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Abstract— This paper describes an efficient method for re-
trieving the 3-dimensional shape associated to novelties in the
environment of an autonomous robot, which is equipped with
a laser range finder. First, changes are detected over the point
clouds using a combination of the Gaussian Mixture Model
(GMM) and the Earth Mover’s Distance (EMD) algorithms.
Next, the shape retrieval is achieved using two different algo-
rithms. First, new samplings are generated from each Gaussian
function, followed by a Random Sampling Consensus (RANSAC)
algorithm to retrieve geometric primitives. Furthermore, a new
algorithm is developed to directly retrieve the shape according
to the mathematical space of Gaussian mixture. In this paper,
the set of geometric primitives has been limited to the set C
= {sphere, cylinder, plane}. The two shape retrieval methods
are compared in terms of computational cost and accuracy.
Experimental results in various real and simulated scenarios
demonstrate the feasibility of the approach.

I. INTRODUCTION

Autonomous mobile robot operation in unknown and

dynamic environments relies on (1) building a map of the

environment based on perceptual data, (2) localizing itself

with respect to the map, and (3) autonomous exploration

and navigation. Extensive work has been devoted for the

past decade to techniques that deal with Simultaneous Lo-

calization and Mapping (SLAM), i.e. integrated solutions for

the first two problems [1], and also to the action selection

problem (e.g. [2]).

For the latter problem, it is important to provide the mobile

robot with some kind of alarm that is activated whenever

important changes in the environment occur, namely those

that may affect its path. Therefore, when the robot revisits

some section of the environment, it is worth to compare

current perceptual data with previously acquired data, so as

to detect significant changes [3]. However, the scope of this

problem is not confined to mobile robot navigation. It is

certainly important, for instance, for automatic surveillance

and security systems [4] or, in general, whenever there is a

need to compare two signals of the same type with the aim of

detecting novelty. Solving the problem in real-time with huge

datasets is quite challenging and requires the development of

specific techniques. These techniques aim at achieving two
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Fig. 1: Change detection and segmentation.

inter-related goals (Fig. 1): first, to detect whether there is

some significant change; second, if some significant change

exists, to segment the data associated with it.

Obtaining a virtual representation of the detected novelty

involves the important task of extracting the geometric shape

from 3D point clouds. Such virtual representation provides

an abstraction of the point data that eliminates much of

the redundancy. Besides, primitive shapes can easily be

assembled into higher semantic level models that represent

dynamic elements of the environment, e.g. persons, boxes

or other robots, and improve the later tasks, as tracking

or SLAM. In this work, the set of primitive shapes has

been limited to three basic ones: sphere, cylinder and plane.

Complex models may be obtained by a combination of these

primitive shapes [5]. Two different methods are developed in

this work. The first one is based on a recent work of Schnabel

et al. [5], but applied to the 3D scan data acquired by an

autonomous robot. Here, we directly re-sample points using

a mixture of Gaussians followed by a RANSAC algorithm

to match the set of points to a geometric primitive. In

other words, the approach uses samples generated by the

GMM in the Euclidean Space and tries to match them to a

known shape. The mathematical space of Gaussian mixtures

is used in the second approach. Covariance and mean of

each Gaussian function associated to a novelty are compared

with three geometric primitives according to their ideal

covariance and mean. The outputs of this second method

are the geometric primitives and rigid transformations that

minimize the distance between the two covariance matrices.

The rest of the paper is organized as follows: after briefly

showing the state of art of novelty detection and shape

retrieval algorithms in Section II, Section III introduces the

change detection algorithm. The two proposed algorithms

for shape retrieval are presented in Section IV. Experimental

results in Section V demonstrate the efficiency and accuracy
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of the proposed method. Finally, in Section VI, the main

conclusions of this approach and future work are drawn.

II. RELATED WORK

The proposed approach presents an efficient method for

change detection in the robot’s environment and the 3-D

shape retrieval associated to the change. The behavior of

an autonomous mobile robot working in dynamic environ-

ments has been intensively researched in the last years. The

basic idea behind most of the current navigation systems

operating in a dynamic environment deals with removing

the dynamic objects in order to improve the navigation and

localization tasks [6], [7]. However, these changes in the

robot’s surrounding may actually be relevant depending of

the applications. Thus, Andreasson et al. presented a system

for autonomous change detection with a security patrol robot

[4]. The system uses 3D laser range data and images from a

color camera to build a reference model of the environment

and then discover changes with respect to that reference

model using SIFT features.

Related to the proposed approach, in [3], three different

computational techniques for novelty detection were exper-

imentally compared in terms of their novelty discriminating

power. Gaussian Mixture Models (GMM) presented the most

consistent behavior. Furthermore, a generic metric to quan-

tify changes was formulated by using Earth Mover’s Distance

(EMD), a distance metric between two data distributions.

The detection of primitive shapes is a common task in

many areas of geometry related computer science. In the

last decades, a vast number of algorithms has been proposed.

Some authors used the well-known Hough’s transform [8] to

obtain the shape, but their approuch have a high computa-

tional cost to compute 3D information. Other techniques are

based on region growing [9], which uses a seed region in

the scan data which is then grown into neighboring areas. In

recent years, some authors have proposed a RANSAC-based

shape detection method [10], [5], which is robust for shape

retrieval. An excellent review of these methods can be found

in [11].

III. NOVELTY DETECTION ALGORITHM IN 3-D MAPS

The two main steps of novelty detection depicted in Fig.

1 in general terms are further detailed in Fig. 2 when using

both GMM and EMD [3]. First, data in Euclidean space

is transformed to the mathematical space of GMM, so as

to achieve data compression and efficient comparison using

the EMD-based quantification of novelty. Second, if this

quantification is above a given threshold, data associated

with a novelty is segmented in GMM space and back-

propagated to the Euclidean space using the shape retrieval

algorithm. The main advantages of using the GMM space

are (i) it enables an efficient fusion of point clouds, (ii) its

dimensionality is small. A brief description of the novelty

detection algorithm is explained in the next subsections.

Fig. 2: The two main steps of novelty detection and shape

retrieval algorithm proposed in this paper.

A. Mixture of Gaussian functions

A mixture of Gaussian functions is a probability density

function described by a convex linear combination of Gaus-

sian density functions [12]. Therefore, a function is a mixture

of Gaussian functions if it has the form:

f(x,Θ) =

K
∑

k=1

pk g(x;µk,Σk)
(

x ∈ R
N

)

, (1)

where the functions g are Gaussian densities which are

defined by µk ∈ R
N and Σk, means and the covariance

matrices, respectively, and the coefficients pk, known as the

mixing probabilities, which satisfy:

pk ≥ 0 and

K
∑

k=1

pk = 1. (2)

Mixtures of Gaussian functions provide good models of

clusters of points: each cluster corresponding to a Gaussian

density with mean somewhere within the centroid of the

cluster, and with a covariance matrix somehow measuring

the spread of that cluster. Conversely, given a set of points

in R
N , one can try to find the mixture of Gaussian functions

Θ with a certain number of terms that best fits those points,

using a method known as Expectation Maximization (see

section 2.3 in [12]). For the purpose of this paper, Θ denotes

the K(1 + N + N2) dimensional vector containing all the

parameters of the given Gaussian mixture:

Θ = ((θ1, p1), . . . , (θK , pK)), (3)

where

θk = (µk,Σk), (4)
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Fig. 3: Novelty detection algorithm: a) ideal 3-dimensional

corridor; b) Mixture of Gaussian functions associated to a); c)

an object has been moved inside the corridor; and d) Mixture

of Gaussian functions associated to c). The novelty detected

by the algorithm has been indicated by the label ”1”.

is a vector containing all the coordinates of the means µk and

all the entries of the covariance matrix Σk. The conditions

in Eq. (2) guarantee that f is indeed a density function.

Fig. 3a-c illustrate clouds of 3-D points, which describe

an ideal corridor where one object has been moved inside.

The mixture of Gaussian functions obtained has been shown

in Fig. 3b,d. 3-dimensional Gaussians (N = 3) have been

detected, each one is associated to the clusters of points

(walls, ceiling and the dynamic object).

B. Earth Mover’s Distance

The earth mover’s distance (EMD) [13] can be used to

compute the distance between two distributions of points in

space for which a distance between points is given. The EMD

distance between two sets of points, A and B, is reliably

calculated as

EMD(A,B) = min
F∈F(A,B)

∑

m
i=1

∑

n
j=1fijdij

min{W,U}
, (5)

where

A = {(x1, w1), (x2, w2), ..., (xm, wm)}

B = {(y1, u1), (y2, u2), ..., (yn, un)}

, are two sets of n-dimensional weighted points, with m ≤ n,

w and u represent the weight of each point x or y. The total

weight W is defined as

W =
∑

m
i=1wi and U =

∑

n
j=1uj

and dij is the distance from xi to yj , and F = {fij} ∈
F(A,B), with F(A,B) being the set of all feasible flows

between A and B [13].

Therefore, let Θ = ((θ1, p1), . . . , (θn, pn)) and Γ =
((γ1, p1), . . . , (γm, pm)) being two mixture of Gaussian

Algorithm 1 Change segmentation algorithm

1: dGMM ← EMDdistance(Θ,Γ)
2: Π← 0
3: while (dGMM ≥ Uth) do

4: x(Σ, µ)← SelectGaussianfromGMM(Θ)
5: Π← Π ∪ x(Σ, µ)
6: Θ← Θ− x(Σ, µ)
7: dGMM ← EMDdistance(Θ,Γ)
8: end while

9: return Π

functions, associated with two 3-dimensional scan data. In

order to measure the presence of changes in the environ-

ment, we model each Gaussian function as weighted points

(θi, pi)Θ and (γj , qj)Γ, where θi and γj mixture of Gaussian

functions, and pi and qj are the weights associated to each

mixture, respectively. Thus, the distance between GMM is

calculated as [3]:

dGMM (Θ,Γ) = EMD ({(θ1...n, p1...n)} , {(γ1...m, q1...m)}) .
(6)

C. Novelty segmentation to a mixture of Gaussian

Eq. (6) can be used as a quantitative metric to assist

the detection of changes in the environment.To achieve this

goal, a threshold Uth has been defined, which represents

the maximum value in order to consider that there is a

novelty between two maps [3]. This fixed threshold value has

been chosen in the actual implementation of the algorithm,

with different real and simulated scenarios. Therefore, the

algorithm identifies a novelty in the robot’s environment iff

dGMM ≥ Uth. (7)

Next, a segmentation process is used to segment these

changes in a mixture of Gaussian functions. The overall

structure of the method is outlined in pseudo-code in al-

gorithm 1. In each iteration, the algorithm selects a fea-

ture x(µ,Σ) from Θ with the greatest quantified change,

computed by the SelectGaussianfromGMM function. This

feature, which is also described by a mixing probability p, is

removed from the initial mixture Θ and is also included in

the new Gaussian mixture model Π. The two subsets, Θ and

Π are recalculated to obtain the new values of the mixing

probability. Also, the new mixture of Gaussian is used to

obtain a new value of the distance dGMM . The algorithm

returns the mixture of Gaussian functions Π ⊆ Θ, which

identify the changes in the 3-dimensional map.

Fig. 3 illustrates the mixture of Gaussian functions associ-

ated with 3-dimensional cluster of points. After applying the

proposed algorithm to these two sets of Gaussians, a novelty

is detected in the maps (marked as 1 in Fig. 3d).

IV. 3-DIMENSIONAL SHAPE RETRIEVAL

This Section introduces the 3D shape retrieval algorithms

used to obtain a model of the detected novelties. The previous
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stage obtains a mixture of Gaussian functions, which is

related to changes identified in the environment. Let Π
= ((Π1, p1), . . . , (ΠK , pK)) be the vector containing the

parameters of this Gaussian mixture, which was described

in detail in Section III, where Πk = (µk,Σk) is the means

and covariance matrices associated to the novelty cluster

of points, and K the number of identified novelties. Next,

two methods are presented which achieve the 3-dimensional

shape retrieval according to this information.

In this paper, three basic geometric primitives have been

used to model novelties, i.e. sphere, cylinder and plane. The

first of the methods uses the Euclidean space to generate the

shape. Therefore, the mixture of Gaussian functions is used

to generate a 3-D points around the identified changes, which

are afterwards modeled using a RANSAC algorithm. The

second method presents a new strategy to recover a model

of the novelty. Thus, the mathematical space of the Gaussian

mixture is directly used to achieve this shape retrieval. These

two methods will be detailed in the next subsections.

A. Shape retrieval using Euclidean Space

The Gaussian mixture function is a generative model.

In other words, it is useful to consider the process of

describing a synthetic 3D region using the samples generated

from the Gaussian functions. First, one of the samples s is

selected at random with prior probability pk. Next, a data

point is generated from the corresponding density Πk . The

corresponding posterior probabilities, P (k, x), can be written

using Bayes’ theorem, as

P (k, x) =
g(x;µk,Σk) · pk

f(x, θ)
, (8)

where f(x, θ) is given in Eq. 1. These posterior probabilities

satisfy the constraints

K
∑

k=1

P (k | x) = 1 and 0 ≤ P (k | x) ≤ 1. (9)

By selecting the number of components N to be sampled,

it is possible to control the complexity of the synthetic

region. In order to improve the shape retrieval algorithm,

generated samples are located on the surface of the novelty.

Let Σk be the covariance matrix associated to the Gaussian.

Eigenvectors of this matrix are used to determine the three

principal directions of the ellipsoid associated to Σk. On the

other hand, eigenvalues of this matrix are used to calculate

the lengths of these axes from µk. Therefore, the resulting

samples are generated over the surface of this ellipsoid. Fig.

4b shows the 3-D points clouds generated in the sampling

process. In this case, the Gaussian mixture is composed of

two terms, which are illustrated as ellipsoids in the Fig. 4a.

Let S = {s1, . . . , sN} be the set of synthetic 3-dimensional

points generated in the previous step. The RANSAC algo-

rithm is applied to this synthetic set to detect the geometric

shape of the novelties in the map. The RANSAC paradigm

is a well-known strategy to extract shapes from 3D cloud

Fig. 4: Shape retrieval algorithms: a) two Gaussian functions

which describe the novelty; b) cloud of points generated by

the sampling method; c) retrieved shape according to the first

method (blue color) and second method (red color) for the

example a); and d) retrieved shape for a Gaussian function

associated to an ideal cylinder.

of points by randomly drawing minimal sets from the data.

The resulting candidates shapes are tested against all the

points in the data to determine how many of the points are

well approximated by the primitive. After a given number of

trials, the shape which approximates the most of the points is

extracted and the algorithm continues on the remaining data.

Our method used the RANSAC-based algorithm provided by

[5], an efficient implementation for recovering the shape of

point clouds. The output of the algorithm is a set of primitive

shapes Ψ = {Ψ1, . . . ,Ψn}, with corresponding disjoint set

of points SΨ1
⊂ S, . . ., SΨ1

⊂ S and a set of outliers R =
S \ {SΨ1

, . . . SΨ1
}. A detailed description of the algorithm

is given in [5]. In this work, the set of possible shapes has

been limited to the set Ψshape = {sphere, cylinder, plane}.
Fig. 4c illustrates the output (in blue color) of the algorithm

in the example of Fig. 4a. Fig. 4d shows another example

of the representation of a cylinder. In blue color is the shape

generated when the covariance Σk is associated with an ideal

cylindric novelty. As it can be seen in the figure, there is

an orientation error in the shape retrieved using Euclidean

space, which is due to the loss of information after generating

samples from GMM.

B. Shape retrieval based on covariance matrices matching

The shape retrieval algorithm finds the shape that better

approximates an ideal basic shape from Ψshape. To do

that, the strategy adopted in this second method uses the

mathematical space of the Gaussian mixture model, which

is described by the covariance and means of the Gaussian

functions. Let Π denote the mixture Gaussians associated

with the changes identified in the map. As described in

Section III, each novelty k is characterized by a Gaussian
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Algorithm 2 Shape retrieval algorithm (Feature space)

1: Ψ← 0
2: T ← 0
3: NSHAPE ← 3
4: for i = 1 to NSHAPE do

5: for j = 0 to K do

6: [dj
Ψ,Ψ

j, T j]← covarianceDistance(Σj,Σi)
7: end for

8: (Ψi, Ti)⇐ getBestShape(dΨ)
9: Ψ← Ψ ∪Ψi

10: T ← Ψ ∪ Ti

11: end for

12: return(Ψ, T )

function, Πk = (µk,Σk). This paper proposes a new shape

retrieval algorithm based on covariance matrices matching.

The algorithm is summarized in Algorithm 2. The best

model of the shape and the rigid transformation with re-

spect to an ideal shape, T , are the goals of this algorithm.

Gaussian functions are matched with each basic shape, by

measuring the similarity between their covariance matrices,

dΨ = {dsphere, dcylinder , dplane}. The minimum value of

dΨ determines the shape that best approximates the cloud

of points, just as the rigid transformation (line 8 on the

algorithm).

Covariance matching is a basic task in measurement

design [14]. The goal is to obtain a distance measure of

two covariance matrices. The space of covariance matrices

is not a vector space and therefore a standard arithmetic

difference does not measure the difference between them.

But covariance matrices are symmetric and positive semi-

definite and then a distance can be formulated based on

Riemannian metric. In this paper, the distance metric de-

scribed by Foerstner and Moonen [14] has been used, which

is defined as

d(Σ1,Σ2) =

√

√

√

√

N
∑

i=1

ln2λi(Σ1,Σ2) (10)

where Σ1 and Σ2 are the two input covariance matrices, λ

represents the generalized eigenvalues of Σ1 and Σ2, and N is

the dimensionality of the matrices. Here, Σ1 is the covariance

of the Gaussian function which identifies a novelty and Σ2

is the covariance of a basic shape, i.e. sphere, cylinder or

plane. In order to consider possibles rotations and scaling

changes of the model, it must be noted that

Σi = TΣjT
T = (R ·L)Σj(R ·L)T , (11)

where T represents the rigid transformation applied to the

ideal geometric shape (neither scaling nor rotation), which

is composed of rotation and scaling matrices, R and L. In

the proposed approach, the translation is directly known with

the mean information of each Gaussian.

R =





cψcϕ− cϑsϕsψ cψsϕ+ cϑsϕsψ sψsϑ

−sψcϕ− cϑsϕcψ −sψsϕ+ cϑcϕcψ cϑsψ

−sϑsϕ −sϑcϕ cϑ





(12)

L =





Lx 0 0
0 Ly 0
0 0 Lz



 (13)

where ψ, ϑ, ϕ, are the roll, yaw and pith angles, respectively,

c and s stand for the cosine and sine mathematical functions,

and Li is the scaling factor for each axis.

It is possible to minimize Eq. (10) using a least squares

minimization method based on Levenberg-Marquardt algo-

rithm, which modifies the rotation and scaling matrices in

each iteration. An ininitial guess of the parameters is required

to reduce the number of iterations needed to converge and to

remove local minima. In order to fulfil these requirements,

the algorithm uses a good approximation of the rigid trans-

formation T according to the eigenvectors values of the two

covariance matrices. Fig. 4c-d represent the retrieved shape

(in red color) using this second method.

V. EXPERIMENTAL RESULTS

The accuracy and computational load of the novelty de-

tection algorithm were measured in our previous work [3].

The authors demonstrated that the GMM-EMD technique is a

stable method, in the sense that it presents a lower sensitivity

to errors and is able to detect changes with greater reliability.

In this paper, the proposed method has been evaluated

using simulated and real data. The algorithms and simulated

data were programmed in Matlab, and the benchmark tests

were performed on a PC with a 1.6GHz Intel Core2 CPU

with 3 Gb of RAM memory and running GNU/Linux. The

number of samples generated by the shape retrieval algorithm

based on Euclidean space was 3722. The artificial data

is formed by a set of 400 points in 3-dimensional space,

simulating the readings of a perfect laser range finder in

a corridor. A random error, normally distributed with zero

mean and variance 0.001, was added to those points. In order

to evaluate the algorithm, objects, i.e. cylinders, spheres and

planes, are introduced in different poses and with different

scale inside the corridor (red color in Fig. 5a-c). A total

of 100 different simulated data for each object have been

generated for testing.

Real data has been acquired by an Hokuyo URG-04LX

laser range finder which is mounted on a Directed Perception

PTU-D46 pan-tilt unit. Three different data acquisition areas

were used at Instituto de Sistema e Robotica’s research

laboratory (Figs. 6a-c). The experiments consisted of two

captures for each test site. First, a 3-D map was acquired to

obtain a first representation of the environment. Afterwards,

a novelty was introduced, which is drawn in red color in

Figs. 6d-f (an opened door, a person in the corridor and a

closed door, respectively). The sizes of those objects were

known, and their pose were also calculated using an inertial

sensor coupled (XSens MTi) to them and the robot pose.
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TABLE I: Comparative study for simulated data.

Algorithm Euclidean Space Feature Space

Execution time (s) 0.3491 0.07425

TruePos 0.8330 0.9367

FalsePos 0.1467 0.0400

σ∆S(Sx,Sy,Sz) [cm] (12.13, 11.01, 8.09) (9.11, 7.998, 7.11)

σ∆R(ψ,ϑ,ϕ) [deg] (2.01, 1.12, 3.22) (1.32, 1.99, 2.88)

Finally, in order to obtain statistically significant results, the

experiments were repeated ten times for each test site.

The experimental results are focused on the accuracy and

processing time of the proposed shape retrieval strategies.

Thus, the accuracy measurements for both, simulated and

real data, have been defined as

TruePos = NumberTrueShapes
NumberShapes

FalsePos = NumberErrShapes
NumberShapes

,
(14)

where NumberT rueShapes is the number of retrievals

of true shapes, NumberShapes is the total number of

shapes detected by the algorithm, and NumberErrShapes

is the number of retrievals of false shapes. To determine

the precision, the shapes obtained by the algorithms have

been compared to the real pose and scale of the objects

inside the corridor. The results were automatically checked

and classified in Tables I and II.

A. Simulated data

Results after applying the algorithms to the simulated

data are summarized in Table I. As it can be seen, the

average computational load of the two algorithms is different,

because the time spent by RANSAC depends on the number

of the points and the time to run our method depends on the

difference in scale and rotation between the standard shape

and the shape to be retrieved. This computation time includes

the whole process, that is, change detection, segmentation

and shape retrieval. Computational time has been determined

using the compiled file in Matlab. Results for the three typical

observations in Fig. 5a-c are in Fig. 5d-f, where examples

of true and false positives are illustrated for particular cases.

The main reasons for failure were: a) error in the Expectation

Maximization algorithm, due to the proximity of the clusters

of points; b) poorly representation of the covariance matrix;

and c) ambiguous covariance matrix associated to the clouds

of 3-dimensional points. Furthermore, the average error

associated with the retrieved shape is larger for the algorithm

that uses the re-sampling and RANSAC methods 1.

B. Real data

Table II illustrates the results of the proposed algorithms

using real data. Due to the reduced number of experiments,

statistical results differs from the simulated data. As it can be

observed in the data, the processing time for the algorithm

based on the covariance matrices match is larger than using

1It is important to note that the worst results for the RANSAC method
were obtained when the synthetic object was a cylinder.

TABLE II: Comparative study for real data.

Algorithm Euclidean Space Feature Space

Execution time (s) 0.3231 0.3156

TruePos 0.8667 0.9000

FalsePos 0.1912 0.0667

σ∆S(Sx,Sy,Sz) [cm] (16.21, 13.24, 10.55) (12.12, 6.22, 8.19)

σ∆R(ψ,ϑ,ϕ) [deg] (4.21, 3.98, 5.12) (3.12, 2.01, 3.02)

Fig. 5: Simulated data for testing the shape retrieval algo-

rithms: a-c) Simulated observations from an ideal laser of

a corridor with an object inside. d-f) Shapes generated by

the algorithms (blue: method based on Euclidean space; red:

method based on Mathematical space of Gaussian mixture).

The results in f) presents a typical problem due to an error

in the segmentation process.

simulated data. In real data, due to the large variation

of the shape orientations and the difficulty in getting the

initialization to minimize the distance dΨ, the computational

load is increased. Furthermore, the accuracy of the two pro-

posed approaches decreases for real data. The main reason

is the non-ideal shape of the objects with respect to the

set of primitives used by the algorithms. Nevertheless, the

feasibility of the approach for the purpose of this paper has

been demonstrated. Results from three typical observations

(Figs. 6a-c) are drawn in Figs. 6j-l (Gaussian functions

associated to the novelty have been drawn in Figs. 6g-i).

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a new method to directly detect

changes in the environment of a robot using a 3-D laser range

4729



Fig. 6: Real data for testing the shape retrieval algorithms: a-c) Test sites for the real experiments; d-f) Real observations

from an Hokuyo laser sensor (3-dimensions); g-i) Gaussian functions associated to the novelty; and j-l) Shapes generated by

the algorithms (red: method based on Mathematical space of Gaussian mixture; blue: method based on Euclidean space).

finder and after that, retrieve its shapes using two different

methods. Gaussian Mixture Model has been used to obtain

a new representation of the point clouds and Earth Mover’s

Distance is employed to quantify the existence of a novelty

in the data. The geometric primitives of the changes has

been retrieved using two different methods. The two shape

retrieval methods are compared based on the computational

cost and accuracy of the retrieved shapes. Experimental

results in various real and simulated scenarios demonstrate

the feasibility of the approach.

Future work will focus on the extension of the set of

geometric primitives (e.g. cones or boxes) or more complex

structures (superquadrics) using one or more sensors. The

final goal of the work is to obtain a complete system capable

of detecting and representing virtual objects in the robot’s

world which is capable to discriminate various objects.
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