

Abstract—A collective of robots can together complete a task

that is beyond the capabilities of any of its individual robots.

One property of a robotic collective that allows it to complete

such a task is the shape of the collective.

In this paper, we present a distributed control method,

called DASH, to enable a collective of robots to robustly and

consistently form and maintain a pre-defined shape. This

control method allows the shape that is formed to be at a scale

proportional to the number of robots in the collective. If this

collective shape is damaged through the un-controlled

movement, removal, or addition of some members of the

collective, the existing members will recover the desired shape,

proportional to the new number of robots in the collective.

We also analyze this control method in terms of class of

acceptable shapes and discuss the convergence to the desired

shape.

I. INTRODUCTION

n this paper we present a solution to the general problem

of controlling a collective of distributed robots (sometimes

referred to as a swarm, group, or ensemble) so that they can

robustly and consistently form and maintain a pre-defined

shape. By forming a specific shape, a robot collective can

complete a goal that cannot be completed by any of the

individual robots. For example, in a collective of

reconfigurable robot modules, the robots can form the

collective shape of a wheel, which will allow them to travel

faster and more efficiently, when compared to an individual

reconfigurable robot module [1]. Another example is shown

in [2], when a single SWARM-BOT is confronted with an

obstacle of rough terrain that it cannot cross. It then joins

together with other SWARM-BOTs to form a bridge shape,

allowing them to traverse the rough terrain as a group.

Due to the distributed nature of the robot collective, the

need for scalability, and the desired robustness against single

points of failure, the control method should be decentralized.

Most robot collective control methods are decentralized;

however, some require an initial unique seed to start the

shape formation [3,4]. This seed is not an unreasonable

requirement, however it does force a centralized decision to

be made, reducing robustness against single points of failure.

Along with being distributed, it is also important for the

control method to be capable of forming as many different

types of shapes as possible. Some methods have a limited

class of shapes that they are capable of forming. For

example in [5], the collective is only capable of forming

Manuscript received March 1, 2009. Michael Rubenstein and Wei-Min

Shen are with the Information Sciences Institute and Computer Science

Department at the University of Southern California, Marina del Rey, CA

90292, USA. (website: www.isi.edu/robots phone: 310-448-8710; fax: 310-
822-0751; e-mail: mrubenst@usc.edu , shen@isi.edu).

polar shapes. In [3,6], the collective cannot form a shape

that contains an empty internal volume.

It is also important for the collective to be resistant to

damage to the shape. If the shape helps the collective

complete a task, then damage to the shape may negatively

affect the collective’s ability to complete that task. Some

control methods for forming a shape [6,7] do not have the

ability to recover from most damage. Others [3], can

recover from the addition or removal of robots to the

collective, but not the un-controlled movement of robots

from one location to another.

In the event that the number of robots in the collective

changes through the addition or subtraction of robots, there

are two options for the collective to adapt (self-heal). The

first option, fixed scale self-healing, used in [4,8,9], is to

keep the size of the shape the same, but change the density

of robots. Due to an upper limit to this robot density (one

can fit only so many robots in a fixed area), there is a

maximum number of robots that can fit inside the collective

shape. Another drawback to this first option is that, for

many collective robotic systems, such as reconfigurable

robots [10], the robots require a close physical connection to

neighboring robots. This means that in general, the density

of robots in the collective should remain the same,

irrespective of the size of the collective. The second option

for adapting to the change in the number of robots is to

scalably self-heal, which adjusts the size of the shape

proportional to the number of robots in the collective,

keeping the robot density constant. This scalable self-

healing is shown in nature [11], where a small invertebrate,

the hydra, will reform its original shape after being cut in

half, but at half the size. This has been recreated in some

robotic collectives [3, 5].

During this process of self-healing as well as self-

assembly, robots outside the shape must move to a location

within the shape. At the same time, their movement is

constrained with the added restriction of avoiding the

locations of the other robots in the collective. Robots

already inside the shape must take care not to stop in a

location that would prevent robots outside the shape from

entering. Some approaches [3,6] enact very careful

communication exchanges between robots to guide moving

robots past neighbors, avoiding disconnection, and locations

where they can become trapped. Other approaches [5,8] use

random or biased random movement, as well as collisions

between robots, to move robots around neighbors, and

prevent choosing locations where they can become trapped.

In the work presented here, we use a fully distributed

control method, with no single point of failure, to enable a

Scalable Self-Assembly and Self-Repair In A Collective Of Robots

Michael Rubenstein, Wei-Min Shen

I

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1484

collective of robots to scalably self-assemble and self-repair

a large class of shapes. This control method is resilient to

the removal, addition, or un-controlled movement of robots

in the collective, always returning the collective to the

desired shape, proportional to the number of robots present.

Section 2 will provide details of this control method; section

3 will discuss the convergence of the group to the desired

shape; section 4 will provide experimental results of this

control method running on a simulated robot collective.

II. METHODS FOR SELF-ASSEMBLY AND SELF-HEALING

The following section describes DASH (Distributed

Assembly and Self-Healing), a distributed method to control

each robot in a robotic collective. This control method uses

an identical controller that runs in each robot. Each robot

controller also includes a full description of the desired

collective shape. When DASH is run on each robot in the

collective, the robots will self-assemble to form the desired

shape (some examples shown in Fig. 1), and self-repair if the

shape is damaged, as shown in Fig 5.

A. Assumptions

The robots are simple and homogeneous. Each robot is

shaped like a simple 2D circle, with radius Rrobot. It is

capable of moving in its local x direction along a plane, as

well as rotating about its center, perpendicular to the plane.

A robot cannot share the same space as another robot, and is

not capable of pushing any robots. All robots in the

collective are identical and indistinguishable from each other

in every way, even lacking a unique ID.

Communication between neighboring robots is

possible. Each robot can communicate to any of its

neighbors who are within a certain distance (Rcom).

Robots have a consistent coordinate system. The

collective has a shared coordinate system that is known by

all robots. This enables each robot to precisely know its

location in the coordinate system, in terms of (X,Y). This

coordinate system could be given from a Global Positioning

System (GPS) or developed from a local, distributed method

such as trilateration [12], MDS-MAP [13], or robust

quadrilaterals [14]. Using movement, the robot can also

determine the angle between its x direction and the x

direction of the coordinate system, as described in [5].

Robots know the total number of robots in the

collective. This number, Nr, represents the total number of

robots that are currently part of the collective. If some

robots are added or removed, Nr will change accordingly.

B. Class of Shapes

While DASH is extendable to forming 3D shapes, in this

paper, we will concentrate on 2D cases. DASH is

theoretically capable of forming any connected shape,

defined as a shape that for every location in that shape, there

is at least one path that is fully contained within the shape to

all other points in that shape. However, there are some

practical limitations on the details of the shape, as the result

of scaling the size of the shape. Namely, these limitations

are that for a given shape, at a given scale, the minimum

feature size must be greater than 2•Rrobot. This minimum

feature size is found by fully decomposing the desired shape

using largest possible overlapping circles. The diameter of

these circles is the minimum feature size. From the

minimum feature size, we can compute the minimum

allowable height of these shapes. The minimum allowable

height of the shape will be the height that causes the

minimum feature size to be 2•Rrobot. An example of some

possible shapes, shown as white, is shown in Fig. 1.

A B C

Fig. 1. Three example shapes (upper), and the approximation of those
shapes (lower) by a simulated collective of robots (simulator described in

detail in section 4).

C. DASH Controller Overview

The robot controller operates to achieve the following

high level behavior. The controller first determines the

desired scale of the shape, based on the number of robots. It

then determines if the robot under its control is inside the

desired shape. If the robot is inside the desired shape, the

robot will move in a way that keeps it within the desired

shape, but at the same time does its best to keep from

blocking other robots from entering the shape. There are

two possibilities if the robot is not in the desired shape. The

first possibility is that it is on the outside of the desired

shape. In this case, the robot will move along the perimeter

until it can find a location to enter the shape. The other

possibility is that the robot is not in the desired shape, but is

surrounded by the desired shape, for example, the center

black region in Fig 1.B. If this is the case, the robot will first

try to enter the shape. If this is not possible because it is

blocked by other robots already in the shape, then this robot

is trapped. This trapped robot will enact a mechanism using

robot-to-robot communication that moves some robots

within the shape out of its way, allowing the trapped robot to

move into the shape.

D. DASH Controller Details

The robot controller has two main sections. The first

section, which is run once at robot startup, takes in the

desired shape description, and outputs a gradient map (to be

described later). The second controller section uses this

gradient map, communication with other robots, Nr, and the

robot’s location in the shared coordinate system, to

determine if the robot should move, and in what direction.

1485

1) Processing the Pixel Map

The input to the first section of the DASH controller is a

description of the desired collective shape. While other

choices are possible, in our implementation, we chose to use

a 100x100 pixel map to represent the desired shape. In this

pixel map, a pixel is white to represent a location within the

shape, and black to represent a location not in the shape, as

shown in Fig. 1. We also add a constraint that every pixel

on the outside border of this pixel map must be black. The

reason for this will be described shortly.

First, the pixel map is segmented into groups of connected

pixels with identical colors. Due to the shape constraints

given in section II.B. of this paper, there will be only one

segment that includes white pixels, which is called the shape

segment (shown as the white segment in Fig. 2B). There

will also be one segment called the external segment,

(shown as the black segment in Fig. 2B). The external

segment includes the pixel (0,0), which is the upper left most

pixel in the pixel map. Due to the constraint that every pixel

on the outside border of the pixel map must be black, the

external segment will completely surround the shape

segment. There are further possible segments, called

trapped segments, if there are black pixels in the pixel map

that are completely surrounded by the shape segment. Three

examples of trapped segments are shown as vertical,

horizontal and diagonal striped line segments in Fig. 2B.

In each segment, there is one “starting pixel”, which is

used later to generate the gradient map. For all segments

except the external segment, the upper left most pixel in that

segment is chosen as a starting pixel. For the external

segment, the starting pixel is chosen to

be the pixel in the external segment that is immediately to

the left of the starting pixel for the shape segment.

A B
Fig.2. A) the pixel map of the desired shape. B) the pixel map segmented

into 5 regions.

2) Creating the Gradient Map

The gradient map is a 100x100 array that has one integer

entry for every pixel in the pixel map. Each location in the

gradient map corresponds to the pixel in the same location of

the pixel map. The values in the gradient map are set as

follows. For the external and trapped segments in the pixel

map, do the following. For each pixel in that segment,

calculate the “Manhattan” distance of the shortest path

between that pixel and the segment’s starting pixel. This

shortest path is constrained to be fully within the

corresponding segment. The entry for this pixel in the

gradient map is then set to ­(path_length + 1). For the shape

segment, a similar approach is used. For each pixel in the

shape segment, calculate the “Manhattan” distance of the

shortest path between that pixel and the shape segment’s

starting pixel. This shortest path is constrained to be fully

within the shape segment. The entry for this pixel in the

gradient map is then set to this path length.

When a gradient map is generated in this manner, any

location in the gradient map with a negative value is located

in a trapped or external segment. If the gradient value is

positive or zero, then it is within the shape segment. When a

location has a gradient map value of -1, then it is located at a

starting pixel for an external or trapped segment. An

example gradient map generated from a pixel map is shown

in Fig. 3.

Fig. 3. A) An example of a 9x9 pixel map. B) The gradient map generated

from that pixel map.

The second part of the DASH controller is run

continuously on each robot, and uses the gradient map built

from the pixel map, communication with other robots, Nr,

and the robot’s location in the shared coordinate system, to

determine if the robot should move, and if so, in what

direction.

3) Finding and Using Scale_Factor

DASH first determines at what scale the shape should be

formed, called the Scale_Factor. The controller uses an

experimentally determined value, called the packing

efficiency (Pe), as well as Nr, to find this scale. The Pe value

represents the following: if the scale of the pixel map is

made so that each pixel in the pixel map has the size

Rrobot×Rrobot , on average, Pe robots can fit in a pixel’s worth

of space. The Scale_Factor is determined by (1), which

gives the size of a pixel, in terms of Rrobot, where Npixels is the

number of white pixels in the pixel map.

 (1)

 Once Scale_Factor is known, the DASH controller can

virtually overlay the gradient map at the appropriate scale

onto the shared coordinate system. This will allow the

DASH controller to determine, for any location in the shared

coordinate system, what entry in the gradient map it

corresponds to. When overlaying the gradient map on the

shared coordinate system, we choose to place the center

entry of the gradient map, (49,49), to correspond to the

center of the shared coordinate system (0,0). To find the

entry in the gradient map that corresponds to the robot’s

current location in the shared coordinate system, (2) is used,

where xindex and yindex are the location in the gradient map,

and xscs and yscs are the location of the robot in the shared

coordinate system. The gradient map requires integer index

values, so the floor function is used to change the real value

within the parentheses of (2) to an integer value.

1486

 (2)

4) Gradient Maximization Movement

Once the controller has determined where the robot is

located in the gradient map, it uses that

location, as well as its four neighboring grid locations in the

gradient map (up, down, left, right), to determine how to

move. Those four neighboring grid locations are used to

determine the maximum gradient direction of the gradient

map, around the robots current location in the gradient map.

The angle of this gradient is then set as the desired direction

of movement, θmove, for the robot. The computation of this

direction is shown in (3), where gm(x,y) returns the gradient

map entry for location (x,y).

 , (3)

If the robot has an xindex or yindex that is not between 0 and 99,

it will not have a valid entry in the gradient map. If that is

the case, the robot will move in the direction towards (0,0) in

the shared coordinate system, until it has a valid entry in the

gradient map.

5) Trapped Robot Movement

 If a robot finds itself at a location where the

corresponding gradient map indicates it is at a starting pixel

for an external or trapped segment, and its location in the

gradient map corresponds to a pixel in the pixel map that is

in a trapped segment, then the robot considers itself trapped,

and initiates a procedure to become un-trapped. This un-

trapping procedure uses communication between

neighboring robots, supersedes the previous gradient

following movement, and works as follows. First, the

trapped robot generates a trapped robot message. This

message contains the shared coordinate system location of

the trapped robot (xtrapped,ytrapped). It is sent to all neighboring

robots which have an xscs less then xtrapped, and a yscs that is

within the range (ytrapped - Twidth)<yscs<(ytrapped + Twidth), where

Twidth is a predefined constant. This message is further

propagated since, every time a robot receives the trapped

robot message, the receiving robot will send the message to

all of its neighbors that have a xscs less than that of the

receiving robot, and a yscs that is in the range (ytrapped -

Twidth)<yscs<(ytrapped + Twidth). When a robot receives a

trapped robot message, it commands a movement in the

negative x direction of the shared coordinate system. This

movement has priority over the previously described

gradient movement. The movement of these robots will

create a “corridor” for the trapped robot to eventually enter.

 As long as the trapped robot remains trapped, it will

continuously send out the trapped robot message. Once it is

no longer trapped, the message will stop. The robots that

received the trapped robot message directly or indirectly will

stop moving in the negative x direction, and revert to the

gradient following behavior.

6) Random Robot Movement

 If at any time a robot is unable to move in the commanded

direction, (determined by not detecting a change in the

robot’s coordinates after a commanded movement) then it

assumes it has bumped into another robot. When this

occurs, there is a possibility that the robot can get stuck in a

local minimum. In an example of this local minimum,

shown in Fig. 4, the robot in location 1 tries to move in the

direction to place it in location 2; however, it is prevented

from doing so when it bumps into a robot in location 3. To

prevent a robot from getting stuck in this minimum, when a

bump is detected, a robot will move in a random direction,

far enough to get out of the local minimum. This random

movement will only occur if it will not take the robot from a

location inside the shape segment to a location outside the

shape segment, according to values of the gradient map.

This random movement has the highest priority, and will

occur instead of the gradient maximization movement, or the

movement responding to a trapped robot message.

Fig. 4. Robot in local minimum. Black circles are robots, and the grey

circle labeled 2 is a desired location for the robot labeled 1.

III. ANALYSIS

The goal of DASH is for the collective to scalably form

and heal a desired shape. For the robot collective to have

fully formed or healed the desired shape, every robot must

be in a location that is within the shape, where the size of the

shape is determined from the current Nr. This means that

each robot is in a location that corresponds to an entry in the

gradient map greater than -1.

To show that all robots will move into the shape, we will

look at two possible cases. First, when a robot is on its own,

there is no possibility of collisions or blocking from other

robots. In this case, a single robot is capable of moving into

the shape from any location outside the shape, whether

external or trapped segments, by moving to maximize its

gradient map entry. This works because if a robot is at the

starting seed of an external or trapped segment, then gradient

maximization will take it into the shape. If the robot is not

at the starting seed, then gradient maximization will either

take it into the shape, or to a starting seed. Within the

external or trapped segment, the simple gradient

maximization movement will not get stuck in local maxima,

because there are no local maxima in the gradient map for

these segments, which can be proven as follows.

Proposition: There is no local maxima in the gradient

map for trapped or external segments.

Proof: The starting seed, , for the external or trapped

segment is not a local maximum, because it is always

1487

immediately adjacent to a location in the shape segment

which has a higher value in the gradient map. For any other

location, , in the segment there is a shortest path

 from to the starting seed S, where is an

immediate neighbor of . Due to the fact that every sub-

path of a shortest path is also a shortest path for its

respective start and finish points, the shortest path from

is , which is 1 less than the shortest path

from . The values in the gradient map for the external or

trapped segment are set to be - (the length of the shortest

path from that location to the starting seed+1), so every

value in the gradient map for this segment must have an

immediate neighbor in the gradient map with a higher value,

and therefore is not a local maximum.

Once the single robot is inside the shape segment, the

gradient maximization movement will not move it out of the

shape. This is because the gradient map value of any

location inside the shape segment is greater than the gradient

map value of any location outside the shape segment.

The second possible case to look at which shows that

every robot will move into the shape, is when more than one

robot is trying to move into the desired shape. In this case,

there is the possibility of neighboring robots blocking

entrance into the shape. This blocking, called blockade

starvation, can prevent the collective from fully forming the

desired shape. Blockade starvation is when an area in the

shape segment cannot be filled by a robot because the

behavior of some robots inside the shape prevents robots

from reaching this area. There are two types of blockade

starvation: internal and external. An example of external

blockade starvation is shown in Fig. 5A. In this form of

blockade starvation, a robot in the external segment cannot

move inside the shape, thus preventing the shape from being

fully formed. An example of internal blockade starvation is

shown in Fig. 5B. Here, a robot in a trapped segment is not

capable of entering the desired shape, also preventing the

shape from fully forming.

When external blockade starvation occurs, the empty area

in the desired shape does not include any location that

corresponds to a local minimum of the gradient map. This is

because the generation of the gradient map in the shape

segment guarantees that there is no local minimum, which

can be proven in a similar fashion to the previous proof,

however is excluded from this paper for brevity. If a robot

immediately borders this empty area, and that robot has a

corresponding gradient map entry lower than that its

neighboring empty space (which is part of the empty area),

then by the gradient movement rule, the robot will move into

the empty space. Robots will continue to move into the

empty area until either the empty area is filled with robots,

or there are no robots next to the empty area that have a

gradient map value less than the gradient map value

corresponding to any of its empty neighbor spaces. If the

latter is true, then, because there are no local minima, the

empty area must include the starting pixel for the shape

segment. This starting pixel for the shape segment is on the

outside of the shape segment, where a robot in the external

segment can reach. If this is the case, this empty space is no

longer an external blockade starvation.

Fig. 5. Examples of A) external and B) internal blockade starvation of the
desired shape shown in Fig. 1B.

When internal blockade starvation occurs, an empty area

in the desired shape must become available to the trapped

robot. This empty location is made available to the trapped

robot using the trapped robot behavior. Similar to [7], but

with less coordination between robots, the trapped robot

behavior will create one or more empty spaces in the shape

directly below (lower x value) the trapped robot. Other

robots within the shape, but above this newly created space,

will move into it, in effect propagating the empty space

upward. Eventually, this empty space will reach the trapped

robot, allowing it to move into the desired shape, and

stopping the trapped robot behavior.

There are two side effects from this trapped robot

behavior. The first is that it may introduce multiple empty

locations inside the shape, below where the trapped robot

was located; however, these locations are easily filled with

robots using the gradient maximization movement. The

second side effect is that while some robots were moving to

create space for the trapped robot, they may have moved into

an external or trapped segment. If they moved into the

external segment, the gradient maximization movement will

direct them back into the desired shape. If they moved into a

trapped segment, and cannot move back into the desired

shape, they will also need to use the trapped robot behavior.

It is important to note that while the trapped robot behavior

may create more trapped robots, it only creates them in

locations below the original trapped robot. This means that

there is no cycle where a robot trapped in a specific segment

will cause more trapped robots in that segment. Without this

problem of feedback, the trapped robot behavior will quickly

cause the number of trapped robots to reduce to zero.

With the ability for each robot to move into the desired

shape both by itself and when considering possible

interference from other robots, the control method described

in section 2 should always form the desired collective shape.

IV. EXPERIMENTAL VERIFICATION

To verify that the DASH controller can indeed form a

desired shape, we tested it on a simulated collective of

robots. Each of these simulated robots was given the

capabilities described in section 2.A, with Rcom set to

. To start with, the robots were distributed

1488

randomly in the simulated world, and given the pixel map of

the desired shape. In each simulated time step, the controller

for each robot would run once, commanding a movement for

the robot. At the end of each time step, the robots would

make the commanded movement, if possible. At the end of

each time step, the robots can also send messages to their

neighbors, which were received by the receiving robot at the

beginning of the next time step.

 The collective was tested on 75 shapes, where 50 of

them were chosen at random from [15], which is a library of

real world objects, and the remaining 25 were drawn by

students unaffiliated with our lab. Each image was given to

a simulated collective at the beginning of the simulation run

for a three simulation run series. Each of these three runs

would first wait Tdamage simulation steps, where the

collective would form the desired shape, shown in Fig.

6A→B, and then apply the following damage: For the first

run, the collective would be cut in half, where half the robots

are removed (Fig. 6B C). For the second run, the collective

would be cut in half, and the upper half would be moved

below the lower half, shown in Fig. 6B D. For the final run

in a series, more robots would be added near the collective,

as shown in Fig. 6B→E. In each case, after damage was

applied, the collective would reform the original shape until

it was complete at a scale proportional to the new number of

robots (Fig. 6F).

Fig. 6. Self assembly of the desired shape shown in Fig. 1C, the application

of various forms of damage (C,D,E), and the scalable self-healing of the

collective (F).

During each simulation run, at every time step we would

measure the percentage of robots that were inside the desired

shape, scaled appropriately based on Nr. The average of this

value for all 225 simulation runs, for every time step is

shown in Fig. 7. These results show that the DASH control

method can self-assemble a simulated collective from a

random starting configuration to a configuration where over

99% of the robots are within the desired shape.

Furthermore, the control method can fully recover after

various forms of damage back to a desired shape with over

99% of the robots in that shape.

Fig. 7. The percent of robots in the desired shape, averaged over 75 test

shapes. Damage was applied at the time of Tdamage.

V. CONCLUSION

In this paper we have shown that the described distributed

control method DASH can allow a collective of robots to

scalably form many shapes. In the event of damage, the

same method can reform the desired shape, but at a new

scale proportional to the number of robots remaining. For

videos of DASH running on a simulated collective, please

visit www.isi.edu/robots/media.html

REFERENCES

[1] H. Chiu, M. Rubenstein, W. Shen. Deformable Wheel, A Self-

Recovering Modular Rolling Track. Intl. symposium on Distributed
Robotic Systems, November 2008.

[2] R. Grady, R. Grob, A. Christensen, F. Mondada, M. Bonani, M.

Dorigo. Performance Benefits of Self-Assembly in a Swarm-Bot. IROS
2007.

[3] K. Stoy, R. Nagpal. Self-Repair Through Scale Independent Self-
Reconfiguration. IROS Sendai, Japan. 2004.

[4] D. Arbuckle, Self-Assembly and Self-Repair by Robot Swarms,

Dissertation, University of Southern California, August 2007.

[5] M. Rubenstein, W. Shen. A Scalable and Distributed Approach for
Self-assembly and Self-Healing of a Differentiated Shape. IROS 2008.

[6] M. Yim, J. Lamping, E. Mao, J. Chase. Rhombic Dodecahedron

Shape for Self-Assembling Robots. SPL Technical Report P9710277.
Palo Alto CA: Xerox PARC; 1997.

[7] M. Rosa, S. Goldstein, P. Lee, J. Campbell, P. Pillai. Scalable Shape

Sculpting Via Hole Motion : Motion Planning in Lattice-Constrained
Modular Robots. ICRA 2006.

[8] J. Cheng, W. Cheng,R. Nagpal, Robust and Self-repairing Formation

Control for Swarms of Mobile Agents, AAAI july 2005 .

[9] A. Kondacs, Biologically-inspired Self-Assembly of 2D Shapes, Using
Global-to-local Compilation, IJCAI 2003.

[10] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,

G. Chirikjian. Modular Self-Reconfigurable Robot Systems --

Challenges and Opportunities for the Future. IEEE Robotics and
Autonomation Magazine, March():43–53, 2007.

[11] H. Bode. Head Regeneration in a Hydra, Developmental Dynamics

226:225-236, 2003.
[12] P. Maxim,S. Hettiarachchi, W. Spears, D. Spears, J. Hamman, T.

Kunkel, C. Speiser. Trilateration localization for multi-robot teams.

Sixth International Conference on Informatics in Control, Automation
and Robotics, Special Session on Multi-Agent Robotic Systems. 2008.

[13] Y. Shang, W. Ruml, Y. Zhang, M. Fromherz. Localization

Connectivity in Sensor Networks. IEEE Transactions on Parallel and

Distributed Systems, vol. 15 October 2004.
[14] D. Moore, J. Leonard, D. Rus, S. Teller. Robust distributed network

localization with noisy range measurements. SenSys 2004.

[15] J. M. Geusebroek, G. J. Burghouts, A. W. M. Smeulders, The
Amsterdam library of object images, Int. J. Comput. Vision, 61(1),

103-112, January, 2005.

1489

