be employed to estimate the robot’s motion assuming

the environment is static. Techniques such as the Iterative

Closest Point (ICP) [20] estimate the motion of the robot

by minimizing the residual distance between points in a

reference laser scan and associated points in another scan

of the sequence. In the presence of dynamic objects, ICP

might fail since the presence of spurious dynamic objects

can influence the computation of the robot movement if

the environment is assumed static. To tackle this problem,

current techniques [7], [14], [19] try to detect the parts of

the laser scan that are coming from dynamic objects and

eliminate them from the robot’s motion estimation. Despite
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Fig. 1. A sequence of three consecutive scans obtained by our car facing
an intersection while another one is passing by. The different colors indicate
different scans. The moving car is depicted in the red square.

the importance of the problem, most of the techniques

proposed thus far rely deeply into heuristics and manual

parameter tuning. This can compromise the robustness of

the method when unexpected events take place or when the

robot is required to operate in a new environment.

In this paper we present a technique for detecting and esti-

mating the motion of dynamic objects in urban environments

based on laser range data. A typical situation is depicted in

Figure 1, where the robot is facing an intersection while a car

is passing by. We can see that, despite the moving object, the

static part of the map is correctly aligned and the car detected

(red box). In contrast to scan differencing, we cast the de-

tection problem as a clustering procedure, where associated

points in consecutive laser scans are clustered according to

their motion patterns. Common clustering techniques such as

EM [5] and K-Means [6] assume that points in the data set

are independent. Since there is a strong spatial correlation

between laser points located nearby, this assumption can

severely jeopardize the consistence of these procedures.

Frequently, laser returns are generated by rigid objects, thus

obeying the Gestalt principles of proximity and common

fate [8]. Semi-supervised clustering [4] addresses the in-

dependent data assumption by enforcing several constraints

among cluster assignments. However, these constraints are

usually given by an expert and not extracted from the data.

To overcome this limitation, we propose a semi-supervised

clustering procedure based on Conditional Random Fields

(CRFs) [9]. CRFs are probabilistic graphical models orig-

inally proposed for classification of sequential data. These

models can be learned discriminately, eliminating the need to

multiply conditional distributions with prior distributions as

in generative models such as Markov Random Fields (MRFs)
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and Hidden Markov Models (HMMs). This significantly

simplifies the modeling process and allows the specification

of more complex constraints to capture particular aspects of

the data. Furthermore, our method is able to determine the

number of clusters and the corresponding motion patterns

while simultaneously computing their parameters.

The paper is organized as follows: previous works on

detecting moving objects and estimating their motion pat-

terns are discussed in Section II. We begin introducing our

method by first reviewing CRFs in Section III. Our algorithm

is detailed in Section IV with discussions on finding the

right number of clusters. We provide extensive experimental

evaluation on urban data in Section V, where the algorithm

is also compared to an existing technique. Conclusions and

ideas for future work are presented in Section VI.

II. RELATED WORK

The detection and tracking of moving object (DATMO)

problem has been extensively studied [2] for several decades.

The problem has been addressed from different scenarios and

using different sensors. In terms of related works, we will

focus our attention to the detection of moving objects from

a moving platform and using a laser range finder.

A first class of algorithms addresses the detection problem

only in terms of separating the data into two main clusters:

static and dynamic. The dynamic points are then filtered

out to obtain a better motion estimation for the moving

platform. Hähnel et al. [7] presented an EM based approach

for detecting moving points in range data. The algorithm

maximizes the likelihood of the data using a hidden variable

expressing the nature of the points (static or dynamic). This

is an offline algorithm which is not suitable for real time

applications. Rodriguez-Losada and Minguez [14] showed

how data association can be improved for the ICP algorithm

in the presence of dynamic objects. They introduced a new

metric which better reflects the real motion of the robot.

However, their approach does not distinguish moving object

from outliers. The approach of Wolf and Sukhatme [19]

maintains two separate maps for the static and dynamic part

of the environment. The maps are updated using a modified

version of the occupancy grid framework which also infers

the nature of the points (static or dynamic).

Another class of algorithm focuses also on the object

segmentation and tracking. Anguelov et al. [1], [3] use

simple differencing for detecting the moving points and then

apply a modified EM algorithm for clustering the different

objects. However, the algorithm needs the number of objects

as input and does not consider interactions between neighbor

points. In [16], a feature based approach is used to detect

the moving objects. These objects are then tracked using

a joint probabilistic data association filter (JPDAF). The

features used are the local minima of the laser data. While

this feature works well in the presence of people, it is not

the case of larger moving objects such as cars, buses and

so on. Wang et al. [18] defined an integrated solution for

the mapping and tracking problem: static points are used

for mapping while dynamic ones for tracking. The detec-

tion and segmentation of dynamic points is based on data

differencing and consistency-based motion detection [18].

Points are classified in static and dynamic and clustered in

segments. When a segment contains enough dynamic points

is considered dynamic. Montesano et al. [11] improved the

classification procedure described in [18] by jointly solving

it in a Bayesian framework. Moreover, they integrated the

mapping and tracking within a path planner for indoor

navigation. Although, most of these approaches focuses on

how to track the different objects under different hypothesis,

the detection part is mainly based on different heuristics. The

main technique used is based on scan differencing, where

points are considered dynamic if there is some inconsistency

between two consecutive scans (or a map and a scan). The

detection routine is only able to observe the actual position of

the object (given a stable reference point) and the velocities

are computed by the tracking algorithm.

In this paper we address the problem in a more formal

way: points are clustered according to their inherent motion

while simultaneously computing their motion parameters.

III. CONDITIONAL RANDOM FIELDS

Conditional Random Fields (CRFs) are undirected graph-

ical models developed for labeling sequence data [9]. CRFs

directly model the conditional distribution over the hidden

variables x given observations z. Due to this structure, CRFs

can handle arbitrary dependencies between the observations

z, which gives them substantial flexibility in using high-

dimensional feature vectors.

The nodes in a CRF represent hidden states, denoted

x = 〈x1,x2, . . . ,xn〉, and data, denoted z. The nodes

xi, along with the connectivity structure represented by

the undirected edges between them, define the conditional

distribution p(x|z) over the hidden states x. Let C be

the set of cliques in the graph of a CRF. Then, a CRF

factorizes the conditional distribution into a product of clique

potentials φc(z,xc), where every c ∈ C is a clique in the

graph and z and xc are the observed data and the hidden

nodes in the clique c, respectively. Potentials φc(z,xc) are

described by log-linear combinations of feature functions fc,

i.e., φc(z,xc) = exp
(
w

T
c · fc(z,xc)

)
, where w

T
c is a weight

vector, and fc(z,xc) is a function that extracts a vector of

features from the variable values. Using feature functions,

the conditional distribution becomes

p(x | z) =
1

Z(z)
exp

{
∑

c∈C

w
T
c · fc(z,xc)

}

, (1)

where Z(z) =
∑

x

∏

c∈C
φc(z,xc) is the normalizing parti-

tion function.

Inference in CRFs can estimate either the marginal dis-

tribution of each hidden variable xi or the most likely

configuration of all hidden variables x (i.e., MAP estima-

tion), as defined in (1). Both tasks can be solved using

belief propagation (BP) [12], which works by sending local

messages through the graph structure of the model. Each

node sends messages to its neighbors based on messages it

receives and the clique potentials, which are defined via the

observations and the neighborhood relation in the CRF.
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where ∆ is the L2 distance between points si and sj .

Stiffness Feature: This feature tries to enforce stiffness for

points that belong to the same cluster. The feature computes

the difference of distances between neighbor points before

and after the transformation given by the cluster assignment.

The idea is that if the points belong to the same cluster,

their distances must be preserved after the transformation.

This feature can be written as:

fst =
∥
∥(si−sj)−

[
(Txi

+Rxi
si)−

(
Txj

+Rxj
sj

)]∥
∥

2
(6)

D. Inference Procedure

Performing inference in this model is different from per-

forming inference in a normal CRF. Since the values of the

observations change with the hidden states normal BP cannot

be applied. Instead, we formulate a different message passing

procedure where with an initial random cluster assignment,

the local features are computed. Messages are then prop-

agated back and forward in the chain model to estimate

new values for the hidden variables x. The new cluster

assignments x are used to compute new cluster parameters R

and T . Features are recomputed with these new parameters

and we iterate this procedure until convergence.

E. Computing the Number of Clusters

One of the interesting properties of our CRF-Clustering

model is that it is able to deal with an unknown number of

clusters. This is usually an hard problem and is addressed

using some information criterion (e.g. BIC, AIC, MDL)

to trade-off model complexity and fitness to the data. In

practice, those methods penalize the likelihood function with

an additive term that represents the complexity of the model.

In CRF-clustering, the penalizing term is naturally defined

by the pairwise potentials, as can be seen if we look at the

logarithm of the CRF-Clustering distribution

log p(x|z) =

const.
︷ ︸︸ ︷

− log Z(z) +

Likelihood
︷ ︸︸ ︷
∑

i

w
T
distfdist(·) +

+
∑

i

∑

j

[
w

T
ngfng(·) + w

T
WngfWng(·) + w

T
stfst(·)

]

︸ ︷︷ ︸

Penalizer

(7)

where the weights, w, are learned from training data.

It is worth to notice, however, that the penalizing terms

only involve the costraints defined from the graph structure

used. In a chain structure, it can happen that points that

should belong to the same cluster are not connected, resulting

in two different assignments. In order to prevent this, we

developed a criterion that allows us to merge similar clusters

together. The criterion is inspired by the “effective number

of particles” heuristic used in particle filtering, and is called

effective number of clusters. By using the probability of

the cluster assignment of the CRF, pc, we can compute the

effective number of clusters a point belongs to as

Neff =
1

∑
p2

c

. (8)
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Fig. 3. Convergence of CRF clustering. The first three pictures show the
likelihoods of cluster assignments. Dark red represents higher likelihoods
and dark blue lower likelihoods. The last picture shows the merging
procedure, which correctly merged cluster 1 and 16 together.

We then compute for each cluster the average number of

cluster assignments for its points. If it is above 1.7 that

cluster is eliminated and its points merged with the second

best cluster; the cluster that contains most of the point

assignments. Experiments show that we are able to obtain

the exact number of clusters, regardless how we initialize

the algorithm.

V. EXPERIMENTAL EVALUATION

In this section we analyze convergence properties of the

algorithm and compare our algorithm to K-Means and to the

Consistency-Based Detector (CBD) [18] for the problem of

motion clustering 1.

Experiments were performed in an urban environment with

a car and consist of 30 pairs of laser scans selected from

a trajectory of about 2 km. The data reflect typical driving

situations such as cars overtaking other cars, crossing by and

moving on the opposite lane. For each pair, the scans were

taken at 2m to 4m apart which corresponds to the vehicle

motion during the data acquisition. Laser points for each

pair were manually assigned to different clusters for ground

truth purposes. To evaluate how the approach deals with

imperfect data associations between laser scans, we ran our

algorithm with both the true, manually generated associations

between laser points (CRF-T), and the associations computed

automatically via CRF-Matching (CRF-M) [13].

Once we obtained a clustering solution, we can compare it

with the ground truth assignments. To evaluate the clustering

performance, we used the V-measure [15], an external,

entropy based, cluster evaluation measure. This measure, V ,

is the harmonic mean of homogeneity H and completeness

C of the cluster assignments. Homogeneity reflects the fact

that points in one cluster should belong only to one class

and completeness reflects the fact that points in one class

should be associated only to one cluster. The V-measure is

1CRF-Clustering also estimates the motion for detected objects which is
not directly possible with other methods without additional techniques.
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Fig. 4. Example of consistency-based (CBD) results (left) and CRF-Clustering results (right). Red dots indicate the current scan, blue dots the previous
one (mostly hidden). The colored markers around dots indicate the cluster assignments. CBD fails to detect the moving object (all points in the same green
cluster), where CRF-Clustering doesn’t The bounding box on the right image indicates the moving object being correctly detected.

then computed as the harmonic mean of homogeneity and

completeness

Vβ =
(1 + β)HC

(βH) + C
(9)

where β is a blending factor. For β > 1 completeness

is weighted more strongly and for β < 1 homogeneity

is weighted more strongly. In our experiment we were

interested in both, so we set the blending factor to 1.

A. Convergence Properties

In most of the experiments the algorithm converged be-

tween 3 and 7 iterations. One particular case is illustrated

in Figure 3. To initialize the algorithm, we segment the

scan based on a distance heuristic. The pictures show how

this initial segmentation is then refined by CRF-Clustering,

while selecting the correct number of clusters. The first three

pictures show the likelihood of each laser beam assigned

to the clusters (dark red is high likelihood, dark blue is

low likelihood). Based on the likelihoods, the last picture

shows how the merging procedure described before is able

is combine different clusters to obtain the correct solution.

B. Comparison with Consistency-based Detection

In this section we compare CRF-Clustering with the

consistency-based detector (CBD) introduced in [18]. The

CBD algorithm is a heuristic-based algorithm for detecting

moving objects in range data. The main concept behind the

algorithm is that static objects are consistent about the free

space while dynamic objects are not. The major drawback

of this algorithm is that it is based on two main assumptions:

a good estimate of the robot displacement is available; the

object movements are orthogonal to the observed shape.

While the first assumption often holds in real situations

(use of inertial units, GPS, scan matching), the second is

more subtle and can create problems especially in outdoor

environments.

Figure 4 shows a typical example in which the second

assumption is violated. The robot is approaching an inter-

section while another car is moving in front of it. We see

(left) that CBD is not able to detect the car. That is because

most of the car measurements are not classified as dynamic

due to the big overlap. On the other hand, CRF-Clustering

(right) is able to correctly detect the moving car by clustering

laser points according to their motion pattern.

CBD K-Means CRF-T CRF-M
mean std mean std mean std mean std

H 0.821 0.279 0.415 0.272 0.983 0.049 0.862 0.052

C 0.893 0.298 0.950 0.065 0.990 0.029 0.903 0.031

V 0.850 0.290 0.537 0.247 0.986 0.039 0.886 0.041

TABLE I

COMPARISON BETWEEN CBD, K-MEANS AND CRF CLUSTERING

Table I shows a numerical comparison between the two

techniques. Mean and standard deviation for homogeneity,

completeness and V-measure are presented for the different

approaches. CRF-Clustering obtains better results in both

cases, with true data association (CRF-T), and data asso-

ciation using CRF-Matching (CRF-M).

C. Comparison with Modified K-Means

In this section we compare CRF-Clustering with a mod-

ified version of the K-Means algorithm. K-Means is a well

known and standard algorithm for clustering data points

into k partitions. However, K-Means cannot be directly

applied to our motion clustering scenario. The problem is

that we are clustering points (which are a pair of 2D objects)

according to their motion (which is a 3D quantity). The

first modification lies in the way the cluster centroids are

computed. In our case, the centroids represent the rigid body

transformation underlying the object movement (rotation and

translation), which is computed according to (3). Once the

centroids are obtained, we associate point i to the cluster

which minimize

argmin
j

‖gi − (Tj + Rjsi)‖
2

(10)

where (gi, si) is the point pair, Tj and Rj are translation and

rotation of the j-th motion cluster.

The main problem of K-Means and similar algorithms is

that they do not consider relations between points in the data.

More specifically, they assume that points are independent.

Discarding this information can lead to very noisy and

inhomogeneous clustering results. This is clearly depicted

in (5), where we compare the result of K-Means and CRF-

Clustering on a typical case. As can be seen, K-Means (left)

produces a very noisy result, while the result provided by

CRF-Clustering (right) is more accurate and homogeneous.

Both algorithms were initialized with the maximum number

of dynamic objects (three in our case) and we can see
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Fig. 5. Modified K-means results (left) and CRF-Clustering results (right). The different symbols indicate the cluster assignment and the red dots indicate
the current scan. It can be noticed that the clustering solution found by K-Means is significantly noisy (various different clusters). This is avoided with
CRF-Clustering with the use of the neighborhood dependencies. The bounding box on the bottom image indicate the moving object being correctly detected.

that CRF-clustering is able to detect the correct number of

clusters.

Finally, Table I shows a numerical comparison between the

two techniques on the data collected by our vehicle. Note that

K-Means results are based on the manually generated ground

truth associations.

VI. CONCLUSION AND FUTURE WORKS

We have introduced CRF-Clustering, a novel technique

for clustering dependant data into homogeneous partitions.

Although it is a general clustering algorithm, in this paper

we show its ability to detect and classify moving objects in

range data. Existing approaches in moving object detection

as CBD are mainly based on scan consistency, classifying

points as dynamic if they violate the free space of the map.

On the contrary, our technique explicitly reasons about the

underlying motion of the object, thus being more effective.

By using a Conditional Random Field, our approach is able

to consider relations between different points in the scans

and different properties of the moving objects. Moreover,

our algorithm is also able to estimate the underlying motion

of the different objects, which can be used as input to a

tracking algorithm.

Our experiments show that CRF-Clustering performs bet-

ter than Consistency-based techniques, specially in situations

where the motion of the object is not orthogonal to the

observed shape. We also showed that this problem is not

trivial from a clustering perspective. Classical algorithms,

such as K-Means, fail to provide homogeneous cluster, as

they assume data points are independent.

In future works we will investigate various extensions to

the CRF-Clustering algorithm. We plan to integrate appear-

ance features for better clustering objects that share the same

motion and also the use of other sensors as cameras. Finally,

we plan to integrate CRF-Clustering within a Simultaneous

Localization and Mapping framework, in order to obtain au-

tonomous navigation and mapping in dynamic environments.
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