
Nonparametric Belief Propagation for Distributed Tracking of Robot
Networks with Noisy Inter-Distance Measurements

Jeremy Schiff, Erik B. Sudderth, Ken Goldberg
{jschiff, sudderth}@eecs.berkeley.edu, goldberg@berkeley.edu

Abstract— We consider the problem of tracking multiple
moving robots using noisy sensing of inter-robot and inter-
beacon distances. Sensing is local: there are three fixed bea-
cons at known locations, so distance and position estimates
propagate across multiple robots. We show that the technique
of Nonparametric Belief Propagation (NBP), a graph-based
generalization of particle filtering, can address this problem and
model multi-modal and ring-shaped uncertainty distributions.
NBP provides the basis for distributed algorithms in which
messages are exchanged between local neighbors. Generalizing
previous approaches to localization in static sensor networks,
we improve efficiency and accuracy by using a dynamics model
for temporal tracking. We compare the NBP dynamic tracking
algorithm with SMCL+R, a sequential Monte Carlo algo-
rithm [1]. Whereas NBP currently requires more computation,
it converges in more cases and provides estimates that are 3 to
4 times more accurate. NBP also facilitates probabilistic models
of sensor accuracy and network connectivity.

I. INTRODUCTION

Emerging advances in sensor networks: sensors, proces-
sors, and wireless communications are yielding improve-
ments in sensor and transmission robustness, smaller sizes,
cheaper devices, and lower power usage. Collaborative self-
localization and tracking using wireless sensors has many
applications such as tracking pallets in warehouses, vehicles
on roadways, or firefighters is burning buildings. In this paper
we consider the problem of tracking multiple moving robots
using noisy sensing of inter-robot and inter-beacon distances.
Sensing is local: there are three fixed beacons at known
locations, so distance and position estimates propagate across
multiple robots.

Consider a graph where nodes correspond to beacons or
mobile robots, and edges link pairs of nodes for which
distance measurements are available. Robots may be mul-
tiple hops away from beacons. The inter-distance tracking
problem is illustrated in Fig. 1. Inter-distance tracking is
also closely related to simultaneous localization and mapping
(SLAM) problems [2], in which each robot is treated as a
uniquely identifiable, but mobile, landmark.

We formalize the inter-distance tracking problem using
a probabilistic graphical model, which integrates prior es-
timates about beacon locations, sensor models, and robot

J. Schiff and E. Sudderth are with the Dept. of EECS and K. Goldberg is
with the Depts. of EECS, IEOR and the School of Information, University
of California, Berkeley, CA, 94720, USA.

This work was funded in part by NSF CISE Award: Collaborative Ob-
servatories for Natural Environments (Goldberg 0535218, Song 0534848),
and by NSF Science and Technology Center: TRUST, Team for Research
in Ubiquitous Secure Technologies, with additional support from Cisco, HP,
IBM, Intel, Microsoft, Symmantec, Telecom Italia and United Technologies.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep 1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Timestep 1, Iteration 7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Timestep 4, Iteration 19

Fig. 1. Tracking seventeen robots at first and fourth timestep. The top
figures depict inter-distance sensor connectivity: edges link pairs of robots
that share a distance reading. Three green discs denote fixed reference
beacons. True robot locations are indicated with red crosses. The bottom
figures overlay true robot locations with point estimates of robot location
generated by the NBP algorithm, shown as blue dots, at the center of blue
ellipses, indicating twice the standard deviation. Note that although robots
move substantially between timesteps and few robots are in direct contact
with beacons, our inference shows good performance.

dynamics. In contrast with previous robot tracking meth-
ods, we then apply a variant of the belief propagation
(BP) [3] algorithm, called nonparametric belief propagation
(NBP) [4], to infer globally consistent estimates of robot
location from noisy, local distance measurements using this
graphical model. NBP approximates posterior distributions
of unobserved variables by sets of representative samples.
It is a generalization of particle filters [2] to domains with
richer, non-temporal structure. NBP does not require linear
or Gaussian models [5] and can model multi-modal and ring-
shaped distributions produced by distance sensors.

The algorithm runs in two phases. Sec. V describes
phase I, where we localize robots at the first timestep, using
a similar formulation to the static localization algorithm of
Ihler et al. [6]. Sec. VI describes phase II, where a dynamics
model is used to combine inter-distance measurements over
time.

Our tracking algorithm uses dynamics models to im-
prove accuracy, while reducing computation and commu-

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1369

nication requirements by up to 3 times when compared
to a localization-only approach for a 20 robot network. In
our experiments, we demonstrate cases where our tracking
algorithm correctly determines the location of the robot,
while processing each timestep independently fails to do
so. Other approaches, for example those based on directly
weighting temporal samples by inter-distance likelihoods,
failed to localize the robots. Our approach, based on a novel
decomposition of the temporal dynamics model, allows us
to integrate multi-hop inter-distance readings in a single
timestep and track the robots. We also show how NBP
message updates should be scheduled to achieve robust,
reliable convergence.

In the Experiments section, we compare our algorithm to
a Monte-Carlo approach developed by Dil et al. [1]. We find
that our algorithm is slower but 3 to 4 times more accurate,
and more robust to noisy inter-distance sensor readings.

II. RELATED WORK

Many robotics problems are related to our collabora-
tive inter-distance tracking problem, including simultaneous
localization and mapping (SLAM), simultaneous localiza-
tion and tracking (SLAT), control of robotic swarms, and
robot/sensor network localization. We distinguish between
localization approaches, which use sensor readings from a
single timestep (perhaps in series over multiple timesteps),
and tracking approaches, which integrate location estimates
using models of robot dynamics.

In classic SLAM problems, a single mobile robot produces
a map of the environment while simultaneously determining
its location. Several recent approaches allow SLAM prob-
lems to be efficiently solved with as many as 108 static
features where distributions are modeled as multivariate
Gaussians. Many of these methods are based on inference
in an appropriate graphical model; for an overview, see [2].
SLAM has also been extended to domains with multiple
robots, often under the assumption that the initial locations
of the robots are known [7], [8]. In these approaches, robots
share and localize using a global map, rather than through
distributed observations of other robots as in our approach.
Thrun and Liu [9] investigate merging multiple maps when
initial locations of robots are unknown, and the landmarks are
not uniquely identifiable. Howard [10] explores map merging
when robots do not know their initial locations. In contrast,
our approach uses a series of inter-robot sensor values.

The SLAT problem is a variant of SLAM in which static
robots, which are typically nodes in a sensor network, use
distance and bearing readings from a moving robot to local-
ize themselves. The approach of Taylor et al. [11] avoids rep-
resenting ring-shaped or multi-modal posterior distributions
by assuming sensors roughly know their initial locations, and
batch processing sets of distance measurements. Funiak et
al. [12] propose a more complex method focused on SLAT
problems in camera networks.

In distributed control, methods have been proposed for
controlling robot swarms to maintain a specified forma-
tion [13], or using several mobile robots to localize a

target [14]. These approaches assume sensors observe true
locations plus Gaussian noise, resulting in posterior distribu-
tions which (unlike those arising in inter-distance tracking)
are well approximated as Gaussian. However, our approach
shares the goal of developing effective distributed algorithms
for multiple robots.

A great deal of research focuses on distance-based local-
ization in sensor networks; for a summary, see [15]. These
localization techniques can be applied at each timestep to
determine the location of each robot, but ignore dynamics. To
address static localization problems, researchers have applied
techniques such as multidimensional scaling (MDS), in both
centralized [16] and distributed [17] implementations. Many
localization methods produce global solutions by incremen-
tally stiching local sensor maps together [17], for instance by
recursively localizing new sensors with respect to previously
localized sensors [18]. Other approaches solve more global
inference problems, computing location estimates via itera-
tive least squares [19], [20]. Such methods can be very effec-
tive when bearing estimates are available, as in the bundle
adjustment methods widely used in camera networks [21].
However, with the greater posterior uncertainty produced
by inter-distance measurements, the approximate marginal
distributions computed by NBP are often more robust and
effective [6].

In some multi-robot tracking applications, a sufficient
number of beacon nodes (at least three) can be directly ob-
served by all robots at all times [22], [23]. Other approaches
assume sensors measure both orientation and distance, al-
lowing for simplifying Gaussian assumptions [24]. Previous
approaches to the inter-distance tracking problem include the
work of Howard et al. [25], which formulates inter-distance
tracking as numerical optimization; Park et al. [26], which
solves a trilateration problem using quadratic approximations
of the motion of robots relative to one another; and Dil et
al. [1], which uses assumptions about maximum transmission
radii to apply particle filters.

In contrast with previous localization methods for net-
works of mobile robots, our distributed tracking algorithm
is based on applying the nonparametric BP algorithm to a
probabilistic graphical model. Schiff et al. [27] previously
demonstrated the feasibility of running BP in a real network
of MICA2 motes for static sensor fusion.

III. PROBLEM FORMULATION

A. Input, Assumptions, and Output

Our models supports tracking applications where n robots
move around a space for T timesteps. The location of robot
s at time τ is denoted by xs,τ ∈ R2. We currently model the
space as a 1x1 unit square, but our approach can be easily
relaxed to support other geometries. Each robot is equipped
with sensors for inter-distance measurement. We denote the
(noisy) distance estimate between robots s and t at time τ as
dst,τ . As distance estimates are based on signals emitted by
nearby robots, the likelihood a sensor will detect a nearby
sensor diminishes with distance. We refer to the subset of

1370

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Disk Shaped Distributions

Fig. 2. Samples from the distributions of each of three beacons estimations
of a robot’s location, resulting in three ring-shaped distributions

robots which receive distance readings from robot s at time
τ as the neighbors of s, and denote them by Γ(s, τ).

Our objective is to determine position estimates x̂s,τ which
minimize the mean squared error of each robot’s location
estimates, averaged over all time steps:

L(x, x̂) =
1
nT

T∑
τ=1

n∑
s=1

||x̂s,τ − xs,τ ||2 (1)

The NBP algorithm provides non-parametric distributions
at each time step that can be used to quantify confidence
based on variance. A multi-modal distribution can be re-
solved in a variety of ways, as discussed in the Future Work
section.

B. Modeling System Properties
The state of each robot s at time τ is represented by its

position and velocity χs,τ = (xs,τ , ẋs,τ). We model errors
in the estimated distance between robots s and t as follows:

dst,τ = ||xs,τ − xt,τ ||+ νst,τ νst,τ ∼ N(0, σ2
ν) (2)

To unambiguously localize a robot, inter-distance readings
from at least three other localized robots or beacons are
required. Therefore, for localization at the first timestep, the
network must contain at least three beacons and all robots
must have at least three inter-distance readings. We demon-
strate three ring-shaped distributions from exact beacons,
used to localize a single robot in Fig. 2.

Following [20], we model the decay in a robot’s probabil-
ity Po of measuring the distance to another robot as follows:

Po(xs,τ , xt,τ) = exp
{
−1

2
||xs,τ − xt,τ ||2/R2

}
(3)

Here, R is a parameter specifying the range of the transmitter
used for distance estimation. More elaborate models could be
used to capture environmental factors or multi-path effects.

Each robot moves over time according to a dynamics
model P (χs,τ+1 | χs,τ) defined as follows:

xs,τ+1 = xs,τ + ẋs,τ+1 (4)
ẋs,τ+1 = ẋs,τ + ωs,τ ωs,τ ∼ N(0, σ2

ω) (5)

In practice, these velocities are often unobserved variables
used to explain the typically smooth character of real robotic
motion. Alternatively, sensors such as accelerometers could
provide more precise dynamics information.

IV. BACKGROUND

A. Undirected Graphical Models

We model the relationships among the random variables in
our tracking problem using an undirected graphical model,
or pairwise Markov random field (MRF) [28]. This model
is specified via an undirected graph G, with vertex set V =
{1, . . . , n} and edge set E. Each node s ∈ V is associated
with a random variable xs. For notational simplicity, we
focus here and in Sec. V on static localization, so that node
variables are robot positions xs. For the tracking problems
considered in Sec. VI, they become temporal states χs,τ .

The graph G specifies a factorization of the joint distri-
bution of these random variables into a product of local,
non-negative compatibility functions:

p(x) =
1
Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E

ψst(xs, xt) (6)

Here, Z is a normalization constant, and the compatibility
functions encode the information provided by dynamics
models and observed inter-distances.

B. Belief Propagation

Belief propagation (BP) [3] is a general inference algo-
rithm for graphical models. Let Γ(s) = {t ∈ V | (s, t) ∈ E}
denote the set of neighbors of node s. In BP, each node s
iteratively solve the global inference problem by integrating
information via local computation, and then transmitting a
summary message to each neighbor t ∈ Γ(s). In general, this
message mst(xt) is a function encoding sufficient statistics
needed for node t to perform the next round of computation.
For tree-structured graphs, BP is a dynamic programming
algorithm which exactly computes posterior marginal dis-
tributions ps(xs) for all nodes s ∈ V . However, the same
update equations are widely applied to graphs with cycles, in
which case they provide (often good) approximate marginal
estimates p̂s(xs) [3].

The BP algorithm begins by initializing all messages
mst(xt) to constant vectors, and then updates the messages
along each edge according to the following recursion:

mst(xt)←
∫
xs

ψs(xs)ψst(xs, xt)
∏

u∈Γ(s)\t

mus(xs) dxs (7)

This sum-product algorithm is then iterated until the set of
messages converges to some fixed point. The order in which
the messages are updated is a design parameter, and various
schedules (parallel, sequential, etc.) exist. Upon convergence,
the messages can be used to compute approximations to the
marginal distributions at each node:

p̂s(xs) ∝ ψs(xs)
∏

t∈Γ(s)

mts(xs) (8)

C. Nonparametric BP: Distributions as Samples

For inter-distance tracking and localization problems, it
is computationally infeasible to discretize the state space
as required by the standard sum-product algorithm. Thus,
we employ nonparametric belief propagation (NBP) [4],

1371

which directly approximates the marginal distributions of
continuous robotic states via a collection of M sample points.
Messages are represented via a weighted mixture of M
Gaussian distributions:

mst(xt) =
M∑
i=1

w
(i)
st N(xt | x(i)

st ,Σst) (9)

Mixture components are centered on samples x(i)
st from the

underlying, continuous message function, with weights w(i)
st

set via importance sampling principles as detailed below. By
choosing a number of samples M , we can tradeoff accuracy
versus computational cost.

A variety of methods are available for choosing the co-
variance Σst used to smooth message samples [29]. In many
cases, we use the computationally efficient “rule of thumb”
estimate Σst = ROT({x(i)

st , w
(i)
st }), which is proportional to

the weighted covariance of the observed samples:

Σst = M
−2
δ+4

M∑
i=1

w
(i)
st (x(i)

st − x̄st)(x
(i)
st − x̄st)T (10)

Here, x̄st =
∑
i w

(i)
st x

(i)
st is the weighted sample mean, and

δ = dim(xt). However, for ring-shaped messages which are
far from unimodal, the rule of thumb estimator performs
poorly, significantly oversmoothing the estimated density. In
such cases, we set Σst = σ2

νξMI , where ξM is a constant
calibrated offline to the number of samples M .

D. Decomposing Gaussian Mixtures

In the tracking algorithm developed in Sec. VI, it is nec-
essary to decompose a Gaussian mixture p(χ) = p(x, ẋ) into
marginal and conditional distributions p(x)p(ẋ | x). Because
the conditional distribution of a subset of jointly Gaussian
variables is Gaussian, conditional distributions of Gaussian
mixtures are mixtures of lower-dimensional Gaussians. We
now derive formulas for the marginal and conditional por-
tions of each mixture component. As the same formulas
apply to all components, we drop the ·(i) notation.

Consider a Gaussian mixture component with weight wχ,
and mean vector and covariance matrix

µχ =
[
µx
µẋ

]
, Σχ =

[
Σx,x Σx,ẋ
Σẋ,x Σẋ,ẋ

]
. (11)

The marginal p(x) has weight wχ, mean µx, and covariance
matrix Σx. The conditional density p(ẋ | x = a) then has
the following mean, covariance, and weight:

µẋ|x = µẋ + Σẋ,xΣ−1
x,x(a− µx) (12)

Σẋ|x = Σẋ,ẋ − Σẋ,xΣ−1
x,xΣx,ẋ (13)

wẋ|x ∝ wχ

(|Σẋ|x|
|Σχ|

)1
2

exp
{
−1

2
σT0 Σ−1

χ σ0

}
(14)

The transformations from a single joint multivariate Gaussian
to a single conditional multivariate Gaussian, transforming
the mean and standard deviation, are determined by stan-
dard formulas[30]. The weight wẋ|x depends on a centered

observation vector:

σ0 =
[

a− µx
µẋ|x − µẋ

]
(15)

We use this decomposition to factorize dynamics messages
sent between the same robot at subsequent timesteps. By
first integrating distance readings via the smaller position-
only marginals, and then drawing appropriately reweighted
velocity samples, we can integrate multi-hop inter-distance
information over time.

V. PHASE I: LOCALIZATION ALGORITHM

The goal of the inter-distance localization sub-problem is
to infer the location of each node using only information
from a single timestep (the first). Our formulation closely
follows the algorithm proposed by Ihler et al. [6]. Since
we consider a single timestep, we drop the τ notation and
velocity state variables, and denote the position of robot s by
xs. The NBP algorithm alternates between sending messages
to neighboring nodes, and computing marginals at nodes
which received messages. We refer to each pair of steps,
in which all messages are updated once, as an iteration.

To compute new outgoing messages, we use the marginal
estimate p̂n−1

s (xs) from the previous iteration, which is rep-
resented by a set of samples. The inter-distance sensor model
of Eq. (2) implies that message samples are most easily
generated in polar coordinates, with random orientation and
radius perturbed from the noisy inter-distance reading:

θ
(i)
st ∼ U (0, 2π) ν

(i)
st ∼ N

(
0, σ2

ν

)
(16)

x
(i)
st = x(i)

s + (dst + ν
(i)
st)[sin(θ(i)

st); cos(θ(i)
st)] (17)

When the BP algorithm sends a message from s to t, the
incoming message product (as in Eq. (7)) avoids double-
counting by excluding the message sent from t to s. To
account for this in our NBP implementation, we use an
importance sampling framework [4], [6]. Each sample x(i)

st

is reweighted by 1/mn−1
ts (x(i)

s), where mn−1
ts (xs) is the

preceding iteration’s message (a Gaussian mixture). Also
accounting for the effects of distance on the probability of
receiving a measurement, the overall sample weight is

w
(i)
st = Po(x

(i)
st)/mn−1

ts (x(i)
s). (18)

More generally, given a proposal density q(x) from which we
can draw samples x(i), and a target density p(x) we would
like to approximate, importance sampling methods [31]
assign a weight w(i) ∝ p(x(i))/q(x(i)) to each sample x(i).

Importance sampling methods are also used to approx-
imate the marginal update of Eq. (8). Recall that incom-
ing messages mts(xs) are mixtures of M Gaussians. With
d = |Γ(s)| neighbors, the exact message product of Eq. (8)
will produce an intractable mixture with Md components. To
construct a proposal distribution, we instead take an equal
number of samples x

(i)
s ∼ mts(xs) from each incoming

message. Combining these d groups of samples into a single

1372

set, they are then assigned importance weights

w(i)
s =

∏
t∈Γ(s)mts(x

(i)
s)∑

t∈Γ(s)mts(x
(i)
s)

. (19)

To reduce importance sampling variance, Alg. 2 introduces
a parameter k > 1. First, kM samples are drawn from the
messages, and then M samples are drawn with replacement
from the weights assigned to the kM samples.

Algorithm 1 Phase 1, Compute Messages for Localization:
Given M samples {x(i)

s } representing marginal p̂n−1
s (xs),

compute outgoing messages mn
st(xt) for neighbors t ∈ Γ(s)

1. Draw θ
(i)
st ∼ U (0, 2π) , ν

(i)
st ∼ N

(
0, σ2

ν

)
2. Means: x(i)

st = x
(i)
s + (dst + ν

(i)
st)[sin(θ(i)

st); cos(θ(i)
st)]

3. Weights: w(i)
st = Po(x

(i)
st)/mn−1

ts (x(i)
s)

4. Variance: Σst = σ2
νξMI

Algorithm 2 Phase 1, Compute Marginals for Localization:
Use incoming messages mn

ts = {x(i)
ts , w

(i)
ts ,Σts} from neigh-

bors t ∈ Γ(s) to compute marginal p̂ns (xs)
1. for Neighbor u ∈ Γ(s) do
2. Draw kM

|Γ(s)| samples {x(i)
s } from each message mn

ts

3. Weight each sample by
w

(i)
s =

∏
u∈Γ(s)m

n
us(x

(i)
s)/

∑
u∈Γ(s)m

n
us(x

(i)
s)

4. end for
5. Resample with replacement from these kM samples,

producing M equal-weight samples.

A. Message Update Schedules

The convergence behavior of NBP depends on the order
in which messages are transmitted between robotic nodes.
In initial experiments, we found that a naive serial schedule,
which iterates through each node one by one, performed
poorly even with dozens of iterations and thousands of
samples per message. Because sample-based density ap-
proximations cannot effectively populate large areas, biases
introduced by poor initial message approximations can over-
whelm informative messages sent by other robots. To resolve
this, we employ an alternative schedule in which a node only
transmits an outgoing message if it has received an incoming
message from at least three neighbors. In situations where
no node has three incoming messages, the threshold drops
to two messages, and then finally to one.

VI. PHASE II: TRACKING ALGORITHM

Phase I provides estimates of each robot’s location at
a single timestep. We then use phase II to incorporate
the dynamics of the robot, allowing us to determine robot
locations at subsequent timesteps more quickly, and improve
accuracy by resolving ambiguities. Fig. 3 provides an exam-
ple with one robot that illustrates how the dynamics model
can compensate for ambiguities.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Timestep 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Timestep 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Localization Only, Timestep 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

With Velocity Model, Timestep 4

Fig. 3. Illustration of dynamics model resolving bimodal position estimate
for a single robot with three beacons. Using the same notation as in Fig. 1,
the upper figures show true locations of beacons and a robot in lower right
of each plot. Samples from the robot marginal are indicated with black +s.
Bottom figures show estimates of robot position for the 4th timestep, using
a localization-only approach on the left, where there is substantial error,
and using our tracking approach using dynamics on right, where error is
negligible.

Our tracking algorithm for computing marginals in phase
II integrates spatial messages from neighbors at the same
timestep, as in the localization formulation, but also relates
temporal messages for the same robot from the previous
timestep τ − 1, and the next timestep τ + 1, when avail-
able. Given a sample of the node’s current state χ

(i)
s,τ ,

the message sent to the next timestep is simulated from
the dynamics model χ

(i)
s,τ+1 ∼ p(χs,τ+1 | χ(i)

s,τ). Because
ψ(xs,τ+1, xs,τ) = p(xs,τ+1 | xs,τ), when we send messages
to a node at the previous timestep we fix x

(i)
s,τ+1 and

sample x(i)
s,τ ∼ αp(x(i)

s,τ+1 | xs,τ), where α is a normalization
constant. Concretely, the update becomes

x
(i)
s,τ = x

(i)
s,τ+1 − ẋ

(i)
s,τ+1

ẋ
(i)
s,τ = ẋ

(i)
s,τ+1 − ωs,τ ωs,τ ∼ N(0, σ2

ω)
(20)

We initially tested a simpler inference algorithm that prop-
agates samples from the previous timestep according to the
dynamics model, and then performs weighted resampling
to account for new inter-distance readings. However, after
more than four timesteps, this approach degraded to near-
random estimates, even with thousands of samples M for
each message. We hypothesize that this issue arises because
the simpler formulation effectively only allows information
to travel a single hop per time-step.

The more sophisticated approach of Algs. 3-4 overcomes
these limitations by communicating multi-hop inter-distance
information in a single timestep. Let ms,τ,τ+1(χs,τ+1) de-
note the forward-time message sent by robotic node s at
timestep τ , and ms,τ,τ−1(χs,τ−1) the corresponding reverse-

1373

Algorithm 3 Phase 2, Compute Messages for Tracking:
Given M samples χ

(i)
s,τ = {x(i)

s,τ , ẋ
(i)
s,τ} from marginal

p̂n−1
s,τ (χs,τ), compute messages mn

st,τ (xt,τ) for neighbors
t ∈ Γ(s, τ), ms,τ,τ+1(χs,τ+1), and ms,τ,τ−1(χs,τ−1)

1. Draw θ
(i)
st ∼ U (0, 2π) , ν

(i)
st ∼ N

(
0, σ2

ν

)
2. Means: x(i)

st,τ = x
(i)
s,τ +(dst,τ +ν

(i)
st)[sin(θ(i)

st); cos(θ(i)
st)]

3. Weights: w(i)
st,τ = Po(x

(i)
st,τ)/mn−1

ts,τ (x(i)
s,τ)

4. Variance: Σst,τ = σ2
νξMI

5. Means: χ(i)
s,τ+1 ∼ p(χs,τ+1 | χ(i)

s,τ)
6. Weights: w(i)

s,τ+1 = 1/mn−1
s,τ+1,τ (χ(i)

s,τ)
7. Variance: Σs,τ+1 = ROT({χ(i)

s,τ+1, w
(i)
s,τ+1})

8. Means: χ(i)
s,τ−1 ∼ αp(χ

(i)
s,τ | χs,τ−1)

9. Weights: w(i)
s,τ−1 = 1/mn−1

s,τ−1,τ (χ(i)
s,τ)

10. Variance: Σs,τ−1 = ROT({χ(i)
s,τ−1, w

(i)
s,τ−1})

time message. As described in Sec. IV-D, we first decompose
these messages into the marginal robot position distribu-
tion, and the conditional distribution of velocity given posi-
tion; both are Gaussian mixtures. Using a generalized NBP
message-passing algorithm, we then integrate the information
provided by temporal dynamics and distance measurements
at time τ . The resulting improved position estimates are then
transferred to velocity estimates via the previously computed
conditional densities. As summarized in the pseudocode,
several stages of importance sampling with resampling are
included to convert sets of message samples into the message
products required by NBP, and ensure that samples (and
hence computational resources) are efficiently utilized.

A. Message Update Schedules

Our tracking scheduler applies the phase II algorithms,
after first initializing location estimates for each robot using
phase I. Because we assume somewhat informative dynamics
models, the uncertainty in robot locations at the next timestep
is sufficiently peaked to allow a serial message update sched-
ule. Our tracking framework is sufficiently general to per-
form smoothing, and use information from future timesteps
to update location estimates for the current timestep, which in
SLAM is important for tasks such as loop closure [2]. While
alternative schedules are subjects for future work, we focus
here in a filtering schedule which only propagates messages
forward in time. We perform one tracking iteration following
localization in timestep 1, and then a constant number of
iterations at subsequent times.

B. Computational Complexity

The most computationally demanding portion of our
tracker requires O(kM2|E|) operations per timestep, where
|E| is the number of observed inter-distance measurements.
The parameters k and M correspond to the number of sam-
ples used to represent distributions as described in Sec. IV-C.
Our experiments use k = 3 and M varies from 100-500.

Algorithm 4 Phase 2, Compute Marginals for Tracking
Use incoming messages mn

ts,τ = {x(i)
ts,τ , w

(i)
ts,τ ,Σts,τ},

mn
s,τ−1,τ = {χ(i)

s,τ−1, w
(i)
s,τ−1,Σs,τ−1}, and mn

s,τ+1,τ =
{χ(i)

s,τ+1, w
(i)
s,τ+1,Σs,τ+1} to compute marginal p̂ns,τ (χs,τ)

1. Let mn
s,τ−1,τ (χs,τ) = mn

s,τ−1(xs,τ)mn
s,τ−1(ẋs,τ | xs,τ)

2. Let mn
s,τ+1,τ (χs,τ) = mn

s,τ+1(xs,τ)mn
s,τ+1(ẋs,τ | xs,τ)

3. Draw kM
3 samples {x(i)

s,τ} from mn
s,τ−1(xs,τ)

4. Draw kM
3 samples {x(i)

s,τ} from mn
s,τ+1(xs,τ)

5. for Neighbor t ∈ Γ(s, τ) do
6. Draw kM

3|Γ(s,τ)| samples {x(i)
s,τ} from each mn

ts,τ (xs,τ)
7. end for
8. Weight each of the kM samples by

w
(i)
s,τ =

mns,τ−1(x(i)
s,τ)·mns,τ+1(x(i)

s,τ)·
∏
t∈Γ(s,τ) m

n
ts(x

(i)
s,τ)

mns,τ−1(x
(i)
s,τ)+mns,τ+1(x

(i)
s,τ)+

∑
t∈Γ(s,τ) m

n
ts(x

(i)
s,τ)

9. Resample with replacement from these kM samples,
producing M equally weighted samples {x(i)

s,τ}.
10. Draw kM

2 samples ẋ(i)
s,τ ∼ mn

s,τ−1(ẋs,τ | x(i)
s,τ), produc-

ing samples χ(i)
s,τ = {x(i)

s,τ , ẋ
(i)
s,τ} from the joint marginal

11. Draw kM
2 samples ẋ(i)

s,τ ∼ mn
s,τ+1(ẋs,τ | x(i)

s,τ), produc-
ing samples χ(i)

s,τ = {x(i)
s,τ , ẋ

(i)
s,τ} from the joint marginal

12. Weight each of the kM joint samples by
w

(i)
s,τ = mns,τ−1(ẋ(i)

s,τ |x
(i)
s,τ)·mns,τ+1(ẋ(i)

s,τ |x
(i)
s,τ)

mns,τ−1(ẋ
(i)
s,τ |x(i)

s,τ)+mns,τ+1(ẋ
(i)
s,τ |x(i)

s,τ)

13. Resample with replacement from these kM samples,
producing M equally weighted samples {χ(i)

s,τ}.

1 3 5 7 9 11 13
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Iterations

M
e
a
n
 E

rr
o
r

Vary Velocity Noise, 2 Iter / Timestep

std=0.05

std=0.025

std=0.0125

std=0.00625

1 3 5 7 9 11 13 15 17 19
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Iterations

M
e
a
n
 E

rr
o
r

Vary Velocity Noise, 4 Iter / Timestep

std=0.05

std=0.025

std=0.0125

std=0.00625

Fig. 4. Tracking error with varying levels of dynamics noise, using either
two NBP iterations per timestep (left) or four iterations per timestep (right).
The “sawtooth” shape of the error plot is because the each first iteration
has the most error and reduces subsequent iterations. More iterations per
timestep reduces errors, especially for noisier dynamics models. Our NBP
algorithm makes use of multi-hop inter-distance readings, integrated over
multiple iterations, to compensate for transition model errors. For a 100x100
meter room, a standard deviation of 0.025 corresponds to 2.5 meters.

Most time is spent either sampling from Gaussian mix-
tures, or evaluating Gaussian mixtures at a particular lo-
cation. Using a naive approach, both operations require
O(M) operations for an M -component mixture. Binary
search algorithms can draw samples in O(log(M)) time; our
simulator implements this technique. We can improve the
speed of Gaussian mixture evaluation by constraining esti-
mated covariance matrices to be diagonal. Multiscale, KD-
tree representations can also be used to accelerate evaluation
and sampling for large M [32].

1374

1 3 5 7 9 11 13 15 17 19
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

Iterations

M
e
a
n
 E

rr
o
r

Vary Inter−Distance Sensor Noise

std=0.064

std=0.016

std=0.004

std=0.001

1 3 5 7 9 11 13 15 17 19
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Iterations

M
e
a
n
 E

rr
o
r

Vary Number of Samples

M=100

M=300

M=500

Fig. 5. NBP tracking performance in various conditions. In the left plot,
we use M = 500 samples, and vary the amount of inter-distance noise. In
the right plot, we use very accurate inter-distance sensors (σν = 10−3),
and vary the number of samples used to represent each NBP message. For
a 100x100 meter room, a standard deviation of 0.004 corresponds to 0.4
meters.

VII. EXPERIMENTS

We implemented a Java simulator to explore our algo-
rithm’s performance and ran experiments on the single core
of a 2.2 GHz Pentium Core Duo. While we simulate all
robots on a single machine, as our algorithms are distributed,
we interpret the runtime per robot. Our experiments using
M = 100 samples took approximately 0.65 seconds per
robot per timestep. With M = 500 samples, this grows to
16.0 seconds per robot per timestep. As described in Sec VI-
B, there are remaining efficiency improvements we could
employ to enable real-time operation on mobile robots.

For each experiment, we use n = 20 robots and 3
stationary beacons, the minimum required for the tracking
problem to be well posed. We generate the initial locations
at t = 0 by randomly placing each robot in a 1x1 unit area.
We then simulate each robot’s movements according to the
dynamics model p(χs,τ+1 | χs,τ), producing locations at
times τ = 2, . . . , T . Finally, we determine if robot s receives
a distance reading from robot t according to Po(xs,τ , xt,τ),
and if so sample a noisy observation d

(i)
st,τ ∼ p(dst,τ |

xs,τ , xt,τ).
As described in Sec. VI-A, we first apply phase I to

localize robots at time τ = 1, and then use phase II to
track motion over time. Weighted marginal samples produce
estimates x̂s,τ , which we use to determine our estimation
error. We run each experiment 10 times, and plot the mean
of our error metric across these trials. In Fig. 1, we illustrate
the connectivity from timesteps 1 and 4 for one trial, and the
resulting discrepancy between the simulated (ground-truth)
and inferred robot locations.

In Fig. 4, we plot mean error over each iteration and vary
the amount of noise in the dynamics model, allowing either
two or four NBP iterations per timestep. The “sawtooth”
shape of the mean error plot is due to a new timestep every
two or four iterations, depending on the experiment. The
error is worst at the first iteration of the new timestep,
and then lessens as more iterations, providing inter-distance
information from further hops, refining the estimate. With
only two iterations per timestep, there is more error and
variability than with four iterations per timestep. Extra it-

1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Timestep

M
e
a
n
 E

rr
o
r

SMCL+R vs. NBP, Vary Inter−Distance Sensor Noise

SMCL+R, std=.016

SMCL+R, std=.001

NBP, std=.016

NBP, std=.001

Fig. 6. A quantitative comparison of the range-based SMCL (SMCL+R)
formulation [1] to our NBP tracking algorithm. As our approach is more
computationally intensive, we used M = 5000 samples for SMCL+R, and
M = 500 samples for NBP. We present results with two inter-distance
sensor noise levels. In both cases, NBP is 3-4 times more accurate.

erations incorporate spatial information from robots further
away, and compensate for unpredictable dynamics models.
However, when the dynamics model is very accurate, we
need fewer iterations per timestep to converge to accurate
estimates. While localization of the first timestep takes six
iterations, for more precise dynamics models, we only need
two iterations of our tracking algorithm, resulting in a 3x
savings in computation and communication.

In Fig. 5, we vary the amount of noise in the inter-
distance sensors, and test how estimation accuracy varies
when many samples (M = 500) are available. NBP’s
estimates degrade gracefully as noise increases, with errors
increasing approximately proportional to sensor noise. The
right half of Fig. 5 uses inter-distance sensors with low noise
levels (σν = 10−3), and examines how errors vary with the
number of samples M . As desired, using additional samples
leads to more accurate estimates.

VIII. COMPARISON WITH RANGE-BASED SMCL

We compare our NBP tracker to the range-based, sequen-
tial Monte Carlo localization (SMCL+R) tracking formula-
tion of Dil et al. [1]. In the SMCL+R approach, distances are
approximated by the shortest path distance on the connec-
tivity graph from each beacon to each mobile robot. Hop
distances are computed from each beacon to each robot,
and all beacon locations are communicated to each robot.
To localize robots at each timestep, they use a polar model
similar to ours. Samples are drawn at uniformly random
angles around each beacon, but using a deterministic distance
as determined by the shortest path to the robot of interest.
A subset of these samples are then rejected, if they are
either too far from the previous iteration’s estimate based on
a maximum velocity model and constraints from the inter-
distance sensors. More specifically, if a robot was a single-
hop away, then samples should be within the maximum
range, and if they were i hops away, the samples must be
within i times the maximum range. Samples are drawn at
each timestep for each robot, until M samples have been
accepted. For further implementation details, see [1].

As shown in Fig. 6, the NBP tracker is 3-4 times more
accurate than SMCL+R. However, the SMCL+R algorithm

1375

is faster, with a complexity of O(nb2M) per timestep, if
there are n robots and b beacons. We suspect our superior
accuracy is in part due to our explicit modeling of sensor
errors, rather than just using observed distances.

In some experiments, due to the hop-based distance ap-
proximation and rejection of samples based on maximum
transmission range, SMCL+R did not converge as it was
impossible to draw acceptable samples. As the approach
assumes a unit-disk connectivity model [15], this was ex-
acerbated by probabilistic connectivity and inter-distance
measurement models. For example, with a probabilistic
connectivity model Po, if a robot is within the maximum
transmission range from a beacon, but is two hops away,
the correct samples for the robot will always be rejected.
Thus, the experiment in Fig. 6 used a unit-disk model for
both approaches. By modeling probabilistic connectivity and
inter-distance measurements, our approach is more robust as
it does not experience to these problems.

IX. CONCLUSION AND FUTURE WORK

We present a new algorithm for collaborative robotic self-
localization and tracking using NBP. We compare the NBP
dynamic tracking algorithm with SMCL+R, a sequential
Monte Carlo algorithm [1]. Whereas NBP currently requires
more computation, it converges in more cases and provides
estimates that are 3 to 4 times more accurate. We are
now working to reduce the computation time of the NBP
algorithm.

The graphical modeling framework underlying our ap-
proach is very rich and we anticipate several extensions
and generalizations. We hope to explore how orientation
estimates can improve localization accuracy by modifying
the proposal distribution of Eq. (16). Similarly, knowledge
of environment geometry could be used to prune trajectory
estimates that pass through obstacles. We are also working
on “active” tracking where multi-modal estimates of robot
position can be resolved by directing robots to move in
directions that will reduce uncertainty.

REFERENCES

[1] B. Dil, S. Dulman, and P. Havinga, “Range-based localization in
mobile sensor networks,” Wireless Sensor Networks, pp. 164–179,
2006.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, 1st ed.
MIT Press, 2005.

[3] J. Pearl, Probabilistic Reasoning in Intelligent Systems : Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[4] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky,
“Nonparametric belief propagation,” in Proceedings of Conference on
Computer Vision and Pattern Recognition (CVPR), June 2003.

[5] R. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Transactions of the American Society of Mechanical Engineers,
Journal of Basic Engineering, pp. 35–46, March 1960.

[6] A. Ihler, J. F. III, R. Moses, and A. Willsky, “Nonparametric belief
propagation for self-localization of sensor networks,” Selected Areas
in Communications, IEEE Journal on, vol. 23, no. 4, pp. 809–819,
April 2005.

[7] W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun, “Col-
laborative multi-robot exploration,” in Proceedings of International
Conference on Robotics and Automation (ICRA), 2000.

[8] S. Thrun and Y. Liu, “Simultaneous localization and mapping with
sparse extended information filters,” The International Journal of
Robotics Research, vol. 23, no. 7-8, pp. 693–716, July-August 2004.

[9] ——, “Multi-robot slam with sparse extended information filers,” in
Proceedings of International Symposium of Robotics Research (ISRR).
Springer, 2003.

[10] A. Howard, “Multi-robot simultaneous localization and mapping using
particle filters,” International Journal of Robotics Research, vol. 25,
no. 12, pp. 1243–1256, 2006.

[11] C. Taylor, A. Rahimi, J. Bachrach, H. Shrobe, and A. Grue, “Si-
multaneous localization, calibration, and tracking in an ad hoc sensor
network,” in Proceedings of information processing in sensor networks
(IPSN), 2006, pp. 27–33.

[12] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar, “Distributed
localization of networked cameras,” in Proceedings of Information
processing in sensor networks (IPSN), 2006, pp. 34–42.

[13] P. Yang, R. Freeman, and K. Lynch, “Multi-agent coordination by
decentralized estimation and control,” IEEE Transactions on Automatic
Control, vol. 53, no. 11, pp. 2480–2496, December 2008.

[14] P. Yang, R. A. Freeman, and K. M. Lynch, “Distributed cooperative
active sensing using consensus filters,” IEEE International Conference
on Robotics and Automation (ICRA), pp. 405–410, April 2007.

[15] K. Whitehouse, “Understanding the prediction gap in multi-hop lo-
calization,” Ph.D. dissertation, University of California at Berkeley,
2006.

[16] Y. Shang, W. Ruml, Y. Zhang, and M. P. Fromherz, “Localization from
mere connectivity,” in Proceedings of the International Symposium on
Mobile Ad Hoc Networking and Computing, 2003, pp. 201–212.

[17] X. Ji and H. Zha, “Sensor positioning in wireless ad-hoc sensor net-
works using multidimensional scaling,” in Proceedings of INFOCOM,
2004, pp. 2652–2661.

[18] A. Savvides, H. Park, and M. B. Srivastava, “The bits and flops of
the n-hop multilateration primitive for node localization problems,” in
ACM Workshop on Wireless Sensor Networks and Applications, 2003,
pp. 112–121.

[19] A. Das, J. Spletzer, V. Kumar, and C. Taylor, “Ad hoc networks for
localization and control,” in Proceedings of Conference on Decision
and Control, 2002.

[20] O. L. Moses and R. Patterson, “Self-calibration of sensor networks,”
in Proceedings of SPIE on Unattended Ground Sensor Technologies
and Applications IV, vol. 4743, Orlando, FL, April 2002.

[21] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2004.

[22] B. Sohn, J. Lee, H. Chae, and W. Yu, “Localization system for mobile
robot using wireless communication with ir landmark,” in Proceedings
of Robot Communication and Coordination (ROBOCOMM), 2007, p.
Article No. 6.

[23] C. Rohrig and S. Spieker, “Tracking of transport vehicles for ware-
house management using a wireless sensor network,” in Proceedings
of Intelligent Robots and Systems (IROS), September 2008, pp. 3260–
3265.

[24] S. Roumeliotis and G. Bekey, “Distributed multirobot localization,”
IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp.
781–795, Oct 2002.

[25] A. Howard, M. J. Mataric’, and G. S. Sukhatme, “Team localization:
A maximum likelihood approach,” University of Southern California,
Tech. Rep., 2002.

[26] J. geun Park, E. D. Demaine, and S. Teller, “Moving-baseline local-
ization,” in Proceedings of Information Processing in Sensor Networks
(IPSN), 2008, pp. 15–26.

[27] J. Schiff, D. Antonelli, A. G. Dimakis, D. Chu, and M. J. Wainwright,
“Robust message-passing for statistical inference in sensor networks,”
in Proceedings of Information Processing in Sensor Networks (IPSN).
New York, NY, USA: ACM, 2007, pp. 109–118.

[28] M. I. Jordan, “Graphical models,” Statistical Science, vol. 19, no. 1,
pp. 140–155, 2004.

[29] B. Silverman, “Density estimation for statistics and data analysis,”
New York: Chapman and Hall, 1986.

[30] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component
Analysis. John Wiley & Sons, 2001.

[31] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo
sampling methods for bayesian filtering,” Statistics and Computing,
vol. 10, no. 3, pp. 197–208, September 2000.

[32] A. Ihler, E. Sudderth, W. Freeman, and A. Willsky, “Efficient multi-
scale sampling from products of gaussian mixtures,” in Proceedings
of Neural Information Processing Systems (NIPS), Dec. 2003.

1376

