
  

  

Abstract—In this paper, we deal with an original Advanced 

driver assistance system (ADAS) based on the use of 

omnidirectional vision and an evidential fusion architecture. 

The panoramic perception solution permits us to address 

efficiently the problem of close vehicles detection but also the 

monitoring side traffic system. The fusion and integration of 

this sensorial data stream is assumed by a credibilist 

architecture based on the Transferable Belief Model (TBM) of 

Smets. This paradigm permits the filtering of false alarms 

efficiently by an optimal management of the uncertainties 

estimation. 

I. INTRODUCTION 

DVANCED driver assistance systems (ADAS) support the 

driver’s decision making to increase safety and comfort 

by providing an ergonomic display of the driving 

environment. The global goal of assistances is to manage as 

well as issue warning signals or even exert active control if 

conditions are dangerous. The major challenge is then to 

provide assistance to the driver, by extracting the relevant 

driving information with respect to the road. To do it, a large 

panel of perception solutions has been integrated into the 

vehicle, generally stemming from the sensors used for the 

autonomous navigation of mobile robots. The classical 

solution consists in combining telemetric sensors, like lidar, 

laser scanner [1] or ultrasonic sensors, and vision sensors 

[1][9]. These combinations have the advantage of treating 

data which are mainly complementary but also redundant. 

Some researches have therefore focused on multi-sensor 

fusion dedicated to the intelligent vehicle field. The aim of 

such a step is to provide a fused description of the traffic 

scene surrounding the vehicle, which is relevant for ADAS. 

Several categories of assistance functionally exist. The most 

generalized is the lane detection, such as lane departure 

warning system (LDWS), lane change assistance system 

(LCAS) or lane keeping system (LKS). We can observe that 

the major part of studies on lane detection address computer 

vision [3][9]. In connection with our work, the second 

preponderant function is the close vehicles detection, which 

is highly linked to the pattern recognition problematic. For 

real-time processing, the use of prior knowledge on potential 

vehicle locations is relatively common [14]. The last 

function we can note is the side traffic monitoring. The side 

obstacle detection method is generally similar to the front 
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and rear vehicle detection methods [7], but can also consist 

of detecting vehicle wheels [13]. 

Our work deals with the two last functions. We propose an 

assistance system which can alert the driver to the non 

possible drive actions in connection with the vehicles 

situated around. It is based on a multi-target tracking and 

uses the complementary sensorial data stream provided by a 

laser SICK and an omnidirectional vision system located on 

the roof of the vehicle. The originality of our paradigm is 

linked at two points: (1) the use of an omnidirectional vision 

sensor and its associated vision target tracking (2) the 

evidential fusion architecture which permits the filtering of 

false alarms. 

This paper is organized as follow: in the first part, we 

present our omnidirectional vision strategy. In the second 

part, we propose the telemetric algorithm vehicle detection. 

The third part deals with the description of the credibilist 

fusion architecture which sets off the warnings to the driver. 

In the last part, we discuss experimental results.  

II. SENSOR CONTEXT 

Our ADAS solution integrates two warning parts. Firstly, 

a detection of dangerous situations connected to road 

configurations (crossroads, reductions in traffic lanes, speed 

limits, etc.) by using a SIG system matched with a GPS 

differential localization. Secondly, the detection of dangers 

connected to the traffic lanes (immediate dangers) by 

analysis of the environment close to the vehicle. In this part, 

we detail only the perceptual solution deployed for 

immediate danger detection. 
 

  

                          

Fig. 1. The ADAS perception solution on the vehicle and an 

example of omnidirectionnal image. 

The vision data stream is provided by an omnidirectional 
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sensor composed of a camera and a hyperboloid mirror. This 

catadioptric sensor corresponds to the solution ACCOWLE 

(Fig. 1). We use a color camera SONY EVI 330 with a 

768×576 resolution. This omnidirectional system is placed 

on the vehicle’s roof. The telemetric data stream is provided 

by two SICK LMS 200 laser scanners placed on the rear and 

on the front of the vehicle (Fig. 1). They provide a 2D depth 

view of the scene by steps of 0.5 degree. 

III. TARGET RECOGNITION - VISION TRACKING 

To track a vehicle in our particular omnidirectional image, 

we have revisited the CAMShift paradigm [15]. We made 

this choice in connection with the drastic constraint of real 

time and non a priori knowledge of the considered targets. 

Various tracking algorithms have been proposed in the 

literature, including approaches using optical flow, templates 

and local features, Kalman filters, Haar wavelet, Gabor filter, 

scale invariant feature transform (SIFT) but none satisfy our 

constraints. The mean-shift algorithm was first adopted as an 

efficient tracking technique. 

What is the general principle of the mean-shift estimator? 

The core of the mean-shift tracking algorithm is to compute 

the mean shift vector ∆y recursively [14]. The current target 

centroid location vector yj and the new target centroid 

location yj+1 are related through a translation: 

∆y = yj+1 - yj       (1) 

While a normal kernel was adopted [14], the new target 

centroid location is derived as: 

 (2) 

where the set {xi}i=1..n represents n pixel locations in the 

search window and wi the corresponding weight assigned to 

each pixel. 

In order to find the candidate target whose density 

distribution is the most similar to the model, an appropriate 

distance metric to measure the similarity between two 

histogram distributions must be used. The Bhattacharyya 

coefficient is a near optimal choice and it’s defined by: 

 (3) 

where p and q indicate the target and model distributions 

respectively. To minimize the metric distance, the 

Bhattacharyya coefficient has to be maximized. The 

maximization of this coefficient is achieved by the mean-

shift iterator, by computing a set of weights given [14] to 

each pixel in the search window. The new location of the 

target centre is obtained by insertion of these weights in (2). 

The Continuously Adaptive Mean Shift (CAMShift) 

algorithm [15] is based on the mean-shift algorithm, a robust 

non-parametric iterative technique for finding the mode of 

probability distributions including rescaling. We have named 

in [11] the calculation of a CAMShift directly in an 

omnidirectional image “Omnicamshift”. We have also 

applied some specificity linked to the sensor used (fast 

gyration …). 

 

Fig. 2.  Backprojection of OmniCAMShift 

We track a vehicle in connection with its colorimetric 

model which is built with the significant classes of the 

histogram R, V, B of the vehicle in a polar area on the 

omnidirectional image. The first problem we solved is linked 

to the initialization of the vehicle histogram, i.e. the target 

model. To do it, we used the telemetric data stream to extract 

the angular sector interval (αmin, αmax) (Fig. 3) and the 

distance interval (ϕmin, ϕmax) to determine the polar area in 

the omnidirectional image which will provide the vehicle 

histogram. The angular interval (αmin, αmax) is directly used 

on the omnidirectional image; the distance interval (ϕmin, 

ϕmax) is transformed by the catadioptric sensor calibration in 

(ϕcmin, ϕcmax). The tracking step, i.e. the maximization of the 

Bhattacharyya coefficient, can begin with this window 

computing histogram. If the model (histogram) is not 

significant, the Bhattacharyya coefficient decreases and the 

track is lost. 

 

Fig. 3. Colorimetric model initialisation of the tracking vehicle 

based on laser scan detection. 

IV. THE EVIDENTIAL FUSION ARCHITECTURE 

A. Introduction  

The aim of this part is: 

- To get an estimation of the danger of each vehicle 

around us. To this end, we will manage three levels of 

danger: (1) green danger (the considered vehicle is not 

dangerous), (2) orange danger (the considered vehicle 

represents a lateral danger) and (3) red danger (the vehicle 

represents a rear or front danger). 

- To get an estimation of the global risk situation in 

which our vehicle is (no danger, lateral danger: an overtaking 

should be prevented, rear danger: a brutal braking should be 
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avoided, etc.). 

To reach this aim, we have developed an uncertainty 

propagation architecture from low level sensor data to high 

semantic levels (global risk situation). Our architecture is 

divided into five stages summarized in Fig. 4. 

The telemetric data processing and those stemming from 

the omnidirectional vision respectively supply a set of 

segments (stage E1-2) and a set of omnidirectional images 

(stage E1-1). An uncertainty quantification is associated to 

each object. From these data, we extract objects of "vehicle" 

type (stage E2). An uncertainty about each vehicle is 

computed. This uncertainty takes into account in particular 

the uncertainties of the segments which compose the 

considered vehicle by a propagation mechanism which will 

be described in the next paragraphs. To quantify the 

evolution of the uncertainty of each detected vehicle more 

finely, we integrate an algorithm of multi-target tracking into 

stage E3 (tracks being vehicles detected). The next stage 

(E4) allows the possible danger situation in which the 

detected vehicles are situated to be characterized. Finally, the 

last stage (E5) enables us to determine if our vehicle is in 

danger, and, if so, what type of danger (lateral danger or/and 

rear danger or/and…). 

 

Fig. 4.  Architecture of distribution of the uncertainties. 

The key tool used in this data fusion and uncertainties 

propagation system is the Transferable Belief Model [12] 

(TBM of Smets), The TBM is a model to represent 

quantified beliefs based on the belief function theory 

developed by Shafer [2], but completely unrelated to any 

underlying probabilistic constraints as it is the case with the 

model of Dempster and with the hint model. 

B. Stage E1-2: uncertainty of the telemetric segments 

After a segmentation stage, the set of points given by the 

laser sensor provides a set of segments. To determine the 

uncertainty (i.e. the reliability) of each segment, two criteria 

are taken into account within the framework of the TBM. 

Frame of discernment. For each detected segment, our 

frame of discernment Θseg is composed of the two hypotheses 

YES and NO corresponding respectively to the two 

assertions "Yes, the segment exists" and "No, the segment 

does not exist": Θseg ={YES, NO}. 

Criterion 1: average distance of the points from the 

segment which contains them. Experimentally, we 

determined the mass function m1 shown in Fig. 5. This figure 

shows that the greater this distance is, the more points on 

average are far from the segment. If this distance is high, we 

can say that the segment does not approximate the set of 

points well. As a result, we consider it rather unreliable. 
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Fig. 5. Mass function m1 of the first criterion 

Criterion 2: number of points of the segment. This 

criterion can only discriminate when the segment contains 

very few points. In that case, it can be considered unreliable. 

Fusion of the two criteria. The fusion of the two criteria 

described previously allows us to obtain mseg(YES), 

mseg(NO) and mseg(Θseg) These three values allow to obtain a 

quantification of the segment’s uncertainty. For example, if 

mseg(NO) is high, it means that the segment is not reliable. 

C. Stage E1-1 : uncertainty deduced from the 

omnidirectional images 

To estimate the uncertainty linked to the omnidirectional 

vision tracking, we take into account the Bhattacharyya 

coefficient at time t (paragraph III). 

D. Stage E2: uncertainty of the detected vehicles 

The aim of the next stage E2 is to manage “vehicle” 

objects and to compute an uncertainty about each of these 

vehicles. 

Detection of vehicles. After a stage of fusion which 

associates the close co-linear or perpendicular segments, we 

are able to detect vehicles by performing an identification 

with the two possible signatures of vehicles. Every vehicle 

can be identified by two different signatures: 

- A straight line, when the perpendicular of the segment 

passes through the point of emission of the laser 

beam. 

- Two perpendicular straight lines in the other cases. 

Frame of discernment. For each detected vehicle, our 

frame of discernment Θveh is composed of two hypotheses 

YES and NO which correspond respectively to the two 

assertions "Yes, the vehicle exists" and "No, the vehicle does 

not exist": Θveh ={YES, NO} 

Criteria used. To determine the uncertainty of a vehicle 

primitive, we take into account three criteria: 

- The angle between the two segments which compose 

the vehicle. A vehicle normally consists of two segments at 

90 degrees, except when the vehicle is seen from the front or 

from the back. The more the angle varies from 90 degrees, 

the less likely it is that we are in the presence of a vehicle. 

This gives the mass function ma 

- The uncertainty mseg of the segment(s) which compose 
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the vehicle. For example, a vehicle composed of two 

unreliable segments will be considered as unreliable.  

- The uncertainty deduced from the Bhattacharyya 

coefficient corresponding to the vehicle, denoted by the mass 

function mbhat computed on paragraph III-C. 

We can note that these mass functions mseg and mbath allow 

to propagate the uncertainties computed at the previous level 

E1 to this level E2. 

The three previous mass functions ma, mseg and mbhat are 

merged to obtain a mass mveh quantifying the uncertainty of 

the detected vehicle: mveh = ma ∩ mseg ∩ mbhat, where ∩ is the 

fusion operator of Smets. 

So, at the end of this step, we have a list of vehicle 

primitives with an associated uncertainty for each vehicle 

through the set mass mveh. This uncertainty includes the 

uncertainty about the type of the primitive and the 

uncertainty about the reliability of the segments which 

compose the vehicle. 

E. Stage E3: multi target tracking. 

Our method is based on a tracking of vehicle primitives: 

we propagate the matchings made at an acquisition n on an 

acquisition n+1. Our algorithm is based on a prediction-

observation paradigm. We have developed a prediction 

system based on an extrapolation of the azimuth angle curves 

of the vehicle primitives: we generate a predictive 

observation vector composed of angles obtained according to 

the vehicle cinematic [5].  

For example, if we examine the evolution of the vehicle 

angles Θ1, Θ2 and Θ3 (fig. 6), we can compute a prediction 

Θ4p. If a matching is done between Θ4p and an observation 

angle, the track is propagated [5]. 

 

Fig. 6. Evolution of a tracked vehicle angles. 

At this level, the problem is to match the p angular 

observations obtained at the acquisition t with the q 

predictions computed from the last observations. To reach 

this aim, we use the algorithm developed by Gruyer [6] and 

based on the Dempster-Shafer theory in the framework of 

“extended open word” [17]. 

This method allow us to manage the notion of appearance 

or disappearance of tracks, that is to say vehicles : 

- If an observed vehicle cannot be matched, it is a new 

vehicle and a track can be initialized. 

- If a prediction cannot be matched with an obser-

vation, the vehicle is temporarily or definitively lost. 

After this stage, we have to update the track uncertainty at 

time t denoted by the mass function mtrack t defined on the 

frame of discernment Θtrack composed of the two hypotheses 

“yes” and “no” corresponding to the assertions “Yes, the 

track exists” and “no, the track does not exist”. 

We can distinguish three situations: 

1) Initialization of a track: this case corresponds to the 

appearance of a new vehicle near our vehicle, that is to say 

the case where an observation is matched with no prediction. 

This track’s initial uncertainty is mtrack 0 = mveh. 

2) Propagation of a track: as soon as a track is initialized, 

its uncertainty is updated at every new acquisition according 

to three criteria: the uncertainty of the track at time t-1 mtrack 

t-1, the uncertainty of the vehicle primitive mveh and the 

uncertainty of the matching mapp. These three masses are 

merged to obtain a mass mtrack t = mtrack t-1 ∩ mveh ∩ mapp 

quantifying the uncertainty of the track at time t.  

 3) Non-propagation of a track: if a prediction is 

matched with no observation, the uncertainty of the track has 

to increase. This uncertainty is updated by merging two 

criteria: the uncertainty of the track at time t-1 mtrack t-1 and a 

predefined mass function m2 defined as follow: 

 m2 (YES)=0,  m2 (NO)=0.2,  m2 ({YES, NO})=0.8 

This mass function m2 is built to regularly increase the 

track uncertainty by attributing some mass on the “no” 

hypothesis. So, as long as the track uncertainty at time t mtrack 

t remains weak, the track is propagated. This means that we 

do not immediately abandon a track as soon as it is no longer 

propagated. We can thus take momentary eclipses of 

vehicles into account. Finally, if the track uncertainty is too 

strong, that is to say if mtrack t(NO)> mtrack t(YES), the track is 

definitively cancelled. 

F. Stage E4: estimation of the danger of each vehicle 

The next stage E4 of our algorithm of estimation and 

propagation of uncertainties consists of characterizing the 

level of danger represented by each of the vehicles bordering 

our vehicle and computing this danger uncertainty.  

To estimate the type of danger and its uncertainty, we first 

determine the type of danger and, secondly, its uncertainty.  

To determine the type of danger, we have to characterize 

three types of danger for every tracked vehicle. 

- A “green” danger: the tracked vehicle does not 

represent a danger. 

- An “orange” danger: the tracked vehicle is situated 

near the left or right side of our vehicle. It can 

represent a danger if our vehicle wants to overtake or 

seeks to pull back in after overtaking. 

- A “red” danger: the vehicle is situated too close to the 

rear or the front of our vehicle. Safe distances are no 

longer respected; there is a danger, for example in the 

case of sudden braking of this vehicle. 

So, for every tracked vehicle, we define a frame of 

difference Θdanger_t={Green, Orange, Red}. To determine the 

type of danger, we consider the two following criteria: 

- Criterion 1: distance between our vehicle and another 

vehicle. The closer a vehicle is to our vehicle, the 

greater the danger is, in particular if the vehicle is 

situated in front or to the rear.  

- Criterion 2: angle between our vehicle and the tracked 
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vehicle. For example, if this angle is closed to 0 

degree or to 180 degrees, we can be in the presence of 

a red danger, but only if the distance between us and 

the vehicle is small. 

The fusion of these two criteria provides a mass set mtype 

on the frame of discernment Θdanger_t. The type of danger 

selected is the one which has the maximal pignistic 

probability [12]. 

As soon as the type of danger is determined, we compute 

its uncertainty mdanger. To this end, we take two uncertainties 

into account: 

- The uncertainty mtrack  t of the vehicle’s track.  

- The uncertainty of the danger represented by the mass 

function mtype  

mdanger = mtrack  t ∩  mtype 

We can again note that this uncertainty is obtained notably 

by propagation of the low level uncertainties calculated 

previously. 

So, each vehicle around us is characterized by a danger 

(green, orange, red) with an associated uncertainty through a 

mass set mdanger on a binary frame of discernment 

Θdanger_t={YES, NO}. 

G. Stage E5: estimation of the global danger around our 

vehicle 

The last stage E5 of our architecture is the determination 

of the global danger(s) around our vehicle. The aim is to 

warn the driver if he tries to execute a dangerous driving. We 

will determine the kind of traffic jam (congestion) around us 

and, for example, if there are cars on the left hand side, an 

overtaking should be considered as dangerous. An other 

example is front congestion: in this case, the driver should 

brake. 

Frame of discernment. The frame of discernment Θcong is 

composed of five hypotheses: Re (a rear congestion), Fr (a 

front congestion), Le (a left congestion), Ri (a right 

congestion), OK (no dangerous congestion) 

We can note that these five hypotheses are not mutually 

exclusive. For example, cars can be situated behind us and 

also in our left side. This is in contradiction with the TBM 

rules which impose that the hypotheses of the frame of 

discernment are mutually exclusive. But the aim of the stage 

is not to take a decision: we will only consider the masses of 

each hypotheses and union of hypotheses, and warn the 

driver according to these masses. 

Criteria used. Two complementary criteria are used and 

applied to each tracked vehicle: 

- Criterion 1: angle of vehicles. E.g., a vehicle located 

at 180 degrees will put some mass on the Re 

hypothesis, but only if this vehicle is near our car. 

This explains why a mass equal to 1 is attributed to 

the union of hypotheses {Re, OK} for this angle of 

180. The second criterion described below will allow 

us to select the good hypothesis between Re and OK.  

- Criterion 2: distance of vehicles. A tracked vehicle far 

from us will put some mass on the OK hypothesis. On 

the contrary, a close vehicle will put some mass on 

the union of hypothesis {Re, Fr, Le, Ri}: there is a 

danger, but this criterion cannot be more precise (the 

criterion 1 will determine the good case of danger). 

Fusion of these criteria. It is performed in two steps. 

First step. We fuse the two criteria described below for 

each tracked vehicle. The obtained mass set does not take 

into account the uncertainty of each tracked vehicle. To 

solve this problem, we perform a discounting operation [2] 

according to the pignistic probability of the YES hypothesis 

mtrack t(YES). At the end of this step, we get m mass sets 

corresponding to the m tracked vehicles at time t. We have to 

fuse these m mass sets: it is the second step. 

Second step. If we use the classical fusion operator of 

Smets to fuse these m mass sets, a high conflict will rapidly 

appear. For example, a left near vehicle puts mass on the Le 

hypothesis and another near and rear vehicle puts mass on 

the Re hypothesis; and the fusion of these two mass sets will 

generate conflict. So, in this case of left and rear conflicts, it 

seems natural to reject the conflict on the union of hypothesis 

{Le, Re}. This manner of fusion by rejecting the conflict on 

the union of hypotheses which generate it is in fact the fusion 

operator of Dubois and Prade [16]: 

Θ⊆∀+= ∑∑
∅=∩=∪=∩

ADmCmBmAmAm
DCADC

SS

ABA

SS

;

2121 )().()().()(  

m(∅)=0 

Let us consider the following example. We assume that 

two vehicles V1 and V2 are tracked. At the end of the first 

step of stage E5, our uncertainties propagation architecture 

gives us the following mass sets: 

   m
V1

(Le)=0,63, m
V1

(Le ∪ OK)=0,27, m
V1

(Θcong)=0,1 

   m
V2

(Fr)=0,56, m
V2

(Fr ∪ OK)=0,14, m
V2

(Θcong)=0,3 

This means that vehicle V1 is considered to be a left 

danger and vehicle V2 a front danger (but this last piece of 

information is not very reliable since we have a mass of 0.3 

on the ignorance Θcong.). 

The fusion of these two mass sets with the Dubois and 

Prade operator provides the following results: 

  mcong(OK)=0,27×0,14=0,0378 

  mcong(Θcong)=0,1×0,3+0,1×0,14+0,1×0,56+0,63×0,3+0,27×0,3 = 0,37 

  mcong(Le∪F ∪OK)=0,63×0,14 + 0,56×0,27=0,2394 

  mcong(Le ∪ Fr) = 0,63×0,56 = 0,3528 

The maximal mass is mcong(Le ∪ Fr): there are cars on our 

left and in front of us. The driver has to be careful if he 

wants to overtake or to accelerate. Nevertheless, we can note 

that this information is not very reliable (little mass of 0.35 

and mass of 0.37 on the ignorance).  

V. EXPERIMENTAL RESULTS 

On Fig. 8, we show an example of tracking sequence. 
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Fig. 8. A tracking sequence given by the omniCAMshift approach 

on a vehicle located on the left side. 

On Fig. 9, we show the uncertainty evolution of a track 

corresponding to the vehicle number 3. The uncertainty 

initialization is made with the vehicle uncertainty. Then the 

vehicle is well tracked, except on acquisition number 5 

where the car is lost. But the track is recovered on 

acquisition number 6. This shows the interest of our multi 

target tracking: we don’t cancel a track immediately, but only 

when the mass of the NO hypothesis mtrack t(NO) is superior 

to the mass on the YES hypothesis mtrack t(YES). In this case, 

the track is too unreliable and we cancel it. This situation 

occurs on acquisition 14. Indeed, the track is not propagated 

since acquisition number 9 (the car has slowed down in order 

to turn), so mtrack t(NO) increases until it becomes superior to 

mtrack t(YES). 
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Fig. 9. The uncertainty evolution of vehicle number 3. 

Let’s talk about the danger represented by this vehicle at 

acquisition number 7. The track’s uncertainty at this time is:

 mtrack t(YES)=0,87  mtrack t(NO)=0,1 mtrack t(Θtrack)=0,03 

Besides, this vehicle is at 3.2 metres behind us. So it is 

considered to be a “red” danger according to this mass set: 

mtype(Red)=0,73  mtype(Θdanger_t)=0,27 

Considering these two mass sets, this vehicle is labelled as a 

“red” danger with this uncertainty: 

mdanger(YES)=0,89 mdanger(NO)=0,02  mdanger(Θdanger)=0,08 

We can note that the reliability of this “red” danger is high 

(0,89). This results is coherent: the track’s reliability is high 

(0,87) and the mass of the danger type is also high (0,73). 

This leads to a high reliability. So the driver should be 

careful. 

VI. CONCLUSION AND PERSPECTIVES 

In this article, we have proposed an original ADAS 

paradigm. The originality ensues from four points. First, the 

management of the vision stream by a catadioptric sensor. It 

allows the production of a panoramic perception of the road 

context on one acquisition. The second originality is linked 

to the omnidirectional dedicated treatment, the 

omniCAMshift. On the one hand, this algorithm addresses 

directly the target tracking on the omnidirectional image, 

and, on the other hand, it satisfies the real time constraint. 

The third point is linked to the combination of the 

complementary data which allows the obtainment of a highly 

semantic description of road context. The last contribution 

point, and probably the major one, is the TBM fusion 

architecture which permits the efficient management of the 

fusion of highly heterogeneous data on a given level on the 

one hand, and, on the other hand, the propagation of the 

uncertainties of several levels. This drastic computation of 

the uncertainties on the multi-criteria and multi-level fusion 

architecture permits the efficient filtering of the false alarms. 

The combination of these four points produces a robust 

and reliable ADAS dedicated on the near danger estimation, 

that is to say on panoramic vehicle detection. 
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