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Abstract— Most autonomous mobile agents operate in a
highly constrained environment. Despite significant research,
existing solutions are limited in their ability to handle het-
erogeneous constraints within highly dynamic or uncertain
environments. This paper presents a novel maneuver selection
technique suited for both 2D and 3D environments with highly
dynamic maneuvering constraints and multiple mobile obsta-
cles. Agents may have any arbitrary set of nonholonomic control
variables; maneuvers can be constrained by a broad class
of function inequalities, including time-dependent constraints
involving nonlinear relationships between controlled and agent-
state variables. The resulting algorithm has been implemented
to run in real time using only a fraction of the CPU’s capacity
on an ordinary notebook computer and performs well in a
number of taxing simulated situations.

I. INTRODUCTION

One of the most basic requirements of any autonomous
vehicle is that it must not collide with obstacles. This task
consists of three separate conceptual subtasks: identifying
obstacles, selecting maneuvers to avoid these obstacles,
and executing the necessary control to achieve the selected
maneuvers. This paper presents a unique solution to the
maneuver selection process which is fast enough to run in
real time. It represents additional nonholonomic constraints1

naturally and guarantees short-term collision avoidance.
Autonomous vehicles are in increasing demand for a wide

variety of applications. In addition to the traditional robotics
problems, collision avoidance has been researched for au-
tonomous cars [1], [2], unmanned aerial and submersible
vehicles [3]–[5], smart wheelchairs and walking aids [6]–[8],
and many games, movies, and commercial simulations [9]–
[11]. In many of these situations there are multiple moving
obstacles of unknown trajectories and a variety of additional
constraints such as a minimal speed to sustain lift for an
airplane, engineering limitations on speed and acceleration,
limited jerk-force in the presence of human occupants or del-
icate equipment, and nonholonomic design of many mobile
platforms.

Due to the prevalence of the navigation problem, many
algorithms have been published contributing to its solution.
These can be organized into four broad categories:
• Application-specific solutions, often featuring mono-

lithic design integrating sensation, maneuver selection,
and low-level control [8], [12]–[14].

1Meaning here that the allowable motion and possible collisions are
independent of the orientation of the agent.

• Heuristic methods, particularly field-based [15]–[19],
but also including various machine-learned and custom
heuristics [5], [11], [20], [21].

• Plan-repair or partial-planning methods, both local [22],
[23] and global [1], [9], [24], [25] in approach.

• Reactive methods, each making one of three assump-
tions: that obstacles are immobile [11], [26]–[29], that
obstacles have fixed velocities [30]–[36], or that ob-
stacles follow arbitrary known trajectories and agent
velocity is fixed [3], [37]–[39].

Of these techniques, the planning and reactive methods offer
some form of guarantee of maneuver safety in a general
setting. These two approaches differ philosophically; plan-
ners proactively search for an optimal trajectory given the
best available guess of the future environment, while reactors
avoid only immediate problems. Planning methods have the
advantage that they do not need a separate maze solver step
to avoid dead ends, but gain this advantage at the cost of
potentially resolving a maze at every step.

We present a novel method for reactive navigation utilizing
a representation of candidate maneuvers powerful enough to
encode entire trajectories. This expressive power allows us to
increase candidate maneuver sophistication to take advantage
of available computing resources without losing the ability
to respond reactively to unexpected obstacle behaviors.

Another distinction between navigation algorithms is the
breadth of constraint and agent types they can handle. Most
algorithms cited above are posed for holonomic agents,
which rarely exist in reality. Car-like nonholonomic agents
sometimes are modeled explicitly (e.g., [9], [29], [40]) or can
be modeled in static environments through a preprocessing
step which transforms obstacles into the space of controllable
variables, as is done in [17], [18], [41]. Most of the tech-
niques, both for holonomic and car-like agents, accommodate
only non-collision constraints; a notable exception is [3], [4]
wherein a wide and powerful class of constraints on agent
velocity is contemplated, including considerations such as the
the impact of submersible velocity on towed sensor arrays.
Additional constraints (to prevent vehicle rollover, limit jerk
forces, observe traffic laws, etc.) are easily imagined but are
rarely if ever mentioned in the literature.

In contrast to existing methods, a wide variety of con-
straints can be posed and handled within our framework,
including time-dependent constraints involving nonlinear re-
lationships between arbitrary sets of controlled and agent-
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state variables. Distinctions can be made between cooperative
and hostile obstacles, between optimistic and pessimistic
agents, and between high- and low-priority constraints.

We organize the remainder of the paper as follows. In
Section II we discuss the role of reactive maneuvering within
the larger robotics context. In Section III we define “agent”
and “constraint” and provide an algorithm for evaluating
constraints over a finite time interval. In Section IV we
provide guidelines for implementing agents and constraints,
including discussions of modeling, maneuver selection, and
several optimizations. In Section V we provide some ex-
perimental results demonstrating real-time performance for
a range of simulations. In Section VI we present areas for
future development. In Section VII we close with a summary
of our work.

II. REACTIVE NAVIGATION PHILOSOPHY

Many solutions to maneuvering in dynamic environments
are based on various high-level decisions, such as which
of two vehicles approaching an intersection should wait
for the other. In reactive navigation, these decisions are
not made explicitly: instead, each agent makes a guess as
to the likely short-term behavior of the environment and
selects a safe short-term maneuver based on that guess. In a
purely reactive system, no additional high-level planning is
applied; each agent merely reacts in the short term as often
as processor capabilities allow. Any appearance of of high-
level intelligence in such systems is an emergent behavior
not expressly present in the system design.

Purely reactive systems do not behave optimally in most
settings. For example, a group of vehicles approaching an
intersection might all slow to avoid collision when a higher-
level planner would recognize that some of them could
continue at full speed safely; worse, the short-term decisions
of agents can lead to choosing maneuvers from which no
long-term safe trajectory exists. However, reactive systems
can be treated as robotic reflexes, sitting between a high-level
planner and low-level control. Such a system can provide an
extra level of protection against unexpected situations and
functions as a mathematically simple failsafe behind a more
complex high-level planner.

III. CONSTRAINING MANEUVERS

Our maneuver selection technique is based on purely
mathematical models of the behavior of an agent and the
constraints under which it operates. Section III-A provides
a mathematical abstraction of the exhibited behavior of an
agent given its current state and an applied control. Sec-
tion III-B describes how to pose various constraints on agent
behavior as boolean predicates on the variables present in
the model of the agent. Section III-C describes mathematical
tools, based on Sturm’s theorem and Chebyshev functional
approximation, to rapidly evaluate if a proposed control
signal will cause the agent to violate its constraints within a
finite time window.

A. Agents

Let an agent with n state variables and m control variables
be represented as a three-tuple, (~x, s,B) where ~x ∈ Rn is a
vector of real-valued state variables, s is the agent’s discrete
state from a finite set S , and B : Rn × S × Rm ×M →
(R→ Rn × S) is a higher-order “behavior” function which
takes a bounded real-valued control vector ~c ∈ Rm and a
discrete control mode m from a finite set M, together with
the current agent state, and returns a function evaluating
future agent state. By definition, B always satisfies the
equality B(~x, s,~c,m)(0) ≡ (~x, s).

To help solidify the definition given above, consider the
following example of an airplane model:

Example 1 (airplane model):
• ~x is position ~p, velocity ~v, and orientation (consisting

of pitch, roll, and yaw), implying n = 9;
• S = {airborne, grounded};
• ~c = (left flap, right flap, rudder, throttle), implying m =

4; and
• M is a singleton set, since there is only one mode of

operation.
The behavior function B becomes a model of airplane
dynamics.

B. Constraints

We define a maneuvering constraint to be a predicate f :
Rn×S ×Rm×M→ {safe,unsafe}. Then a basic ma-
neuver ~c,m satisfies the constraint over a time window t ∈
[t0, t1) if and only if f (B (~x(t0), s(t0),~c,m) (t),~c,m) =
safe for all t ∈ [t0, t1). A composite maneuver, which
can be expressed as {~ci,mi over t ∈ [ti, ti+1)}, satisfies
a constraint if and only if each of its constituent basic
maneuvers satisfies the constraint over the appropriate time
window.

To help solidify the definition given above, consider the
following example:

Example 2 (School zone speed limit): Consider a town in
which the speed limit is 30 mph except for emergency
vehicles with a sounding siren, but within 1

4 mile of the
school the limit is 20 miles per hour for all vehicles. If
the school is located at ~s, and m = e means “sound the
emergency siren” then we can express the constraint function
as

((‖~v‖ ≤ 30) ∨ (m = e))∧
((
‖~p− ~s‖ > 1

4

)
∨ (‖~v‖ ≤ 20)

)
.

In many cases it is more convenient to think of a constraint
as a conjunction of several more basic constraints. Thus, we
sometimes refer to an agent as having several constraints, by
which we mean that f returns safe if and only if all of
these more basic constraints return safe.

C. Evaluating Constraints

The preceding definitions of agents and constraints are
highly expressive but do not always admit computational
evaluation of constraint satisfaction. However, given the
following modest restrictions on agents and constraints, rapid
numerical evaluation becomes possible:
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i) If B permits s to change under constant ~c and m, the
time of the change can be found explicitly.

ii) The elements of the vector portions of B(~x, s,~c,m)(t)
can be expressed as a ratio of polynomials in t.

iii) The predicate f can be expressed using differentiation
and integration with respect to t and the elementary
operations {×,÷,+,−}, coupled with inequalities (<
,≤,≥, >) and boolean operations (¬,∧,∨).

Conditions ii and iii are rarely satisifed for natural con-
straints over nonholonomic agent behavior functions. How-
ever, polynomial approximation theory is a well-developed
field and allows us to create arbitrarily good approximations
of B and f that do satisfy conditions ii and iii. Chebyshev
approximation, reviewed next, generalizes those conditions
to

ii) B(~x, s,~c,m)(t) has at most a finite set discontinuities
at known values of t.

iii) The predicate f is a boolean expression of inequalities
of functions with at most a finite set discontinuities at
known values of t.

To create a Chebyshev approximation of a function g
(where g is any needed non-rational function needed to
evaluate B and/or f ) we follow the standard Chebyshev
interpolation scheme presented in any textbook on numerical
methods:

1) select one or more time windows [t0, t1] over which
g(t) is continuous;

2) select a polynomial order n;
3) evaluate g(ti) at the i = 1, 2, . . . , n + 1 Chebyshev

nodes, which are

ti =
1
2
(t0 + t1) +

1
2
(t1 − t0) cos

(
2i− 1
2n+ 2

π

)
;

4) fit an nth order polynomial to the n+1 points ti, g(ti).

The resulting approximation error is bounded by
1

2n−1n! maxξ∈[t0,t1] |f (n)(ξ)| and falls super-exponentially
with increasing n.

In the exact or approximate case, the resulting function f
can be rearranged to a boolean expression with literals of the
form p(t)

q(t) <
r(t)
s(t) , where p, q, r, and s are all polynomials in t,

q and s are both positive at t0, and gcd(p, q) = gcd(r, s) = 1.
This canonical form leads to the following theorem:

Theorem 1: Given four polynomials p, q, r, and s, where
gcd(p, q) = gcd(r, s) = 1, the expression p(t)

q(t) <
r(t)
s(t) holds

for all t ∈ [t0, t1] if and only if all of the following are true

•
p(t0)
q(t0)

< r(t0)
s(t0)

,
• (p(t)s(t)− q(t)r(t)) ÷ gcd(q, s) has no roots for t ∈

[t0, t1], and
• q(t) and s(t) have no roots of odd multiplicity for t ∈

(t0, t1).
A proof of this theorem is given in the appendix.

Theorem 1 motivates Algorithm 1, which evaluates the
literals in constraints over a finite time interval.

Algorithm 1: polynomialInequality
1: Input: Polynomials p, q, r, and s; interval [t0, t1]
2: Output: Truth value of p(t)

q(t) <
r(t)
s(t) ∀t ∈ [t0, t1]

3: if p(t0)
q(t0)

≥ r(t0)
s(t0)

then return False
4: if oddRoots(q, [t0, t1]) then return False
5: if oddRoots(s, [t0, t1]) then return False
6: Set h← (p(t)s(t)− q(t)r(t))÷ gcd(q, s)
7: if rootCount(h, [t0, t1]) ≥ 1 then return False
8: return True

Algorithm 1 makes use of standard polynomial two
subroutines, rootCount and oddRoots, both based on
Sturm’s theorem.

Definition 1: The Sturm sequence generated by a polyno-
mial p(t) is

S0(t) = p(t)

S1(t) =
d

dt
p(t)

Si(t) = −remainder(Si−2, Si−1) ∀ i > 1.

Define S(p, t) to be the number of sign changes in the Sturm
sequence of p evaluated at t.

Theorem 2 (Sturm): The number of distinct real roots of
p in the interval t ∈ (t0, t1) is given by S(p, t1)− S(p, t0).

A proof of this theorem may be found in [42].

A direct implementation of Sturm’s theorem provides
Algorithm 2, which detects the existence of roots without
the effort needed to identify individual roots.
Algorithm 2: rootCount

Input: Polynomial p(t); interval [t0, t1]
Output: The number of distinct real roots
Output (optional): Polynomial gcd

(
p, ddtp

)
Set q ← d

dtp
Set r ← 0
Set (o1, o2)← (p(t0), p(t1))
while q 6= 0 do

Set (n1, n2)← (q(t0), q(t1))
if n1o1 < 0 then Increment r
if n2o2 < 0 then Decrement r
Set p← remainder(p÷ q)×−1
Swap p and q
Set (o1, o2)← (n1, n2)

end while
return r (and optionally also p)

To derive the oddRoots algorithm, recall that if polyno-
mial p(t) has root t? with multiplicity m > 1 then d

dtp(t) has
root t? with multiplicity (m− 1). Since p and d

dtp share no
other roots, gcd(p, ddtp) has only the repeated roots of p, each
with one lower multiplicity than in p itself. This observation
motivates Algorithm 3.
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Algorithm 3: oddRoots
Input: Polynomial p(t); interval [t0, t1]
Output: True if p has a root of odd multiplicity in [t0, t1]
loop

Set n, q ← rootCount(p, [t0, t1])
if n = 0 then return False
Set m, p← rootCount(q, [t0, t1])
if m < n then return True

end loop

To evaluate full constraints we combine calls to
polynomialInequality using boolean algebra.

IV. IMPLEMENTATION

In this section we outline how the tools we presented
in Section III can be used to solve a variety of practical
maneuver selection problems.

A. Modeling and Constraining Agents

To model a mobile agent, we
1) identify controlled variables and their allowable

ranges;
2) write B, mapping controlled variables to position and

orientation functions;
3) create piecewise-polynomial approximations of the po-

sition and orientation functions as needed; and
4) create a piecewise-polynomial model of the boundary

of the agent.
The boundary could also be a function of time if the agent
is capable of self reconfiguration.

To help solidify how these steps work, we present a simple
example.

Example 3 (Car-like agent): Consider modeling a
wheeled vehicle with limited acceleration and turning
radius. The four modeling steps are as follows:

1) We control the curvature of motion c and the forward
acceleration a, assumed to be constant during each
selection step. Position ~p and speed s are derived
values restricted by the use of constraint equations.

2) Let ~p0 be the current position, s0 the current speed, and
θ0 the current orientation. Defining the “right” vector
to be ~r(θ) , (cos(θ), sin(θ)), we can then derive

θ(t) = θ0 + (s0 + at)ct
s(t) = s0 + at

~p(t) = ~p0 −
1
c
~r(θ0) +

1
c
~r(θ(t)).

3) The only functions we need to approximate are the
sine/cosine functions. We use a piece-wise cubic
Chebyshev approximation of a sine wave over 0 ≤
t ≤ π; this has a relative error of only 0.03, accurate
enough for most situations.

4) For simplicity, we can approximate a car with a small
collection of overlapping circles. For longer vehicles
we could use a simple box model: letting ~f be per-
pendicular to ~r, the inside of a car w wide and ` long

can be approximated by all ~x for which∣∣∣(~p(t)− ~x) · ~f(t)
∣∣∣ < w

2
∧ |(~p(t)− ~x) · ~r(t)| < `

2
With this setup, we have access to the controlled and state

variables and can impose constraints over them as discussed
in Section III-B.

B. Modeled Uncertainty

One particular class of constraints provides robust
guards against modeled uncertainty. Consider the region
of all possible obstacle positions, P; for example, for an
agent making unknown decisions this would be P(t) =
{B(~x, s,~c,m)(t) | (~c,m) is a maneuver}. If the obstacle’s
boundary is the set of point B then an agent can conser-
vatively guard against all possible obstacle collisions using
the Minkowski sum B ⊕P . The most liberal constraints are
generated by the Minkowski difference B	P . Interpolating
between the two by scaling P can create a variety of
intermediate safety guarantees depending on the optimism
of the agent and the perceived hostility of the obstacle.
One particular design we found useful was a time-varying
approach B ⊕ (1 − αt)P which is, in some sense, the
definition of reactive navigation: conservative in the short
term, optimistic in the long term.

One particularly useful aspect of uncertainty constraints
is the ability to handle noisy, approximate sensory inputs.
If a signal processor can provide a range of likely obstacle
locations instead of a single best-guess input, the reactive
navigation algorithm can guard against the entire range.

C. Search Strategies

Given an agent and a set of evaluable constraints, it
becomes necessary to search over the decision space for
maneuvers that satisfy the maneuvering constraints which are
as similar to the reference commands provided by the high-
level planner as possible. The selection of a search strategy
should be motivated by our expectations of the environment
in which the agent is maneuvering.

If we are confident in our predictions of obstacle behavior
then conservative constraints will allow significant freedom
and we can plan proactively, searching for a chain of maneu-
vering decisions that brings the agent to its end goal. An effi-
cient search strategy in this case is the rapidly-exploring ran-
dom tree which avoids exploring near-redundant states [9],
[29], [40]. In highly dynamic but predictable environments it
may be useful to explore space-time, not just space, because
a short wait can save a lengthy detour when the obstacle is
likely to move.

There is often significant uncertainty about the future, such
that no long-term maneuver can guarantee agent safety. In
these cases a reactive method makes more sense: at each
moment, pick a short-term maneuver which is conservative
over the immediate time window, but considers only the
most probable situations at later times. This is similar to
the quiescence search used in many programs for playing
board games: since we cannot plan for every contingency
explicitly we instead guard against short-term dangers and
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try to arrive at a “good” position a few moves in the future,
where our definition of “good” is based on our expectation
of what the other players are likely to do.

A third case occurs when the agent cannot be expected
to satisfy all constraints; this might be an agent seeking a
collision or trying to dodge many projectiles at once. Here
the goal is to find a maneuver which minimizes constraint
violation, either by maximizing the time until violation (a
root-finding problem in our model) or by minimizing the
number of high-priority constraints violated.

In all cases, we suggest using a stochastic search method.
We focus on the reactive case, but expect similar principles
will apply to other searches as well. We assume that the target
maneuver is supplied and use the following observations to
build a simple but effective search:
• The search space is strictly bounded; hence quasi-

random distributions can locate an initial feasible point.
• The search space must exhibit a fair degree of locality

because its complexities are created by a few poly-
nomial inequalities of moderate order; searching near
known feasible points allows rapid hill-climbing.

• Since the world typically does not change much from
one iteration to the next, a previous solution can serve
as a good initial guess.

• We are interested only in finding maneuvers which are
more similar to the target maneuver than the best safe
maneuver found so far. This defines a subset of the
search space we can sample quasirandomly to escape
local minima.

Thus we interleave searching near the most recently dis-
covered safe maneuver and searching quasirandomly over
the allowable more optimal region. In our experience, this
converges to a near-optimal maneuver after sampling just
20–30 test vectors. Using more that 100 test vectors never
resulted in improved agent behavior in our simulations.

D. Optimizations

The Minkowski sums and differences presented in Sec-
tion IV-B can be used to dismiss certain obstacles before
beginning a search. The smallest root of the sum of possible
agent and obstacle maneuvers is the minimal time before a
collision can occur, and the obstacle may be ignored safely
until that time. Similarly, if subtracting the agent’s possible
maneuvers from the obstacle results in a constraint violation,
that violation is inevitable and the agent shouldn’t waste time
trying to find a way to avoid it.

We gained 2–4× speedups by providing each agent with
a single bounding sphere; if the bounding spheres don’t
collide, the actual contours need not be checked. With a
similar bounding sphere for the possible obstacle locations
the otherwise expensive Minkowski sums and differences
become simple changes in sphere radii.

As with any stochastic search, this technique is paralleliz-
able; both multiple search points and multiple constraints can
be checked in parallel, at the possible expense of failing to
short-circuit some computations.

Fig. 1. Time-lapse screen shots of two real time simulations of 12 cars
driving in a field containing several pillars. On the left each car has a turning
radius of 4 feet, on the right the turning radius is 16 feet. All cars maintain
a median speed of 30 mph and steer toward the center of the image if
possible. No collisions occurred in either 15-minute simulation.

V. RESULTS

To demonstrate the power of the approach presented in this
paper we ran several reactive simulations in situations that
would tax an experienced human controller. We implemented
the algorithm using C++ with no external library support.
Timings are measured using single-threaded execution on a
1.5GHz Core 2 Duo.

Our main tests were run with the 2D car agent described
in Example 3; three of these are presented in the movie
accompanying this paper and are described below. We also
implemented a set of simple holonomic agents in two and
three dimensions with controlled variable dk

dtk
~p with k ∈

{1, 2, 3}. All simulations were run for fifteen minutes of
simulated time.

In our first test we place multiple cars in a mostly open
space containing several pillars as shown in Fig. 1. Reference
commands tried to keep the cars at 30 mph and tried to
steer them toward the center of the test region. Tests were
run with various turning radii (between 3 and 20 feet); in all
cases each agent was allowed only 10% of a single processor,
enough for a 10-sample search 30 times a second. Guarding
against all possible obstacle behaviors as outlined in Sec. IV-
A resulted in fewer near misses and fewer agents stopping,
but no collisions resulted even without such a guard.

Another test placed a car driving at 60 mph in the same
field of pillars while being shot at by 15–20 small projectiles
per second, each moving at 360 mph. Each is fired from
a random location through the middle of possible vehicle
locations; in the worst case, six projectiles can guarantee a
collision under every possible maneuver. 40% of projectiles
hit the car if it takes no evasive action. Randomly generated
steering actions reduced this to 15%, while our algorithm
running on 50% of one processor was hit by only 1.5% of
the projectiles.

A third test placed agents in a lawless intersection situa-
tion. For k = 1 the holonomic agents avoided all collisions,
just as pedestrians typically do. For higher k or car-like
agents, the fact that agents do not cooperate meant some
agents (up to, depending on the their mobility) were forced
off the road as a consequence of being hemmed in by other
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Fig. 2. Time-lapse screen shots of two simulations of cars in hostile
environments. On the left the car avoided 98.5% of the projectiles with
only half a second lead time. On the right no cars collided, though some
were forced off the road by other cars.

agents. Snapshots of both of these tests are presented in
Fig. 2.

VI. FUTURE WORK

The most obvious next step for this work is to incorpo-
rate our algorithm into a real robot. This entials selecting
a particular robot and modeling it as an agent, as well
as implementing a signal processing technique to provide
apropriate input. While the unconstrained nature of the agent
models and the handling of explicit input uncertainty should
make this a relatively straightforward task, implmenting the
algorithm on a physical platform will provide an additional
measure of its effectiveness.

We did not implement the parallelization outlined in
Section IV-D; however we anticipate it would admit a near-
linear increase in performance, allowing the effective use of
a more sophisticated set of maneuvers and constraints.

Many domain-specific routines are motivated by the diffi-
culty of discerning individual obstacles with readily-available
sensors. Techniques for generating constraints directly from
sensor data would allow this technique to be used in such set-
tings without the need for a customized maneuver selection
algorithm.

We believe it would be fruitful to place this maneuver
selection routine within a publish-subscribe architecture. The
maneuvering search would continuously seek good maneu-
vers given constraints and goals published asynchronously
by a high-level planner; the best maneuver known would
then be published to a low-level control system. This would
increase the modularity and parallelism of the system, but it
anticipates an online search methodology more sophisticated
than the simple stochastic search we have presented.

VII. CONCLUSION

We have developed a versatile constraint specification
and evaluation technique for mobile agents, discussed in
Section III. We highlighted its versatility in Section IV,
where we presented techniques for handling uncertainty (IV-
B); outlined how it may be used for reactive navigation, plan
repair, or in overconstrained settings such as agents seeking
collisions (IV-C); and discussed techniques to optimize and

parallelize the routine (IV-D). We demonstrated its power in
Section V with a number of reactive navigation simulations.

It would be instructive to test this method on a wider range
of problems and perform a controlled comparison with other
maneuvering algorithms. At present, however, the authors
are unaware of any canonical set of example situations for
evaluating maneuver selection algorithms.

APPENDIX

Proof: [Proof of Theorem 1] We first show that the
inequality implies each of the three conditions:
• Trivially, p(t)q(t) <

r(t)
s(t)∀t ∈ [t0, t1] =⇒ p(t0)

q(t0)
< r(t0)

s(t0)
.

•
p(t)
q(t) <

r(t)
s(t) =⇒ p(t)

q(t) 6=
r(t)
s(t) ⇐⇒

ps−qr
gcd(q,s) 6= 0. The

gcd term is needed for the equivalence to hold at the
specific ts for which gcd(q, s)(t) = 0.

• A rational function switches from positive infinity to
negative infinity at each of the odd-multiplicity roots
of the denominator. If only one side of the inequality
switches at a given t, the inequality fails on one side
of that t; if both switch at the same t the inequality
is undefined at that t. Since the inequality is required
does hold, neither denominator may contain an odd-
multiplicity root within the interval.

We now show that the these three conditions imply the
inequality. By the second condition the curves never cross; by
the third condition they never jump from positive to negative
infinity, so the inequality must have the same truth value over
the entire interval. By the first condition it it true for t0; thus
it must be true for the entire interval.
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