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Abstract— This paper presents a novel method for sensor-
based exploration of unknown environments by a general
robotic system equipped with multiple sensors. The method
is based on the incremental generation of a configuration-space
data structure called Sensor-based Exploration Tree (SET). The
expansion of the SET is driven by information at the world level,
where the perception process takes place. In particular, the
frontiers of the explored region efficiently guide the search for
informative view configurations. Different exploration strategies
may be obtained by instantiating the general SET method
with different sampling techniques. Two such strategies are
presented and compared by simulations in non-trivial 2D and
3D worlds. A completeness analysis of SET is given in the paper.

I. INTRODUCTION
This paper presents a novel exploration method by which

a general robotic system equipped with multiple sensors can
explore an unknown environment. The method is suitable
for generic robotic systems (such as fixed or mobile ma-
nipulators, wheeled or legged mobile robots, flying robots),
equipped with any number of range finders.

In a sensor-based exploration, the robot is required to
‘cover’ the largest possible part of the world with sensory
perceptions. A considerable amount of literature addresses
this problem for single-body mobile robots equipped with
one sensor, typically an omnidirectional laser range finder.
In this context, frontier-based strategies [1]–[5] are an in-
teresting class of exploration algorithms. These are based on
the idea that the robot should approach the boundary between
explored and unexplored areas of the environments in order
to maximize the expected utility of robot motions.

The problem of exploring an unknown world using a
multi-body robotic system equipped with multiple sensors is
more challenging. In fact, the sensing space (the world) and
the planning space (the configuration space) are very differ-
ent in nature: the former is a Euclidean space of dimension 2
or 3, while the latter is a manifold in general with dimension
given by the number of configuration coordinates, typically
6 or more. While frontiers at the world level clearly retain
their informative value, using this information to efficiently
plan actions in configuration space is not straightforward.

In the literature, few works exist that address the sensor-
based exploration problem for articulated structures, mainly
for fixed-base manipulators equipped with a single sensor,
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e.g., see [6]–[9]. A related problem is 3D object reconstruc-
tion and inspection [10].

The SET (Sensor-based Exploration Tree) method, which
was originally presented in [11] for single-sensor robotic
systems, is a frontier-based exploration method. The basic
idea is to guide the robot so as perform a depth-first
exploration of the world, progressively sensing regions that
are contiguous from the viewpoint of sensor location. In this
process, frontiers are used to efficiently identify informa-
tive configurations. The information gathered about the free
space is mapped to a configuration space roadmap which
is incrementally expanded via a sampling-based procedure.
The roadmap is used to select the next view configuration,
which is added to the SET. In the exploration process,
the robot alternates forwarding/backtracking motions on the
SET, which essentially acts as an Ariadne’s thread.

In this work, we present (i) an extension of the SET
method to multi-sensor robotic systems (ii) a completeness
analysis of the algorithm (iii) a SET implementation on
non-trivial 2D and 3D worlds. In particular, we discuss
how to identify which frontiers are relevant for guiding the
perception of each sensor and how to assign priorities to the
sensors during view planning.

The paper is organized as follows. The problem setting is
given in Sect. II. A general exploration method is outlined
in Sect. III and the SET method is presented in Sect. IV.
Simulation results in different worlds are reported and dis-
cussed in Sect. VI. Some extensions of the present work are
mentioned in the concluding section.

II. PROBLEM SETTING
The robot wakes up in a unknown world populated by

obstacles. Its task is to perform an exploration, i.e. cover
the largest possible part of the world with sensory percep-
tions [12].

A. Robot and World Models
The robot, denoted by A, is a kinematic chain of r rigid

bodies (r ≥ 1) interconnected by elementary joints. This
description includes: fixed-base manipulators, single-body
and multiple-body mobile robots, flying robots, humanoids
and mobile manipulators.

The world W is a compact connected subset of IRN ,
with N = 2, 3. It represents the physical space in which
the robot moves and acquires perceptions. W contains the
static obstacles O1, ...,Op, each a compact connected subset
of W . One of these obstacles is the world boundary ∂W
which is considered as a ‘fence’. Denoting by O =

⋃m
i=1Oi

the obstacle region, the free world is Wfree =W \O.
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Fig. 1. Left: sensor centers si(q) and si+1(q), and the associated fields
of view Fi(q) and Fi+1(q) when the robot is at configuration q. Right:
The view V(q) and the visible obstacle boundary B(q).

The robot configuration space has dimension n and is
denoted by C, while q is a robot configuration. Let A(q)
be the compact region of W occupied by the robot and
its sensors at q. The C-obstacle region CO is the set of
q such that A(q) ∩ O 6= ∅. The free configuration space is
Cfree = C \ CO.

B. Sensor Model

The robot is equipped with a system of m exteroceptive
sensors, whose operation is formalized as follows.

Assuming1 that the robot is at q, denote by Fi(q) ⊂ IRN

the compact region occupied by the i-th sensor field of
view, which is star-shaped with respect to the sensor center
si(q) ∈ W . In IR2, for instance, Fi(q) can be a circular
sector with apex si(q), opening angle αi and radius Ri,
where the latter is the perception range (see Fig. 1, left).
The (total) sensor field at q is F(q) =

⋃m
i=1 Fi(q).

With the robot at q, a point p ∈ W is said to be visible
from the i-th sensor if p ∈ Fi(q) and the open line segment
joining p and si(q) does not intersect ∂O ∪ ∂A(q). Denote
by Vi(q) the points of Wfree that are visible from the i-th
sensor. At each configuration q, the robot sensory system
returns (see Fig. 1, right):
• the visible free region (or view) V(q) =

⋃m
i=1 Vi(q);

• the visible obstacle boundary B(q) = ∂O∩ ∂V(q), i.e.,
all points of ∂O that are visible from at least one sensor.

The above sensor is an idealization of a ‘continuous’ range
finder. For example, it may be a rotating laser range finder,
which returns the distance to the nearest obstacle point along
the directions (rays) contained in its field of view (with a
certain resolution). Another sensory system which satisfies
the above description is a stereoscopic camera.

C. Exploration task

The robot explores the world through a sequence of
view-plan-move actions. Each configuration where a view
is acquired is called a view configuration. Let q0 be the

1The sensor placement is determined by the robot configuration q. Hence,
for each sensor that is not rigidly attached to the robot (e.g., that can
independently rotate around a certain axis, or is mounted on a pan-tilt
platform), it is necessary to include the corresponding dof’s in q.

initial robot configuration and q1, q2, ..., qk the sequence of
view configurations up to the k-th exploration step. When the
exploration starts, all the initial robot endogenous knowledge
can be expressed as

E0 = A(q0) ∪ V(q0), (1)

where A(q0) represents the free volume2 that the robot body
occupies (computed on the basis of proprioceptive sensors)
and V(q0) is the view at q0 (provided by the exteroceptive
sensors). At step k ≥ 1, the explored region is

Ek = Ek−1 ∪ V(qk).

At each step k, Ek ⊆ Wfree is the current estimate of the
free world. Since safe planning requires A(qk) ⊂ Ek−1 for
any k, we have

Ek = A(q0) ∪

(
k⋃

i=0

V(qi)

)
. (2)

A point p ∈ Wfree is defined explored at step k if it is
contained in Ek and unexplored otherwise. A configuration
q is safe at step k if A(q) ⊂ cl(Ek), where cl(·) indicates
the set closure operation (configurations that bring the robot
in contact with obstacles are allowed). The safe region Sk ⊆
Cfree collects the configurations that are safe at step k, and
represents a configuration space image of Ek. A path in C is
safe at step k if it is completely contained in Sk.

The goal of the exploration is to expand Ek as much as
possible as k increases [12].

III. EXPLORATION METHODS

Assume that the robot can associate an information gain
I(q, k) to any (safe) q at step k. This is an estimate of the
world information which can be discovered at the current
step by acquiring a view from q.

Consider the k-th exploration step, which starts with the
robot at qk. Let Qk ⊂ Sk be the informative safe region, i.e.
the set of configurations which (i) have non-zero information
gain, and (ii) can be reached3 from qk through a path that is
safe at step k. A general exploration method (Fig. 2) searches
for the next view configuration in Qk ∩ D(qk, k), where
D(qk, k) ⊆ C is a compact admissible set around qk at step k,
whose size determines the scope of the search. For example,
if D(qk, k) = C, a global search is performed, whereas the
search is local if D(qk, k) is a neighborhood of qk.

If Qk ∩ D(qk, k) is not empty, qk+1 is selected in it
according to some criterion (e.g., information gain max-
imization). The robot then moves to qk+1 to acquire a
new view (forwarding). Otherwise, the robot returns to a
previously visited qb (b < k) such that Qk ∩D(qb, k) is not
empty (backtracking). Given that the world is static, it is not
necessary to acquire again a view from qb. Hence, the actual
number of views gathered so far may be less than k.

2Often, A(q0) in (1) is replaced by a larger free volume Ã whose
knowledge comes from an external source. This may be essential for
planning safe motions in the early stages of an exploration.

3The reachability requirement accounts for possible kinematic constraints
to which robot may be subject.
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GENERAL EXPLORATION METHOD
if Qk ∩ D(qk, k) 6= ∅ %forwarding%

choose new qk+1 in Qk ∩ D(qk, k)
move to qk+1 and acquire sensor view

else %backtracking%
choose visited qb (b < k) such that Qk ∩ D(qb, k) 6= ∅
move to qb

Fig. 2. The k-th step of a general exploration method.

The exploration can be considered completed at step k
if Qk = ∅, i.e., no informative configuration can be safely
reached.

To specify an exploration method, one must define:
• an information gain;
• a forwarding selection strategy;
• an admissible set D(qk, k);
• a backtracking selection strategy.
Due the complexity associated to the computation of Sk,

an efficient procedure to predict whether Qk ∩ D(qk, k) is
non-empty or not would be useful.

IV. THE SET METHOD

In the SET method, the robot incrementally builds the
Sensor-based Exploration Tree (SET) data structure. Each
node of the SET represents a view configuration, while an arc
between two nodes is a safe path joining them. A pseudocode
description of the k-th step of SET is given in Fig. 3. A
comparison with the general exploration method of Fig. 2
already suggests the specific choices that were made. These
are detailed in the following.

A. Information Gain

At step k, the boundary of the explored region ∂Ek is the
union of two disjoint sets:
• the obstacle boundary ∂Ek

obs, i.e., the part of ∂E which
consists of detected obstacle surfaces;

• the free boundary ∂Ek
free, i.e., the complement of ∂Ek

obs,
which leads to potentially explorable areas.

One has ∂Ek
obs =

⋃k
i=0 B(qi) and ∂Ek

free = ∂Ek \ ∂Ek
obs.

Let V(q, k) be the simulated view, i.e., the view which
would be acquired from q if the obstacle boundary were
∂Ek

obs. The information gain I(q, k) is defined as the measure
of the set of unexplored points lying in V(q, k) [3], [7].
The SET method also makes use of the partial versions
of these concepts, denoted respectively by Vj(q, k) and
Ij(q, k), which only consider the contribution of the j-th
sensor. While V(q, k) =

⋃m
j=1 Vj(q, k), it is I(q, k) 6=∑m

j=1 Ij(q, k), since partial simulated views may overlap.
Finally, let Qk

j = {q ∈ Qk | Ij(q, k) 6= 0} be the
partial informative safe region of the j-th sensor. It is
Qk =

⋃m
j=1Qk

j .

B. Forwarding Selection Strategy

If the condition of line 1 is met (see Sect. IV-D), qk+1

is selected in D(qk, k) ∩ Qk so as to maximize the utility
function U(q, k) = I(q, k) (line 2). A maximum certainly
exists because D(qk, k)∩Qk is compact and I(q, k) is con-
tinuous in q. In principle, the navigation cost from qk to qk+1

SET METHOD
1: if local free boundary L(qk, k) is non-empty
2: (qk+1, Uk+1) ← search configuration with

maximum utility in D(qk, k) ∩Qk

3: if Uk+1 > 0 %forwarding%
4: plan a safe path from qk to qk+1

5: move to qk+1 and acquire sensor view
6: update SET and world model
7: else
8: if Uk is not empty %backtracking%
9: select the closest configuration qb in Uk

10: plan a path on SET leading to qb

11: move to qb

12: else
13: homing

Fig. 3. The k-th step of the SET method.

could be included in U , to avoid erratic behaviors. However,
our definition of D(qk, k) together with the adopted search
strategy (Sect. V-A) will give the same result.

C. Admissible Set
To simplify the notation, we assume below that all the

sensors have the same perception range R. This does not
imply any loss of generality.

Denote by Dr,j(q, k) the partial admissible set (r,j) around
q at step k defined as the set of configurations w such that (i)
the r-th sensor center sr(w) is contained in a ball B(sj(q), ρ)
with radius ρ ≥ R and center sj(q), and (ii) sr(w) and sj(q)
are mutually visible at step k, i.e., the open line segment
(sr(w), sj(q)) does not intersect ∂Ek. In this definition, the
j-th sensor center sj(q) acts as a ‘fixed pole’ while the r-th
sensor center sr(w) can ‘move’ in B(sj(q), ρ) as long as it
remains visible from sj(q).

The admissible set D(q, k) around q at step k is defined as:

D(q, k) =
⋃

r,j∈{1,2,...,m}

(
Dr,j(q, k) ∩Qk

r

)
. (3)

Proposition 4.1: The admissible set (3) is such that:

Qk =
k⋃

i=0

D(qi, k) (4)

Proof: See [12].

D. Local Free Boundary
The SET method looks at a subset of the free boundary

∂Ek
free for predicting if Qk ∩ D(qk, k) = ∅. This results in a

significant computational saving, because ∂Ek
free has dimen-

sion N − 1 whereas Qk ∩ D(qk, k) has dimension n.
Let Lj(q, k) be the partial local free boundary of the j-th

sensor around q at step k (Fig. 4), i.e., the set of points
of the free boundary ∂Ek

free that (i) are contained in a ball
B(sj(q), ρ + R) with center sj(q) and radius ρ + R, and
(ii) can be connected to sj(q) through a world path contained
in Ek ∩B(sj(q), ρ+R). The parameter ρ of this definition
is inherited from the partial admissible sets definition.

The local free boundary L(q, k) is defined as

L(q, k) =
m⋃

j=1

Lj(q, k). (5)
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Fig. 4. A reconstructed world model at step k. Left: free boundary ∂Ek
free

(red-thin) and obstacle boundary ∂Ek
obs (blue-thick). The boundary of Ek

is ∂Ek = ∂Ek
free ∪ ∂Ek

obs. Right: the partial local free boundary Lj(q
k, k)

consists in the two dashed segments.

L(qk, k) 6= ∅ is a necessary condition for D(qk, k) ∩ Qk to
be non-empty, as shown by

Proposition 4.2: The following implication holds:

L(qk, k) = ∅ ⇒ D(qk, k) ∩Qk = ∅ (6)

Proof: See [12].

If L(qk, k) 6= ∅ a search for a new view configuration is
attempted4 in D(qk, k)∩Qk (lines 1–2); otherwise no search
is performed, Uk+1 remains zero and the utility check (line
3) is negative.

E. Backtracking Selection Strategy

When the search of line 2 returns Uk+1 = 0, the set
D(qk, k) ∩ Qk is empty and a backtracking from qk is
attempted (line 7).

Let l(k) ≤ k be the last exploration step in which a
view was acquired. Let Uk be the set of view configurations
qi such that (i) L(qi, k) 6= ∅, and (ii) no search has been
performed in D(qi, j) ∩ Qj at a step j > l(k) returning
U j+1 = 0.

If Uk is not empty, the closest view configuration qb in
Uk is selected as destination (line 9); otherwise, exploration
terminates and the robot follows a path on the SET leading
back to q0 (homing, line 13).

Proposition 4.3: The following implication holds:

Uk = ∅ ⇒
k⋃

i=0

D(qi, k) ∩Qk = ∅

Proof: See [12].

F. Completeness

Proposition 4.4: Any SET exploration which ends at a
finite step k is completed, in the sense that Qk = ∅.

Proof: See [12].

4Even when L(qk, k) 6= ∅, it may happen that D(qk, k) ∩Qk = ∅. In
general, this occurs when portions of the free boundary cannot be ‘pushed-
forward’ by additional sensor views [12].

SEARCH STRATEGY IN D(qk, k)
1: qk+1 ← 0, Uk+1 ← 0, J ← {1, 2, ..., m}
2: while Uk+1 = 0 and J 6= ∅
3: j ← select sensor j ∈ J with Lj(q

k, k) 6= ∅
4: R← {1, 2, ..., m}
5: while Uk+1 = 0 and R 6= ∅
6: r ← select by priority sensor r ∈ R
7: (qk+1, Uk+1)← search configuration with

maximum utility in Dr,j(q
k, k) ∩Qk

r

8: if Uk+1 = 0 R← R \ {r}
9: end while

10: if Uk+1 = 0 J ← J \ {j}
11: end while
12: return (qk+1, Uk+1)

Fig. 5. A pseudocode description of the search strategy in D(qk, k).

The above proposition only considers finite exploration se-
quences, because a compact free world may not be ‘cover-
able’ by a finite sequence of views. In such ‘pathological’
cases [12], maximizing I(q, k) over Qk results in an infinite
sequence of view configurations qi along which I(qi, k)
tends to zero. Hence, Qk never becomes empty.

V. IMPLEMENTATION

A. Search in the Admissible Set

In general, D(qk, k) (see Sect. IV-C) is a huge search
space for the utility maximization problem (line 2, Fig. 3).
In order to reduce the search complexity, an heuristic search
algorithm can be worked out by relaxing the solution opti-
mality requirement and exploiting the search space inherent
decomposition (eq. (3)). This is described in Fig. 5.

Instead of searching for the optimal solution in D(qk, k),
the algorithm searches one of the suboptimal solutions which
maximize the utility function in the partial sets Dr,j(qk, k)∩
Qk

r , for r, j ∈ {1, 2, ...,m}. In particular, the partial sets are
visited and searched one by one until the first suboptimal
solution is found. The visit order is heuristically designed.

A possible choice is detailed hereafter. For any fixed
j, it can be shown [12] that: if Lj(qk, k) = ∅ one has
Dr,j(qk, k) ∩ Qk

r = ∅ for r = 1, 2, ...,m and, thereby,
the suboptimal solutions in these partial admissible sets do
not exist. Otherwise, if Lj(qk, k) 6= ∅ a measure of the
unexplored points lying in B(sj(qk), ρ + R) can be used
as an ‘optimality indicator’ of these suboptimal solutions.
Our strategy selects a sensor j with a non-empty Lj(qk, k)
and with the highest ‘optimality indicator’ (line 3). Once j
has been chosen, the sensor r is selected by priority (line 6).
The highest priority is assigned to the index r ∈ R which
minimizes the distance ‖sr(qk) − sj(qk)‖. Accordingly,
Dj,j(qk, k) ∩ Qk

j is the first searched set. Note that it is
certainly qk ∈ Dj,j(qk, k) 6= ∅.

B. Search in Partial Admissible Sets

In the exploration process, SET incrementally updates
a model of the configuration space for (i) searching new
view configurations and (ii) performing planning opera-
tions. Since generic robotic systems typically have high-
dimensional configuration spaces, a sampling based approach
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can be conveniently used to incrementally grow a roadmap
which captures the connectivity of the current safe region.

In particular, let Gk be the roadmap built at step k in the
safe region Sk. In Gk, a node represents a safe configuration
at step k, while an arc between two nodes represents a
local path that is safe at step k and connects the two
configurations. Once Ek is computed merging V(qk) with
Ek−1, the roadmap Gk is obtained expanding Gk−1. During
this expansion process, additional sampled configurations
which are safe at step k are added to Gk−1. In order to find
these configurations a collision checking is performed in the
reconstructed world model at step k: according to this model,
Ek is the free world and ∂Ek is the obstacle boundary. In
this framework, the SET built at step k represents the path
actually traveled by the robot on the roadmap Gk.

Two main instances of the SET method can be obtained
depending on the strategy used for growing the roadmap
and searching in the partial admissible sets (Fig. 5, line 7).
SET with Global Growth (SET-GG), which incrementally
performs a global expansion of the roadmap Gk. SET with
Local Growth (SET-LG), which privileges a local expansion
of Gk around the current view configuration qk.

1) SET-GG Search Strategy (see [12]): SET-GG incre-
mentally expands Gk in the current safe region Sk using a
sampling-based approach such as a multi-query PRM algo-
rithm, or a single-query single-tree algorithm (e.g., RRT).

2) SET-LG Search Strategy (see [12]): SET-LG first per-
forms a local search around qk in the attempt to locally
maximize the utility function, then, when no local informed
configurations are found, it allows a global search (perform-
ing possible long jumps). In particular, in the local search:
a single-query single-tree algorithm such as RRT or EST
is locally expanded within a fixed radius δ from qk. In
the global search: a tree is expanded without performing
collision checking (lazy tree) inside Dr,j(qk, k) (see [12]).

Note that the local search mechanism automatically limits
the navigation cost of the next robot motion and avoid
erratic behaviors. A shortcoming of SET-LG is a non-
uniform sampling of the free configuration space. In fact,
local searches started at distinct view configurations may
expand in overlapping C-space regions. This unwanted result
can be almost avoided by suitably selecting the radius δ of
the local expansions.

C. Path Planning

Once a new view configuration qk+1 has been selected, a
safe path connecting qk to qk+1 is computed by the path-
planner. In the SET method, planning depends on the used
search strategy. In SET-GG, a safe path is computed on the
roadmap Gk. In SET-LG, qk+1 is found either by a local
search or by a global search (see [12]).

VI. SIMULATIONS

We present simulation results obtained implementing the
presented SET method in Move3D [14]. The algorithms have
been extensively tested in several scenes (both in 2D and
3D worlds) using various robots (both fixed-base and mobile

Fig. 6. Top: 2D cases (left to right): A6R, B3Rff, C8R. Bottom: 3D cases
(left to right), D4R, E3R, F7R. In each world name, the first letter identifies
the scene, while the number quantifies the robot revolute (R) joints; ff
identifies a free-flying robot.

manipulators). We report here the results obtained in the six
cases of Fig. 6. Two groups of simulations were performed
for each case: in the first group, a single range finder is
mounted on the tip of the robot; in the second, two additional
range finders are added and mounted on the last robot link
(midway along the length of the link and close to the last
robot joint). Each range finder has a perception range R =
1 m and an opening angle α = 60◦ (robot link lengths range
from 0.3 m to 0.8 m). Its linear and angular resolution are
respectively 0.01 m and 1◦. In 2D cases, the sensors can
rotate within a 120◦ planar cone; in 3D cases, the sensors
can rotate within a 120◦ × 120◦ spatial cone. At the start of
the exploration, a free box Ã is assumed to be known from
an external source. In particular, its volume is 200% of that
of A(q0) on the average.

Gridmaps are used as world models (with a 0.1m grid
resolution). Quadtrees/octrees are used to represent (and
efficiently operate on) the free and obstacle boundaries.
Information gain is computed via ray-casting procedures.
At each step, the partial local free boundary Lj(q, k) is
computed by expanding a numerical ‘navigation’ function
from sj(q) within Ek ∩ B(sj(q), ρ + R): any cell in Ek ∩
B(sj(q), ρ+R) with a finite function value can be connected
to sj(q) and is consequently inserted in Lj(q, k). Besides,
Lj(q, k) is updated only when V(qk+1)∩B(sj(q), ρ+R) 6=
∅. Simulations were performed on a Intel Centrino Duo 2x1.8
GHz, 2GB RAM, running Fedora Core 8.

A. Sampling Methods

In SET-GG, the global roadmap Gk is incrementally
expanded using PRM or RRT. In SET-LG, we found that
RRT is more effective. In particular, RRT-Extend is used for
local searches, while RRT-Connect is more suitable for the
lazy tree expansions. In all these techniques, kd-trees are
used to perform nearest neighbor searches, uniform random
sampling is applied and path smoothing is performed.
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Fig. 7. An exploration progress in world C8R with three range finders.

B. Parameter Choice

• Admissible set. The radius ρ in the partial admissible set
definition was set to 1 m, i.e, equal to R.
• RRT. Each RRT expansion is performed for a maximum
number of iterations Kmax. For both local and global
searches, we used Kmax ' 2000, whereas for lazy expan-
sions Kmax ' 6000.In SET-LG, a configuration space ball
with radius δ is used in the local search. Typically, we set
δ ' 0.1 δM where δM is the maximum estimated distance
between two points in C.

C. Performance Indexes

• Number of Views (NV). It is the total number of views
acquired by the robot during an exploration.
• World Coverage (W%). It represents the percentage of
the free world included in the final explored region. This
percentage is evaluated w.r.t. to an estimate of the free world
which can be explored by the robot, i.e., the set of points
p ∈ Wfree such that p ∈ V(q) for some configuration
q ∈ Cfree which is reachable from q0 through a safe path.
• Number of Collision Detection Calls (NCDC). It is the
total number of collision detection calls performed during
an exploration.
• Number of Nodes of the Global Roadmap (NNGR). It is
the total number of nodes of the final roadmap Gk.

D. Results

Two typical exploration processes obtained with SET-LG
in cases C8R and F7R, both with three range finders, are
shown in Figs. 7 and 8. The obstacles (in blue) are obviously
unknown to the robot. They are incrementally reconstructed
during the exploration as the obstacle boundary ∂Ek

obs (light-
blue cells). In each frame, the free boundary ∂Ek

free (red cells)
is also shown. Fig. 8 shows only the portions of the free

Fig. 8. An exploration progress in world F7R with three range finders.

Results with 1 range finder
World NV W% NNGR NCDC

A6R (+1R) 45 100.00% 56938 446314
B3Rff (+1R) 48 100.00% 58565 495132
C8R (+1R) 54 100.00% 24662 360591
D4R (+2R) 82 100.00% 48502 323481
E3R (+2R) 79 100.00% 38734 291529
F7R (+2R) 81 100.00% 41679 232913

Results with 3 range finders
World NV W% NNGR NCDC

A6R (+3×1R) 30 100.00% 69451 554523
B3Rff (+3×1R) 36 100.00% 86244 615137

C8R (+3×1R) 40 100.00% 52944 432305
D4R (+3×2R) 64 100.00% 77121 671163
E3R (+3×2R) 65 100.00% 84087 571219
F7R (+3×2R) 70 100.00% 91474 598014

TABLE I
RESULTS OBTAINED WITH SET-LG.

boundary contained in the set of points p ∈ W such that
p ∈ A(q) ∪ V(q) for some q ∈ C. Note that, at the end
of the exploration, the remaining free boundary can not be
‘pushed-forward’ by additional sensor views.

Clips of these two simulations are contained in the video
attachment to the paper. Other simulations are available at
the webpage http://www.dis.uniroma1.it/labrob/research/SET.html.

Table I compares the results obtained with SET-LG in the
case of one range finder and three range finders. In view of
the use of RRT, results are averaged over 20 simulation runs.
Note that the world coverage is always 100%.

E. Comparison of SET-LG with SET-GG

An extensive simulation study has showed that SET-LG
performs better than SET-GG. For lack of space, we do not
report results obtained with SET-GG. In particular, we found
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that, for the same maximum number of iterations Kmax, the
world coverage of SET-GG decreases by 10% on the average
w.r.t. SET-LG, whereas exploration time increases by 40%.

A comparative analysis of the two methods can justify
the results. At each step, the two main computational costs
of the SET method are due to: (i) the expansion of the
roadmap Gk (ii) the extraction of a subset of candidate
configurations in D(qk, k) from Gk. In particular, at each
step, SET-GG expands a global roadmap Gk which spreads
uniformly over the whole safe region as k increases. Clearly,
the number of nodes stored in Gk continuously grows. This
causes a parallel, continuous increment of both the above
computational costs. On the other hand, at each step, SET-LG
mainly expands a new local tree T k around the current view
configuration qk. Each of these trees, by construction, has a
bounded number of nodes. Hence, with such mechanism,
both the described computational costs are in principle
bounded and held constant.

Another important advantage of the local growth per-
formed by SET-LG is that it focuses the search process
around the current view configuration qk. This is convenient
since, at least in the initial stages of the exploration, new
informative configurations are likely to be contained in a
neighbourhood of qk. On the other hand, the global roadmap
expansion results in the dispersion of new samples in unin-
formative configuration-space regions. Also, smaller traveled
distance in C means less energy and exploration time.

VII. SET IN THE PRESENCE OF UNCERTAINTY

If view sensing comes with uncertainty, a probabilistic
world model (e.g. a probabilistic occupancy gridmap [15])
can be used to integrate collected sensor data. Here, a
probability distribution associates each representative point
in W with its probability of being in O. Then, a point
is classified as free, occupied or unknown comparing its
occupancy probability with fixed probability ranges. In this
context, SET definitions can be suitably modified. In partic-
ular, the explored region (obstacle boundary) is defined as
the set of free (occupied) points, a point is unexplored if it is
unknown, and the free boundary collects the set of unknown
points lying ‘close’ to a free point. All the other definitions
accordingly change and an entropy-based measure can be
used in the information gain computation.

In a general probabilistic framework, the SET method
(with the above modifications) can be thought of as a view
planning module which can be suitably integrated with any
localization module using a more general definition of utility
function U in the spirit of an integrated exploration [2].
Correspondingly, motion planning should be also performed
taking into account uncertainty [16].

VIII. CONCLUSION

We have presented a novel method for sensor-based ex-
ploration of unknown environments by a general robotic sys-
tem equipped with multiple range finders. This extends the
method originally presented in [11] for single-sensor robotic
systems and comes along with a completeness analysis.

The method is based on the incremental generation of a
data structure called Sensor-based Exploration Tree (SET).
The generation of the next action is driven by information
at the world level, where perception process takes place. In
particular, the frontiers of the explored region are used to
guide the search for informative view configurations. Various
exploration strategies may be obtained by instantiating the
general SET method with different sampling techniques. Two
of these, SET-GG and SET-LG have been described and
compared by simulations in non-trivial 2D and 3D worlds.

We are currently working to provide an accurate complex-
ity analysis of the method, improve its completeness analysis
and implement the SET method in presence of uncertainty
both in sensing and control. Future work will address an
experimental validation of SET on a real robotic system,
and an extension of the method to a team of robotic systems
equipped with multiple sensors along the lines of [5].
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