
 
 

Abstract — In this work we present the segmentation and 
classification of 3D hand trajectory.  Curvatures features are 
acquired by (r, θ, h) and the hand orientation is acquired by 
approximating the hand plane in 3D space. The 3D positions of 
the hand movement are acquired by markers of a magnetic 
tracking system [6]. Observing humans movements we perform 
a learning phase using histogram techniques. Based on the 
learning phase is possible classify reach-to-grasp movements 
applying Bayes rule to recognize the way that a human grasps 
an object by continuous classification based on multiplicative 
updates of beliefs. We are classifying the hand trajectory by its 
curvatures and by hand orientation along the trajectory 
individually. Both results are compared after some trials to 
verify the best classification between these two kinds of 
segmentation. Using entropy as confidence level, we can give 
weights for each kind of classification to combine both, 
acquiring a new classification for results comparison.  Using 
these techniques we developed an application to estimate and 
classify two possible types of grasping by the reach-to-grasp 
movements performed by humans. These reported steps are 
important to understand some human behaviors before the 
object manipulation and can be used to endow a robot with 
autonomous capabilities (e.g. reaching objects for handling).  

I. INTRODUCTION 
obotics is moving towards to the research and 
development of technologies that permit the 

introduction of the robots in our daily life. To create such 
applications some problems need to be solved, including 
grasp strategies. Applications of service robots will require 
advanced capabilities of grasping and skills that allow a 
robot to grasp different types of objects in different ways. 
Some of the most performed actions by humans in their 
daily activities involve the handling of objects for a specific 
task. The study of human reach-to-grasp movements is 
important for researches of different areas. In computer 
science field, hand trajectories segmentation and 
classification are useful for human-machine interaction using 
gestures to interact with machines, e.g. the hand can be used 
as computer mouse. Various theories have been proposed for 
predicting hand trajectories. Hand trajectory segmentation 
and classification are useful also in the robotics field for 
imitation learning for human-robot interaction. Typically, 
the global hand’s trajectory during a manipulation task can 
be segmented in different stages: reach, lift, transport and 
release [1]. We focus our attention in the reach stage (reach-
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to-grasp movement). Our intention is developing an 
automated system for trajectories segmentation and 
classification by a probabilistic approach.  In this work we 
want to show the estimation and classification of reach-to-
grasp movements when someone is performing the grasping. 
Analyzing these movements we can be able to understand 
some human behaviors during the hand journey to reach and 
grasp an object. This information can be used to endow 
robots using the movements before the object manipulation, 
i.e. using it as capability of a robot recognizing how a human 
grasp an object to imitate his action. This methodology can 
also be applied for gesture recognition tasks.  

II. RELATED WORK 
Hand trajectories have been studied in different areas such 

as neuroscience, robotics, ergonomics, etc. In [2] is 
described a modelling approach for 3D hand trajectories in 
reaching movements. The authors use Bézier curves for 
geometrical interpretation. Their purpose is to describe a 
modelling approach to show how the trajectories depend on 
some predictors and how they vary from repetition of the 
trajectories. Bayesian models have been used in [3] to 
classify gestures from images sequences. Tracking of human 
hands and face are used based on skin-color features. The 
application is for human-robot interaction. The human 
actions are interpreted and mapped to the robot actions. They 
have contributed also with Laban Movement Analysis that 
helps to identify useful low-level features and to develop a 
classifier of expressive actions. Images sequence were used 
in [4] for hand tracking and hand shape representation when 
a person is gripping a mug. They proposed a method for 
hand shape representation that characterises the finger-only 
topology of the hand using cepstral coefficients. Techniques 
of speech signal processing were used for that. The work 
shows hand shape recognition classified as top-grab, side-
grab, flat-hand and handle-grab when the hand is close to 
object. In our previous work [5] we developed an application 
to segment a trajectory to find features like up, down and 
line for its classification. We have used second order 
derivative to analyze the evolution of the trajectory finding 
features using just the x and y axis of a 3D trajectory 
ignoring other features like diagonal, forward and backward 
directions. The classification results were satisfactory but we 
reached undesired results as false negative and classification 
of the trajectory with low probability. 
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III. EXPERIMENTAL SETUP AND CONTEXT 
It was used the Polhemus Liberty tracker [6] to track the 

humans hands trajectories. It was attached five sensors on a 
glove to acquire the 3D hand trajectory. Another sensor was 
placed on the object to have a priori knowledge of the object 
position. The setup for the experiments is composed of a 
wooden table, without any metallic parts, since the magnetic 
tracker is sensitive to nearby ferromagnetic materials. The 
experiments are executed by a subject standing in front of 
the table for the reaching tasks. The tabletop is 50cm 
by75cm and is placed at a height of 100cm. The object is 
placed on the center of the tabletop in a marked region for all 
experiments having the object in the same position. The 
magnetic tracker emitter unit that determines the frame of 
reference for the motion tracking system is placed on 
another table near to the object table. There is no any 
specific area for a subject starts the trajectory to the target. 
Usually the subject is positioned close to the table varying 
the distance until one meter far from the object. Fig.1 shows 
our current scenario and configuration for this application. 
Two reach-to-grasp movements were defined for this 
application: Top-Grasp and Side-Grasp (Fig.2). The Side-
Grasp happens when a person wants to grasp the object by 
its side or by its handle. The Top-Grasp usually happens 
when someone want to grip the object by its top just to 
displace it 
 

 
Fig.1. Scenario for our application: environment setup. 
 

 
Fig.2. (a) – Side-grasp; (b) Top-grasp. 

IV. TRAJECTORIES SEGMENTATION 

A.  Pre-Processing step 
We are not considering temporal analysis of the trajectory 

to avoid some problems. For example, if a movement was 
learned with trajectories performed in 10 seconds, and when 
a movement of same type is performed slowly, in 20 
seconds, then this movement will not be considered as the 
same of the learned one, due the features do not correspond. 
We are considering the spatial information. Even 
considering the spatial information we can find some 
difficulties to classify the same type of movement with 

different distances. The subjects can start the trajectories in 
different places reaching different sizes of trajectories 
yielding different scales which can harm the results. To 
solve the problem, we are normalizing all trajectories to have 
the size 1. To extract the features we are splitting the 
trajectory in 8 similar parts (each one representing a hand 
displacement) to detect the features and then for each part 
we can characterize the movement due the types and amount 
of detected features. The division of the trajectory in 8 parts 
was chosen empirically, it could be 10 or 12 parts that would 
have the same effect in the classification. This way, the 
movements can be initialized from different positions with 
different velocities without harm the results. To achieve the 
trajectory normalization, for all points of each axis (x, y, z) 
is applied the following equation to rescale it: 
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Where R is the rescaled point; X is the new size of the 
trajectory (in our case the size of the trajectory is 1); max 
represents maximum value of the raw data found in the 
current axis, min the minimum value found and cur is the 
current value that is being normalized.  

A trajectory smoothing is also necessary. For each point 
of each axis is calculated the mean value among its previous 
four neighbours and its four forward four points. Fig.3 
shows an example of smoothing.  

 
Fig3. Smoothed trajectory: Blue color – raw data; Red color – result. 

B. Segmentation by Trajectory Curvatures 
As long as the trajectory is in 3D space, for better 

curvature detection we can work in cylindrical (r, θ, h) or 
spherical coordinate system (r, θ, φ). Using two points of the 
trajectory we have the vectors representation in 3D space. 
The angle formed between these two vectors by the 
projection on (x, y) plane we achieve the θ angle which give 
us the pan information, if the angle is increasing, we have 
the curvature left, or if it is decreasing we reach the 
curvature right. The same 2 vectors and their formed angles 
by the projection on (z, y) plane, we can achieve φ angle for 
tilt information. In a 3D space we can make some 
combinations of the possible directions, for example, we 
have up and down reached by h, left and right reached by θ 
and further and closer reached by r, so that we can have 
several combinations of features. For our application we 
intend just to detect features like up, down, left, right, up-
left, up-right, down-left, down-right and no-movement, 
restricting others information like closer and further. This 
information could be used in other goals, e.g. analyzing if a 
subject is displacing the object closer or further after the 
grasping. We can reach the height information (h) in a 
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simpler way using the cylindrical coordinate system, 
calculating the difference between the z axis values from 
both points. In spherical coordinate system just the φ angle 
can not give us the height or diagonals movements, being 
necessary verify also the radius (r), if it is increasing or 
decreasing and φ angle did not change, this way, we reach 
this information. To know up or down, φ and r change and θ 
remains the same. In cylindrical coordinate system we need 
to combine r, θ and h to know features like up-right, up-left, 
down-right and down-left. 

The curvature segmentation is performed at each two 
points of the trajectory. The next steps demonstrated by the 
following equations show us how to reach (r, θ, φ) in 
spherical coordinate system: 
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Then with the second vector acquired by the second 3D 

point we follow the same steps that are used in equation 02 
until equation 08 achieving r2, φ2 and θ2. After that, we 
reach θ angle and tilt information (height) given by φ angles 
as follows: 

1122 coscos ϕϕ rrh −=  
 

(9) 
 

12 θθθ −=  (10) 
 

In the cylindrical coordinate system, to find the height 
information, we can simplify eliminating the equations (02) 
to (06) and we can replace the equation (9) by: 
 

12 zzh −=  (11) 
 

To find the feature c we use the following rules: 
 
 

height > 0 and θ ~ 0 and r(x,y) ~ 0 Up 
height < 0 and θ ~ 0 and r(x,y) ~ 0 Down 
height =0 and θ > 0 and r(x,y)  = 0 Right 
height = 0 and θ < 0 and r(x,y) = 0 Left 
height > 0 and θ > 0 and r(x,y) ~ 0 UR  (12) 
height > 0 and θ < 0 and r(x,y)  ~ 0 UL 

height < 0 and θ > 0 and r(x,y)  ~ 0 DR 

height < 0 and θ < 0 and r(x,y)  ~ 0 DL 
 

Where r(x,y) is the radius in cylindrical coordinate system 
represented in (x, y) plane. It is reached as follows: 
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Where r1 and r2 is given by: 
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If h, θ, and r are equal to zero, then there is no movement. 
Splitting the trajectory we can characterize the trajectory so 
that each part can differentiate the type of grasp. After 
curvatures detection is computed the probability distribution 
of these features in each part of the trajectory.  For each 
feature is computed its probability as follows: 

C
c

cP i
i =)(  (16) 

Where ci represents the amount of a specific curvature in a 
specific hand displacement (trajectory part) and C is the total 
of curvatures found in each part, i.e., the summation of the 
total of occurrence of all ci. 

C. Segmentation by Hand Orientation 
Using three sensors on three fingertips we can approximate 

the hand plane computing its orientation to find out if it 
represents top or side-grasp (Fig.4). We have used the three 
parallel fingers (index, middle and ring) that usually remain 
parallel in the most part of hand shape for grasping. These 
three 3D points form the hand plane and after computing the 
normal of the hand plane we compare it with the z axis of the 
Polhemus referential to know the hand orientation. For the 
hand orientation the strategy of splitting trajectory in 8 parts 
is kept. At each 3 points in each part of the trajectory we can 
compute the hand orientation.  In each part of the trajectory 
is found the amount of hand orientation for side and top-
grasp. The probability of each one is computed as follows: 

O
o

oP i
i =)(  (17) 

Where oi represents the amount of a type of hand 
orientation (side or top grasp) in a specific trajectory part 
and O represents the total of occurrences of all hands 
orientation found in a specific trajectory part. 

  

 
Fig.4. (a) Possible hands orientation for side-grasp; (b) Possible hands 

orientation for top-grasp. 

D. Experimental Results of the Segmentation Step  
For each observation of our dataset were created xml files 

that stores the characterization of the trajectory, i.e. 
segmentation information: features amount and their 
probabilities in each part. It was created 2 xml files for each 

c = 
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trajectory, one with curvatures segmentation and another 
with hand orientation segmentation. This information is 
useful to perform the histogram learning that will be used in 
the classification step. Fig. 5 shows an example of top-grasp 
trajectory. Table 1 shows the result of trajectory 
segmentation by hand orientation acquired from the 
trajectory shown in Fig. 5. The same process shown in table 
1 is done for the segmentation by curvatures. 

 

Fig.5. Top-grasp trajectory after smoothing and normalization.  
 

Trajectory 
Parts 

Hand Orientation 
Side - Top 

Hand Orientation. Probab.  
Side - Top 

1 5 - 4 0.56 – 0.44 
2 3 - 8 0.28 – 0.72 
3 4 - 7 0.37 – 0.63 
4 3 - 8 0.28 – 0.72 
5 2 - 10 0.17 – 0.83 
6 1 - 11 0.08 – 0.92 
7 1 - 13 0.07 – 0.93 
8 1 - 16 0.06 – 0.94 

Tab.1. Trajectory Segmentation by Hand Orientation: Result of our 
application for the trajectory shown in fig.5. The second column is the 
amount of features found in each part; the third column is the correspondent 
probability of each features. 

V. LEARNING AND CLASSIFICATION 
The learning phase is based on histogram of the 

segmented features. Some studies have motivated us to 
apply Bayesian method to classify human movements. 
Computational models for human perception and action has 
been explored by researches. Some studies about human 
brain reports that Bayesian methods have achieved success 
in creating computational theories for perception and 
sensorimotor control [7].  

A. Grasping Learning Table 
In the learning phase is analyzed all trajectories of our 

dataset. Given a set of observations to represent a type of 
Grasping G, at some displacement D, we have the 
probability of each type of curvature C in each part of a 
trajectory represented as P(C | G D). The same rule is used 
for hand orientation learning, so that we have P(O| G D) 
where O represent all possible hand orientation. The learned 
table is a mean histogram calculated from all top grasp and 
all side grasp probability tables acquired in the segmentation 
process. Each type of grasping has its specific learning table. 
Fig.6 shows 2 examples of the Grasping Learning Tables 
obtained after analysing all trajectories of our dataset. Due 
the learning be achieved through histogram is possible some 
features might have zero probability, because they never 
have been observed. Whenever these features with zero 
probability occur in the classification step, the correspondent 
hypothesis(es) will receive also a zero probability. Our 
classifier is continuous, based on multiplicative update of 

beliefs and this situation leads to definite out-rule of the 
hypothesis.  To avoid this problem we are using the Laplace 
Succession Law, i.e., producing a minimum probability for 
non-observed evidences by the equation below: 
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Where F represents the features (e.g. curvatures = 9, 
orientation = 2); ni represents total of occurrence of this 
feature; n represents the total of all features occurrence. 
 

 
Fig.6. Left image represents the top-grasp curvatures learning table and 
right image top-grasp hand orientation learning table. 

B. Classification Model Using Bayesian Techniques 
Bayesian classification models have already proven their 

usability in gesture recognition systems as we can see in [3]. 
Based on this study we present a Bayesian classification of 
grasp types analyzing reach-to-grasp movements. The 
estimation and classification of a type of grasp happens 
along of a trajectory that is being performed by a subject. In 
each determined hand displacement is updated the 
probability of each type of grasp, i.e. the application informs 
us which grasping is more probable to happen by the higher 
probability between top and side grasp variables. Assuming 
the trajectory that is being performed has size 1 due we 
know the trajectory size a priori, i.e. we have the initial hand 
position and the mug position given by the sensors, then at 
each hand displacement corresponding by 1/8 of the 
trajectory is shown the probability of each grasp type. To 
understand the General Grasping Classification Model some 
definitions are done as follows: g is a known grasp from all 
possible G (Grasp types); c is a certain value of feature C  
(Curvature types); i is a given index from all possible hand 
displacement composed of a distance D ( 1/8 of a trajectory) 
of the learned table.  

The probability P(c | g i) that a feature C has certain value 
c can be defined by learning the probability distribution       
P(C | G D). Knowing P(c | G  i) and the prior P(G) we are 
able to apply Bayes rule and compute the probability 
distribution for G given the hand displacement i of the 
learned table and the feature c. Initially, the grasp variables 
(priors) G are a uniform distribution and during the 
classification their values is updated applying Bayes rule 
shown in equation below:  

 
P(G) i) G, | P(c  i) ,c | P(G 1k1k1k +++ α  (19) 

 

We assume the same model of classification for hand 
orientation which is differentiated just by segmentation 
information, that is, the hand orientation instead of 
curvatures, where o is a certain value of feature O (hand 
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orientation for side and top grasp). Knowing P(o | G  i) and 
the prior P(G) we apply Bayes rule as follows. 
 

P(G) i) G, | P(o  i) ,o | P(G 1k1k1k +++ α  (20) 
 

We formulate the equation as recursive way. The posterior 
probability of a previous trajectory part becomes the prior 
for the next trajectory part (next hand displacement). 
Assuming that each hand displacement we can find new 
curvatures and new hand orientation then we can express the 
online behaviour by using the index k that represents a 
certain displacement performed by the person in the reach-
to-grasp movement. The rule for classification is based on 
the highest probability value being necessary reaching a 
certain threshold (e.g. 0.7). We expect that a reach-to-grasp 
movement that is being performed by a subject to grasp the 
mug by top or side grasp will produce a grasp hypothesis 
with a significant probability. 

C. Entropy as Confidence Level for Classification Fusion 
The Shannon entropy H [8] as a measure of the uncertainty 

associated with a random variable is used in several works; 
we can see examples in [9] and [10]. In this work is used 
entropy as confidence level to try to improve and reach a 
better classification based on results of previous 
classification. After analyzing the classifications results of 
trajectories by hand orientation and by curvatures, we can 
apply entropy to verify the best classification between both. 
For that, a confidence variable will be used as weight w Є 
{w1 , …, wN} for each model of classification. The weight w 
can be expressed as a prior P(w) in the Bayesian rule. For 
each model of classification we can compute the entropy of 
the posterior probabilities as follows:  

 

))|(log()|())|(( DFGPDFGPDFGPH i
i

i∑−=  (21) 

Where P(G| F D) represents the posterior probability of each 
model of classification. The variable i represents the index of 
each classification results, that is, after n trials of one model 
of classification, we can apply the equation (21) for these 
results. Through the entropy H we can achieve the 
probability distribution of the weights of each classification 
(e.g. by curvatures and hand orientation). The weights are 
computed as follows: 
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Where w is the weight result; HC is the current value of 
entropy that is being transformed in a weight; i represents 
the index for each entropy value.  

Given the confidence of classification we can fuse the 
classification belief using the weights reached by the 
entropy. For each part of a trajectory we can compute the 
equation for the classification fusion achieving a new form 
of classification:  

∑
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Where P(g | f i) represents the classification result of each 
hand displacement computed as shown in equation 19 and 
20. Then at each part of a trajectory that is being classified is 
computed first the equations (19) and (20) and then the 
equation (23) which we already got the weight value for 
each model of classification based on previous results. The 
index j represents each type of classification, in this case for 
hand orientation and trajectory curvatures. Each kind of 
classification is multiplied for its correspondent weight. 

D. Experimental Results of Learning and Classification 
Fig. 7 shows a side grasp trajectory performed by a 

subject and table 2 shows the answer of our application 
along this trajectory classifying it by curvatures detection 
and by hand orientation. It shows the probability updated by 
Bayes rule for both variables (top and side) in each part of 
the trajectory. The final probability in the last part of the 
trajectory (in the 8th part) is the result of the classification. 
Comparing this case of Fig.7, we can see that both 
classifications reached good performance classifying 
correctly the trajectory. In this experiment the classification 
by curvatures was better than by hand orientation. 

 

 
Fig.7. Side-grasp trajectory (after smoothing and rescale). 
 

Trajectory 
Part Top% (C) Side% (C) Top% (O) Side% (O) 

1 34 66 19.10 80.90 
2 34 66 4.76 95.24 
3 34 66 4.76 95.24 
4 0.68 99.32 4.76 95.24 
5 0.68 99.32 4.76 95.24 
6 0.68 99.32 8.25 91.75 
7 0.68 99.32 10.83 89.17 
8 1.68 98.32 8.00 92.00

Tab.2. Classification using Curvatures (C) and Hand Orientation (O) for the 
trajectory shown in figure 7. It was classified as side grasp with 98.32% 
using curvatures and 92% using hand orientation (O). It is shown the 
probability of the trajectory being top or side grasp in each part of the 
trajectory. 
 
 Following the protocol (section III), two subjects have 
done some reach-to-grasp movements to test our application. 
Table 3 shows the results of the classification of 10 trials of 
side grasp using curvatures features, using hand orientation 
features and combining them using entropy as confidence 
level. The false negative values in the classification using 
curvatures features happened due the side-grasp trajectory 
are similar to the top-grasp. The classification using 
curvatures features when positive reached higher values than 
the classification using hand orientation features, but by 
other hand, using hand orientation features we did not have 
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false negative values. Using the entropy H, in these trials to 
reach an uncertainty measurement and give weights for each 
type of classification, we reached the following weights: 
P(wcurv) = 0.61 and P(wh_or)= 0.38. Fig. 8 shows a 
comparison graphic among these 3 methods. The results 
show us that the result reached by the entropy belief is a kind 
of balance between both methods for the trials shown in 
table 3. The application was developed using the language 
C++. It was used a laptop HP Pavilion dv5000, AMD Turion 
64, 2.0Ghz, 1Gb of RAM. The processing time for the 
segmentation process and classification are in real time.  

 

Trial 1 – Classification 
using Curvatures  

2 - Classification using 
Hand Orientation 

3 – Entropy to 
combine both features 

1 98.32 % 92.00 % 95.85% 
2 86.63 % 76.93 % 82.86%
3 21.67 % 91.53 % 48.81% 
4 84.69 % 61.12 % 75.52%
5 5.78 % 82.53 % 67.41%
6 99.33 % 51.22 % 80.63% 
7 99.68 % 90.43 % 96.08%
8 99.97 % 91.53 % 96.68% 
9 88.98 % 95.69 % 91.58%

10 78.67 % 55.98 % 69.85%
Tab.3. Result of 10 trials of Side-grasp. Two false Negative (less than 50%) 
on trial 3 and 5 using curvatures. The trials 4, 6 and 10 in hand orientation 
were considered as side grasp but with low probability, less than the 
threshold of 70%. It was reached just one false negative (trial 3) using 
entropy to combining both classifications. The trials 5 and 10 were 
considered side-grasp with low probability.  
 

 
Fig.8. Comparison graphic. The 2 methods of classification using two 
different kind of features and the third one using weights reached by 
entropy. 
 
 To test the efficiency of the proposed method, we also 
have done some gesture recognition, i.e. we have learned 
more movements (bye-bye and circle), with 30 observation 
for both. Table 4 shows in the two first rows the 
classification of two circles movements and the last two 
rows show the classification of the by-bye movement. The 
results are similar to the top and side-grasp classification. In 
10 trials we reached 1 false negative for both movements. 
 

Trial 1 – Classification 
using Curvatures  

2 - Classification using 
Hand Orientation 

3 – Entropy to 
combine both features 

1 95.30 % 80.65 % 89.40 % 
2 86.53 % 78.95 % 83.54 %
3 87.59 % 76.52 % 82.90 %
4 89.84 % 82.92 % 86.91 %

Tab.4. Classification of Circle (2 first rows) and bye-bye (2 last rows) 
movements. 

VI. CONCLUSION 
We have developed an application for segmentation and 

classification of reach-to-grasp movements. Two different 
methods of segmentation in 3D space were used, by 

curvatures and by hand orientation. A dataset of reach-to-
grasp movements were created to be used in a learning phase 
based on histogram techniques. Applying these two methods 
of segmentation we are able to classify the trajectories using 
Bayesian techniques. Entropy as uncertainty measurement 
was applied to reach a confidence level giving weights for 
both classifications for their fusion. The results have shown 
that using the weights reached from entropy for a joint 
classification has balanced the results, improving some 
classification when its probability is too low. The proposed 
method can also be used for gesture recognition tasks (e.g. 
for human-robot interaction), reaching similar results of 
reach-to-grasp movements classification. 
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