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Robust sensor-based grasp primitive for a three-finger robot hand

Javier Felip and Antonio Morales

Abstract— This paper addresses the problem of robot grasp-
ing in conditions of uncertainty. We propose a grasp controller
that deals robustly with this uncertainty using feedback from
different contact-based sensors. This controller assumes a de-
scription of grasp consisting of a primitive that only determines
the initial configuration of the hand and the control law to be
used.

We exhaustively validate the controller by carrying out a
large number of tests with different degrees of inaccuracy in
the pose of the target objects and by comparing it with results
of a naive grasp controller.

I. INTRODUCTION

Management of uncertainty is one of the biggest problem
to address when developing applications for unstructured
scenarios. In the case of robot grasping, uncertainty can
arise from several sources: lack of complete knowledge
about the physical properties and shape of the target objects,
inaccuracy in the determination of the pose of the object and
the configuration of the robot (i.e.: position of mobile robot),
mismatch between planner models and real conditions due
to sensing errors, limitation of planner models, and many
others.

Analytical solutions to the grasp planning problem has
been provided for structured scenarios [1]. However these
solutions often depend on the assumption that the contact
locations obtained as solutions are reachable by actuators
with enough precision. For common robots scenarios this is
not realistic even in the case that the shape of the object is
perfectly known. Several attempts to design analytical grasp
planning algorithms that take into account a certain degree
of inacuracy has been made [2], [3]..

A common approach to reduce uncertainty is the use of
sensor information in the planning and execution phases
of grasping. Vision has been used to obtain the shape of
unknown target objects [4], [5], or to determine the location
and pose of them [6]. In both cases, visual input is used
to plan feasible grasps. Visual feedback is also used when
the arm tries to reach the object. Murphy et al. uses visual
techniques to correct the orientation of four-finger hand while
approaching an object to allow better contact locations [7].
Namiki et al. uses a fast control schema in combination with
tactile feedback to cage an object [8]. Infrared sensors has
been also used to correct the approaching orientation of the
gripper [9]. In innovative design Hsiao et al. use IR sensors
to estimate the normal direction of closer object surfaces to
search a suitable contact location [10].
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Fig. 1. PA-10 7 d.o.f with Barrett Hand and a JR3 force/torque and
acceleration sensor. The hand has Weiss Robotics pressure sensors on its
fingertips.

Once the object is contacted with the robot, gripper, tactile
and force sensors can be applied. Contact force measurement
is used to estimate the quality of the grasps [11], [12], [13] or
the shape of the object [14] with the purpose of reach better
contact locations through a sequence of grasping/regrasping
actions. Contact information can also be used to program
complex dexterous manipulation operations like finger repo-
sitioning while holding the object [11], [15]. Several works
have combined the use of several sensors to complete the
whole process of grasp planning and execution [16], [17].

Robustness in grasp execution is not only achieved by
designing sensor-based controllers but also by combining
several controllers with different optimisation goals. These
combinations has been based on hierarchical schemes based
on reflex programming [18], [13] or complementary con-
trollers [12], [10].

A. Grasp primitives

In this paper we follow a sensor-based approach that is
based on an alternative paradigm of describing grasps. Most
of the above papers assume that grasps are described as a
set of contact points on the object surface. In fact, most
of the problems arise as a consequence of the impossibility
of reaching those points. Our paper is developed under
a different assumption. Grasps are described as instances
of basic primitives [17]. A grasp primitive is a specific
controller designed to perform a particular indivisible action,
in our case a grasp. In practical terms it is defined by
a initial hand preshape, a sensor-based controller, and a
set of ending conditions. Its behaviour can be determined
by several parameters like initial position and orientation,
maximum force allowed, and others. An instance of a grasp
primitive is the set of values of this parameters. Hence, a
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Fig. 2. Detail of the Barrett hand.

grasp is an instance of a primitive that determines the initial
configuration of the robot hand and the control policy that
is going to be applied to execute the grasp.

This definition of grasp primitive presents two perspec-
tives. From a practical point of view a grasp primitive is a
single controller that performs a specific task on a particular
embodiment. From an abstract point of view, primitives are
the simplest pieces of a vocabulary to elaborate plans. Hence,
they are well suited to be the basic piece of a reasoning and
learning procedures.

The concept of grasp primitive is not new and has been
used in many other robot-related works. Actually the term
“motor primitive” is borrowed from neuroscience literature
[19], and has also been widely used in robot learning [20],
[21]. Nagatani and Yuta implemented and combined several
action primitives to perform a complex behaviour: a mobile
robot behaviour capable of opening and going through a
door [22]. Aarno et al. implement visual analysis to program
“Elementary Grasping Actions (EGA)”, a kind of grasp
primitives, for a parallel gripper [5]. Finally Finite State
Machines has been proposed to combine primitive actions
in the execution of complete manipulation tasks [23].

II. METHODOLOGY
A. System description and Assumptions

We implemented our primitive for a robotic setup consist-
ing of a Mitsubishi PA-10 with 7 d.o.f. (Degrees of freedom)
mounted on an Active Media PowerBot mobile robot. The
manipulator is endowed with a three-fingered Barrett Hand
and a JR3 force/torque and acceleration sensor mounted on
the wrist, between the hand and the end-effector (see Fig.
1). The hand has been improved by adding on the fingertips
arrays of pressure sensors designed and implemented by
Weiss Robotics.

The Barrett hand is a 4 d.o.f., three-fingered hand. Each
finger has one degree of freedom thus phalanxes are not
independent. Fingers F1 and F2 can rotate around the palm
and move next to Finger F3 (Thumb) or oppose to it, this
d.o.f. is called adduction. The reference frame of the hand
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Fig. 3. Algorithm execution diagram.

and the adduction d.o.f. are depicted in Fig. 2. Each finger
of the hand has built-in strain sensor. The JR3 is a 12 d.o.f.
sensor that measures force, torque and acceleration in each
direction of the space.

Our experimental workspace consists of a horizontal sur-
face where the targets objects are lying. The objects that
can be manipulated are those that can fit inside the hand.
The minimum dimensions are 25mm height, 70mm long, and
10mm width. Big objects that can be held by the hand should
have a maximum width of 200mm. On this paper we have
focused on box-like and clyinder-like objects within those
dimensions (see Figs. 6, 7 and 8) and have not considered
non-symetrical objects.

The input of the primitive controller is the starting position
and orientation of the hand and the maximun finger force.
In optimal conditions, the hand will be perfectly oriented in
the direction of the object, and rotated perpendicularly with
respect to the main axis of the object bounding box. These
input parameters are provided from an external module based
on visual information.

The designed controller is able to deal with errors in deter-
mining the parameters. The error estimitation is decomposed
in translation error and rotation error (see Fig. 9). The first is
defined by the cartesian distance on each frame axis between
the center of the object and its estimation. The second is
calculated from the difference between each estimated object
axis and its true orientation.

The controller tries to grasp the object aproaching from
above following an orientation close to the vertical. In order
to allow lateral approaching directions several changes in
the desing of the contorller may be necessary. Basically an
estimation of the distance to the object should be known in
advance. During the grasp execution, the robot can inadvertly
move the object but the controller is designed to take into
account most of these cases.

The algorithm starts with a cylindrical preshape. Where
two fingers (F1 and F2) are opposing completely the thumb
(F3). In some cases, the hand preshape is switched to
a spherical configuration where the fingers are arranged
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Fig. 4. Correction of alignment errors. a) The hand touches the object. The
contact is not perpendicular and a normal force (Fn) appears at a distance
from the center creating the torque Ty. b) The hand Z error is calculated
using Index and Middle finger extensions. ¢) The grasp center is displaced.

forming an equilateral triangle.

B. Algorithm

The controller tries to obtain grasp stability on the basis
of the following criteria (ordered by relevance):

« Hand-object alignment

« Parallelism of contacted faces

« Maximization of contact surface

« Finger position symmetry

« Finger force symmetry

Hand and object are aligned when all their axis are parallel
and the projection of the Z axis of the hand intersects the
object bounding box on its center. The alignment avoids
torque forces from appearing when lifting the object.

The starting position and orientation of the hand is a
critical parameter for the algorithm. This pose sets the
approach vector to the object which is along the positive Z
axis of the hand (see Fig. 2). The aim of the algorithm is to
perform a stable grasp of the object allowing a considerable
error in the starting position. Thus the success of the grasp
is less dependent from the accuracy of the estimations.

The execution of the grasp is divided into three main
phases (see Fig. 3).

1) Alignment: This phase tries to align hand and object
using force and tactile feedback. First of all the hand moves
forward until the force/torque sensor on the wrist detects
contact with the object. If this contact causes a torque force
around Y axis it means that the object and the hand are not
aligned (see Fig. 4.a). To correct this error the hand moves
back and rotates an angle of two degrees, then continues
touching the object until the torque disappears or it changes
the sign. If the torque changes the sign, the hand rotates one
degree in the opposite direction and the Y alignment ends.

At this point the hand closes. The difference in the
extension of the fingers F1 and F2, determines the rotation
around the Z axis (see Fig. 4.b) needed to align with the
object. Both fingers must have the same extension to perform
an stable grasp. This correction is not applied if the spherical
pregrasp shape is set.

Fig. 5. Determining parallelism of grasped faces: a) First contact. b) Grasp
width is constant, the faces grasped are parallel. ¢) Inner phanlanxes contact
the object.

2) PFarallel face detection: In the second stage the con-
troller tries to determine if the contacted surfaces are parallel
and stable. Using the Barrett Hand inner force sensors to
stop the fingers and the hand propioception, the width of the
current grasp is measured (see Fig. 5.a and c), then the hand
opens a little and moves Smm backwards. After that the hand
closes and the width of the grasp is measured again. If there
is a big difference between the two samples it means that the
grasped faces are not parallel (see Fig. 5.d) and the process
starts again. This phase of the algorithm repeats until the
difference is close to zero or the object is lost. If the object
is lost a reflex to recover it, is triggered. This reaction is
explained at the end of this section.

When the grasp is stable(i.e. aligned with object and
grasped surfaces parallel), the fingers move the object align-
ing it with the palm center and keeping the extension of
the fingers (see Fig. 4.c and d) in order to improve contact
surface, finger position symmetry and finger force symmetry.

3) Force adaptation: Using the fingertip integrated force
sensors of the Barrett hand, the force of each fingertip is
increased until it reaches the predefined limit. Then, the hand
lifts the object and evaluates if the grasp has been successful.

C. Security reflexes

During the execution of the primitive, the algorithm is
attentive for some important events in order to inform the
user, adapt to the environment conditions and perform a
successful grasp. The first event is the loss of the object.
This happens when all the three fingers close completely
without making any contact on the object. In this case the
hand opens and moves a little bit down then closes again
trying to recover the object contact.

Another event is the adduction of the fingers. When the
fingers make contact, if the object is cylindrical, the fingers
can adduct due to the adduction d.o.f is set free. This
natural adduction is detected by the algorithm and the hand
configuration is set to spherical.

The last event is the miss of the object by only one finger.
The reaction is to open the hand and to move laterally S5cm
(inter finger distance).
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Fig. 6.

Cylinder-like objects. Properties (radius x height, weight) from
left to right and top to bottom: Cylinder1(110x80, light) Cylinder2(65x215,
light) Cylinder3(105x75, heavy) Cylinder4(115x50, light)

D. Additional parameters

Other parameters as distance, size, weight and shape could
be used to improve the accuracy and execution of the grasp.
The distance could be used to avoid blind first contact with
the object; the size could be used to set the starting opening
of the fingers; the weight to determine the force to be applied
by the fingers; and the shape to set the pregrasp shape
reducing the time consumed by the pregasp shape detection
and switching.

III. VALIDATION

A test bench has been designed in order to validate the
grasping controller. This test bench consists of a set of
objects and a set of starting positions to be tried with each
object.

To have a comparison reference for our controller, we
have designed an alternative naive grasp controller without
corrections. This controller needs 4 input parameters: starting
position, distance to the object, pregrasp size and finger
force. The fingers moves to the pregrasp size and the hand
moves forward along its Z axis the distance specified. The
hand closes and lifts the object. If the object is lifted and
does not fall for 10 seconds, the execution is successful.

A. Objects and test bench

The objects selected are classified according to their shape
(cylinders in Fig. 6, boxes in Fig. 7 and others in Fig. 8),
their size (thin, normal, thick) or their weight (light, heavy).
All the objects are solid. Following the shape classification,
we have selected thin, normal and thick objects for each
shape in order to test as many different combinations of
object features as possible. The optimal conditions have been
tested in all the objects. We have selected a subset of 2
box-like objects and 2 cylinder-like objects to test rotation
and translation error conditions. This selected objects are the
biggest and the smallest from each category.

Translation error is the deviation from the center of the
object to the center of the hand and it is measured in mm.

Fig. 7. Box-like objects. Properties (base x height, weight) from left to
right and top to bottom: Box1(270x53x95, light) Box2(236x35x35, light)
Box3(127x116x92, heavy) Box4(100x87x45, light)

Rotation error is the deviation between hand and object main
axis and is measured in degrees (see Fig. 9).

This test bench evaluates robustness against translation and
rotation errors. The behaviour of each algorithm has been
also evaluated in optimal conditions which can present a
rotation error of 5 degrees and 10% of translation error.

To evaluate the effect of rotation errors the following
conditions have been taken into consideration:

e 15 degrees on X, Y, Z, XY, XZ, YZ and XYZ.
e 20 degrees on X, Y, Z

The combined rotation error is applied first in X next in
Y and later in Z. A rotation error of 15 degrees in XYZ is a
rotation of 15 degree on X, then 15 degree on Y and finally
15 degree on Z. The results of the rotation tests are shown
in Table III for the robust controller and in Table IV for
the naive controller. The cylinder-like objects are invariant
to rotation in Z axis. The Z rotation error is not applicable
to cylinder-like objects.

The amount of translation error is relative to the size of
the object because usually this two variables (size and error)
are related. To evaluate the effect of translation errors the
following conditions have been taken into consideration:

e 20% on X, Y, Z, XY, XZ, YZ and XYZ
e 40% on X, Y, Z

IV. RESULTS

The global results are presented in Table I and Table II,
the first column shows the results for the optimal case, the

Fig. 8. Other objects. Properties (base x height, weight) from left to right:
Other1(180x90x90, heavy) Other2(90x90x163, light)
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Fig. 9. Rotation and translation error, the object frame reference is on
the center of the object. a) Example of alpha degrees Y rotation error. b)
Example of X and Y translation error

Optimal Rotation Translation Total
Box 1 5/5(100%)  24/24(100%)  13/24(54%)  42/53(79%)
Box 2 5/5(100%) 16/22(73%)  22/24(92%)  43/51(84%)
Cylinder 2 5/5(100%) 7/12(58%) 16/20(80%)  28/37(76%)
Cylinder 4  5/5(100%)  11/11(100%)  19/20(95%)  35/36(97%)
TABLE I

ROBUST ALGORITHM GLOBAL RESULTS

second and third columns present the summary of the rotation
and translation error. The last column shows the averaged
results for each object.

Details about experiments with error conditions can be
found in Table IIl and Table IV for rotation error and in
Table V and Table VI for translation error.

V. DISCUSSION

Summary tables I and II show clearly the better per-
formance obtained by our robust controller in comparison
with the naive one. It not only successes in a 100% of
the experiments in optimal conditions but also outperforms

Optimal Rotation Translation Total
Box 1 5/5(100%)  25/50(50%) 16/40(40%)  46/95(48%)
Box 2 5/5(100%)  26/50(52%)  40/40(100%)  71/95(75%)
Cylinder 2 5/5(100%)  23/25(92%)  35/40(88%)  63/70(90%)
Cylinder 4  5/5(100%)  24/25(96%) 14/20(70%)  43/50(86%)
TABLE I
NAIVE ALGORITHM GLOBAL RESULTS
Error Box 1 Box 2 Cylinder 2 Cylinder 4
15 X Axis 2/2(100%)  2/2(100%)  2/2(100%)  2/2(100%)
20 X Axis 2/2(100%)  2/2(100%)  2/2(100%)  2/2(100%)
15 Y Axis 3/3(100%)  2/2(100%) 1/2(50%)  3/3(100%)
20 Y Axis 3/3(100%)  2/2(100%) 1/425%)  2/2(100%)
15 Z Axis 3/3(100%)  2/2(100%) N/A N/A
20 Z Axis 3/3(100%)  2/2(100%) N/A N/A
15 XY Axis  2/2(100%) 1/2(50%)  2/2(100%)  2/2(100%)
15 XZ Axis 2/2(100%) 1/2(50%) N/A N/A
15 YZ Axis 2/2(100%)  1/2(50%) N/A N/A
15 XYZ Axis  2/2(100%) 1/4(25%) N/A N/A
TABLE III

RESULTS WITH ROTATION ERROR FOR THE ROBUST ALGORITHM

Error Box 1 Box 2 Cylinder 2 Cylinder 4

15 X Axis 5/5(100%)  5/5(100%)  5/5(100%)  5/5(100%)

20 X Axis 5/5(100%)  5/5(100%)  5/5(100%)  5/5(100%)

15 Y Axis 4/5(80%) 2/5(20%) 3/5(20%) 4/5(80%)

20 Y Axis 2/5(20%) 0/5(0%) 5/5(100%)  5/5(100%)
15 Z Axis 4/5(80%)  5/5(100%) N/A N/A
20 Z Axis 4/580%)  5/5(100%) N/A N/A

15 XY Axis 0/5(0%) 0/5(0%) 5/5(100%)  5/5(100%)
15 XZ Axis 0/5(0%) 4/5(80%) N/A N/A
15 YZ Axis 1/5(20%) 0/5(0%) N/A N/A
15 XYZ Axis 0/5(0%) 0/5(0%) N/A N/A

TABLE IV

RESULTS WITH ROTATION ERROR FOR THE NAIVE ALGORITHM

Error Box 1 Box 2 Cylinder 2 Cylinder 4
20% X Axis 2/2(100%)  2/2(100%)  2/2(100%)  2/2(100%)
40% X Axis 1/2(50%)  2/2(100%)  2/2(100%)  2/2(100%)
20% Y Axis 172(50%)  2/2(100%) 172(50%)  2/2(100%)
40% Y Axis 0/2(0%) 2/2(100%) 0/2(0%) 1/2(50%)
20% Z Axis 2/2(100%)  2/2(100%)  2/2(100%)  2/2(100%)
40% Z Axis 2/2(100%)  2/2(100%)  2/2(100%)  2/2(100%)

20% XY Axis 1/4(25%) 3/4(75%)  2/2(100%)  2/2(100%)

20% XZ Axis 2/2(100%) 172(50%)  2/2(100%)  2/2(100%)

20% YZ Axis 1/2(50%) 1/2(50%) 1/2(50%)  2/2(100%)

20% XYZ Axis 1/4(25%) 3/4(75%)  2/2(100%)  2/2(100%)
TABLE V

RESULTS WITH TRANSLATION ERROR FOR THE ROBUST ALGORITHM

the naive one when rotational and translational errors are
introduced.

The only exemption to this rule is the case of Cylinder 2
(object on the top-left corner on fig 6). This object is too light
and when touched while lying on a surface, it moves easily.
We observed that the successive contacts that our controller
produce causes that the object variates its position making
impossible to grasp it.

This case shows one of the drawbacks of our approach.
Our controller is touching the objects several times before
finally closing the finger to catch them. In case of light
or unstable objects this can be a problem. This difficultty
surpassed by the use of more sensitive sensors or by the
implmentation of compliant hardware or controllers. The
use of proximitiy sensors [10] would completely solve this

Error Box 1 Box 2 Cylinder 2 Cylinder 4
20% X Axis 0/4(0%) 4/4(100%)  4/4(100%)  4/4(100%)
40% X Axis 0/4(0%) 4/4(100%)  3/4(75%)  4/4(100%)
20% Y Axis 4/4(100%)  4/4(100%)  4/4(100%)  4/4(100%)
40% Y Axis 0/4(0%) 4/4(100%)  4/4(100%) 0/4(0%)
20% Z Axis 3/4(75%)  4/4(100%)  4/4(100%)  2/4(50%)
40% Z Axis 2/4(50%)  4/4(100%)  2/4(50%) 2/4(50%)

20% XY Axis 0/4(0%) 4/4(100%)  4/4(100%)  4/4(100%)

20% XZ Axis 2/4(50%)  4/4(100%)  4/4(100%)  2/4(50%)

20% YZ Axis 4/4(100%)  4/4(100%)  2/4(50%)  4/4(100%)

20% XYZ Axis 1/425%)  4/4(100%)  4/4(100%)  2/4(50%)
TABLE VI

RESULTS WITH TRANSLATION ERROR FOR THE NAIVE ALGORITHM
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problem.

One of the advantages of our approach is the little previous
information it needs about the object. No exact model of the
object is necessary, and the only input is the maximum force
to be applied by the fingers. It is supposed that the hand is
appropriately oriented and preshaped. More information, like
estimated size or the distance, would be definitively help to
improve the controller robustness and the time necessary to
complete a grasp.

Currently all the grasp tried to approach from above. That
is, the objects are lying on a surface and the hand approaches
them vertically. This simplifies our controller since the
movements of the objects are limited. Improvements are
necessary if grasps from a side are going to be executed,
since the stability of the objects could be compromised if
they are touch. In this case an estimation of the distance to
the object would be necessary.

At the moment the average time to execute a grasp is
about 40 seconds, though this time depends on the object
and the initial position error. It could be reduced providing
more information about the location and characteristics of
the objects.

Finally, an attached video shows pose correction phases,
event adaptation and grasp force increasing. It is also shown
that the stability of the grasps performed by the robust
algorithm are better than the ones performed by the naive
controller.

VI. CONCLUSION

We have developed a robust sensor-based grasp primitive
that need little information to execute its task and that is
able the correct and adapt to variations and inaccuracies in
the expected conditions of the scenario.

We indicated three ways of improving the grasp primitive
controller implemented. The most immediate future work
is to extend the family of manipualtion primitives that
allow the execution of a complete pick-and-place task, i.e.:
approaching and preshaping, lifting, transportation and land-
ing primitives. The development of these primitives would
provide a vocabulary of basic skills that will allow planning,
and learning in future stages.
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