
Using Real-time Awareness to Manage Performance of Java Clients on

Mobile Robots

Andrew McKenzie, Shameka Dawson, Quinton Alexander, and Monica Anderson

Abstract— In this paper, we propose an extension to existing
mobile robot development environments that explicitly declares
the frequency requirements for client controller threads. This
extension enables better use of robot resources by running
modules only as fast as needed. Developers are forced to
consider the frequency requirements and their impacts, which
should result in better code. Physical experiments employed a
K-team Koala robot. Preliminary results showing the effect of
explicitly defining frequency are also presented.

I. INTRODUCTION

Robot controllers provide the logic and intelligence for

autonomous robot systems. Mobile robot controller devel-

opment is decidedly different from creating controllers for

traditional manipulators. Manipulators utilize specifically de-

signed software to manage real-time scheduling and kine-

matic constraints. Developers are forced to work within this

framework to ensure appropriate operation. Without such fail

safes, manipulators can be very dangerous when failure to

process data as designed results in incorrect robot motion that

can damage the robot or cause harm to people. Mobile robot

controller development is different. Mobile robot controllers

are often built on top of a hardware API, leaving the software

architecture design to developers.

Unfortunately, controller development for mobile robots

can be deceptively easy. Behavior-based controllers often

utilize finite state machines to manage many levels of com-

plexity to create autonomous robots that appear to think for

themselves. The standard design and programming practices

of defining frequency requirements for controllers is not as

important since the size and power of most mobile robots do

not pose a threat to humans.

In both cases, the proper operation of robot hardware and

software controllers assumes specific frequency requirements

and resource availability to work properly. However, many

mobile robot controller architectures do not enforce this re-

quirement. This oversight is apparent when surveying current

mobile robot architectures. According to a survey of nine

popular robotic architectures [1], either real-time features

(components that manage the frequency of processes) do

not exist or must be purchased. Therefore, it appears that

the assumption is that correct frequency is a function of

resource availability. If enough resources are available then

the controller will run properly. However, the assumption

This work was supported in part by the following NSF grants: IIS-
0846976 and CCF-0829827.

A McKenzie, S Dawson, Q Alexander, and M Anderson are
with the Department of Computer Science, University of Alabama,
Tuscaloosa, Alabama 35487 USA (email: {awmckenzie, dawso003,
qaalexander}@crimson.ua.edu; anderson@cs.ua.edu).

of correct frequency and resource availability on all but the

most sophisticated systems may be incorrect.

The incorporation of off-the-shelf real-time software into

mobile robots is not the ultimate solution. Managing resource

constrained real-time systems require a specially trained

engineer. IEEE Engineer reports that there is a growing

shortage of embedded systems engineers [2]. This shortage

is due in part to the lack of training in the engineering

curriculum. Not only is the expertise thin, but the cost of

off-the-shelf real-time software may be prohibitive.

Rather than advocating that all mobile robots use a real-

time core system, we propose a real-time aware extension

to existing mobile robot architectures that forces developers

to declare frequency expectations for each control module.

Missed deadlines (when a task does not complete in a certain

timeframe) are reported both during testing and experiments

allowing developers to understand the ramifications of code

changes in terms of existing resources.

Two purposes can be served by making this fundamental

change to robot architectures. First, explicitly determining

the frequency requirements for a module can result in better

resource utilization. Processes that do not need to run often

can relinquish resources to those that do. Second, developers

can understand the relative resources needed by individual

components and can adjust code or hardware to meet the

demand.

Clearly, precise system based timing control is unavailable

unless the operating system supports it. However, hiding

temporal details from developers may appear to result in

easy programming but may cause many hours of sorting

through unpredictable results. Inexperienced developers can

exacerbate the problem by developing inefficient code.

In this paper, we describe a real-time aware extension to

mobile robot architectures that allows developers to declare

frequency requirements as part of the client interface. This

extension works in the absence of a real-time core or other

special software. Section II presents previous results. Section

III describes the extensions and how they can fit into an

interface. Section IV presents an implementation of the

extension on top of Player [3] within the Java client library.

Experimental setup is detailed in Section V. Section VI

shows experimental results regarding changes in resource

utilization and its effect on performance for a path-planning

task. Section VII presents the analysis. Conclusions and

future directions are in Section VIII.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3422

II. RELATED WORK

Several robot development architectures are available for

mobile robots. However, none of these environments provide

either temporal awareness or real-time features. A complete

treatment of robot development environments and their fea-

tures is available in [1].

Subsumption-based robotic controllers build autonomy

out of layers of behaviors [4]. Basic layers are complete

processing units that take input and provide appropriate

output. We are particularly interested in properties that enable

temporal decompositions. Player [3] is an open source robot

architecture designed to operate with a wide range of hard-

ware components. The Player architecture specifically avoids

defining decompositions and therefore does not provide a

framework for adding frequency for behaviors.

Other robotic architectures do provide support for behav-

ioral decompositions [5] - [7]. For example, ARIA programs

[5] are composed of individual behaviors. Behaviors are

each given a priority that is applied to the importance of

actuator output. Priority does not affect resource assignment

or utilization. Because the target hardware architecture only

processes commands every 100 ms, all behaviors are run

every 100 ms. Other threads can be added by the developer

outside of the framework for processing tasks that have

different frequency requirements.

It is instructive to examine the real-time architecture

described in [8]. The architecture is based on port-based

objects. Port-based objects are fully contained software com-

ponents that contain both state and methods. They also

provide input, output and resource ports. Input ports describe

data needed by an object and output ports describe data

produced by an object. An input port can only be connected

to exactly one output port. Outputs of the same type must

be merged into one unambiguous output. Each object is self

contained and has its own frequency. Task scheduling is

determined by the developer and can be modified to either

increase system stability or reduce computational resource

consumption.

State variables, not queues are used for inter-object com-

munication. This model assumes the most recent data is

always available so that tasks don’t block while waiting for

new data to be produced. However, a mechanism is required

to insure mutually exclusive access. The paper suggests using

a local copy of the data for processing to avoid the priority

inversion associated with semaphores.

Player does create an abstraction of input and output

ports referred to as interfaces. These interfaces define the

data used by modules and allow sharing of data between

modules. However, the inputs are implemented as queues

and no temporal information collected about data is used at

the client level. Outputs are mapped to a single device. There

is no framework based facility to combine commands into a

single output.

III. EXTENSION FEATURES

The proposed extension makes use of the subsumption-

based decomposition of controllers. Robot controllers typ-

ically decompose behaviors into independent layers that

process data and produce new data or robot actuation. Input

data is generated from the robot’s sensors or produced from

other behaviors. Data is available to behaviors that use it. Be-

haviors process available data, creating new data or actuator

commands destined for the robot. Multiple behaviors that

can produce commands for the same actuator (for instance,

wheel motors) manage resulting actuator output by a priority

system.

We propose two extensions within the client development

architecture: 1) specify and execute each behavior on its

own scheduling period and 2) manage data production and

consumption within the framework. The initial goals of these

changes are to: 1) manage resource utilization, 2) provide

behavior-based runtime profile information, and 3) facilitate

shared data memory model. A secondary goal considers the

application of these existing frameworks to a real-time oper-

ating system (RTOS). These extensions provide a mechanism

within a RTOS to indicate thread priority, specify a schedule,

and manage memory.

The extensions that we propose are comprised of three

states to the individual behaviors (Figure 1). The Initializa-

tion state registers the behaviors with their frequency and

data sharing requirements. It then verifies and subscribes

to consumed data sources, which then creates shared data

locations for produced data. Finally, it registers the produced

data availability. In the Execution state, the monitor thread

executes behaviors according to the user specified period

and reports behavior execution into the next period. It then

monitors the update of data sources and reports stale data and

creates threads to manage multiple sources of data. Lastly,

the Termination state deletes shared data and summarizes

misses and data feed frequency.

Fig. 1. A state diagram of individual behavior states.

A. Resource Utilization

In a real-time system, different tasks are scheduled to exe-

cute at individualized rates. These rates are chosen primarily

to insure system stability but the rates at which data sensors

can report new data may also be considered. System stability

should be a consideration for mobile robots. If we apply these

tenets to mobile robot controllers, behaviors that affect the

stability of the system should run more frequently.

Determining the correct execution frequency for behaviors

may require empirical testing. However, we can assume that

tasks that affect system safety such as obstacle avoidance

and stall recovery should run more frequently than mapping.

From another perspective, mapping typically requires more

system resources since it involves processing and storing

larger amounts of data. Obstacle avoidance usually only

3423

checks a few key values before determining if a controller

command should be issued. Running mapping more fre-

quently may cause the preemption of safety behaviors.

We propose that each behavior have a frequency associated

with it. Behaviors associated with safety can run more often

while resource intensive or less critical behaviors can execute

less frequently. If input data is produced less frequently

due to low sensor sampling rates, it may be possible to

reduce the behavior’s period without affecting overall system

performance.

B. Memory Management

We propose the incorporation of shared data management

similar to that proposed in [8]. All shared data requirements

should be defined during the initialization stage. This allows

global data allocation outside of the execution cycle. In ad-

dition, queues are not used so queue management functions

that can be sensitive to the size of the queue are not needed.

Data that is not shared between behaviors is the purview

of the client developer. Developers are free to allocate

and deallocate memory during execution within a behavior.

However, allocation and deallocation of memory can be

costly in terms of time and is generally avoided in real-

time systems. Impact of such choices may result in missed

deadlines due to longer than expected processing times. Data

regarding processing times may hint at problems due to time

intensive requests.

To maintain data coherency and serialized access, each

behavior allocates a local buffer for data during initialization.

Global data is copied to the local store at the beginning

of every execution cycle. The global data store is locked

from writing during the copy but any number of consumers

have read access. Producers update the global store at the

end of the execution cycle during which all consumers are

locked out. An aggressive schedule that requires behaviors

to run frequently could cause lockout issues. This situation

is apparent through reporting of missed deadlines or stale

data.

C. Reporting

Missed deadlines and data availability are reported during

execution and aggregated upon termination to provide the

developer a summary of the temporal performance of the

system. Developers can use this information to modify an

overly aggressive schedule or to streamline code where

possible. These metrics are not intended to eliminate the

need for detailed profiling. It is possible that these metrics

may indicate the need for more investigation via traditional

profiling tools.

IV. IMPLEMENTATION

Player was modified to include the proposed extensions.

Player is an open source robot architecture that interfaces

abstracted clients to various hardware platforms. Clients are

written in C, C++, Python or Java and can run locally

or remotely via sockets. The Player server typically runs

locally and contains drivers that translate generic commands

to specific hardware interfaces.

Player was selected for two reasons. It does not provide

a framework for behaviors. The developers intentionally

decided not enforce a controller methodology. Instead the

choice of controller framework is left to the framework

user. Player also explicitly defines data sources as interfaces.

Interfaces are an abstraction of data produced or consumed

by behaviors. The explicit definition makes passing data

between modules possible.

Although the proposed extensions are beneficial to any

language implementation, Java presents a unique opportunity.

It has been suggested that programs written in Java take less

time to code and/or contain fewer errors [9]. Unfortunately,

the features that make Java a particularly productive language

make its use in embedded or real-time systems particu-

larly challenging. Garbage collection reclaims unreferenced

memory allowing programmers to allocate memory without

creating large memory leaks. However, garbage collection

preempts other threads contributing to unpredictable process-

ing times. In addition, as an interpreted language, processing

times can be longer than C or C++.

Fig. 2. Javaclient [10], a Java client library that interfaces to Player.

The extensions were implemented as part of the Java client

library [10]. The client library manages communication with

the Player server and exposes device specific functionality

through interfaces (Figure 2). The extended version (Figure

3) moves robot interaction to a PLAYERDATATASK, which

updates the global data stores with current data. In the

original Javaclient, the library supported up to two threads,

one for the client program and another for handling com-

munication if requested. Other threads could be created and

called from the client program. In the extended architecture,

there are several new threads built into the framework.

The MONITOR is created by the client program to manage

behavior execution and Player communication, each in its

own thread.

3424

Fig. 3. Real-time aware framework implemented in Java in conjunction with the Player architecture.

The framework has five key components, a monitor and

four task threads. The four task threads are:

* WAYPOINTPLANNER (Waypoint) is a high-level be-

havior that moves the robot through a series of way-

points. Although waypoints can be read in or set by

another task, a set of pre-defined waypoints was used.

* LASEROBSTACLEAVOIDANCE (Obstacle) responds to

obstacles sensed via the laser by slowing down the robot

and turning away from the obstacle.

* OCCUPANCYGRIDMAPPING (Occupancy) uses the

position and laser data reported by Player and maintains

an occupancy grid map. The map tracks unknown, open

and occupied space.

* DIJKSTRAPATHPLANNER (Planner) takes goal posi-

tion requests and maintains a path from the current

position to the closest goal. Multiple goals may be

added and the requester must remove the goal when

it is no longer valid (has been reached).

Other important modules include the POSITION MEDIA-

TOR. It takes motion requests from LASEROBSTACLEAV-

OIDANCE and WAYPOINTPLANNER and determines what

commands are ultimately sent to the robot. If LASER-

OBSTACLEAVOIDANCE requests control of the motors, its

commands are executed since it is the higher priority task.

Otherwise, commands from WAYPOINTPLANNER are exe-

cuted.

The MONITOR starts tasks at the pre-specified intervals

and reports when a task does not meet its deadline. The

tasks run independently but there are relationships according

to how data is generated and consumed. For instance, a map

of the environment is generated in one thread and that map

is used by another thread to identify waypoints. The laser

data is needed by both LASEROBSTACLEAVOIDANCE and

OCCUPANCYGRIDMAPPING. However, the LASEROBSTA-

CLEAVOIDANCE thread does not rely on the robot’s position

data.

Behaviors are created by subclassing TASKS. The TASKS

superclass contains functionality needed for initialization and

registration of data store use for the behaviors (shown in Fig-

ure 4). TASKS provides methods for registering production or

consumption of data with the monitor. During execution, the

TASKS superclass method replicates consumed data to a local

store. The MONITOR class handles scheduling execution

according to the specified schedule type: continuous, timed

or one-time. Timed tasks are executed according to their

specified period. The MONITOR class also reports deadline

misses and when a task is running with no new data.

Fig. 4. Sequence diagram showing the interaction and order of the
initialization phase. Each behavior notifies the monitor of data that is
produced and consumed.

3425

Some of the issues with using Java in embedded systems

have been addressed in Java Real-time Systems (RTS) [11].

It implements real-time features such as no heap real-time

threads, thread priorities, scoped and immortal memory.

Some flavors of Linux such as SuSE and Solaris have early

implementations. The proposed framework extensions ex-

plicitly separate memory into global shared and thread local

for application of immortal types and no heap threads. Also,

behaviors as threads allow for the application of different

priorities to different tasks.

V. EXPERIMENTAL SETUP

Experiments were performed to measure the usefulness

in applying different frequency requirements to behaviors.

These frequencies were supplied by the user via the com-

mand line. A waypoint navigation controller was used to

measure the effects of frequency on task performance.

Fig. 5. K-Team Koala Robot equipped with an ETX-Nano computer for
control and a Hokuyo URG laser ranger.

Physical experiments employed a K-Team Koala robot

(Figure 5). The robot was equipped with an Acces I/O

ETX-Nano computer which has an Intel Core Duo 1.66GHz

processor, 2GB of RAM and an 8GB compact flash card for

storage. Instead of using the on-board IR proximity sensors

that the Koala is augmented with, a Hokuyo URG laser range

finder was utilized. Player handles the interface to the robot

and its devices. The Player server as well as the logic or

control code was executed on-board the robot. Because of

the high power requirements of the Acces I/O ETX-Nano,

the robot was tethered with a power cord and an ethernet cat5

cable for remote communication. The testing environment

was a 9.6m x 6.2m room (Figure 6).

In these experiments, all trials were given the same four

waypoints to reach (shown in Figure 6). From the start

position (X1), the robot would travel to each waypoint until

it arrived at the finish position. The waypoints were chosen

such that all behaviors needed to be employed to reach the

ending position. Each task was given an interval value that

defined both the task’s deadline and period. For comparison,

the robot was run with different interval values for the task

threads (shown in Table I). The initial period values were

based on the frequency of the URG laser, which is 100

ms. The period for each set thereafter was chosen based on

Fig. 6. Experiment room (9.6m x 6.2m) with the four chosen waypoints
was equipped with ground truth positioning sensors.

observation. Each set of experiments had a total of ten runs.

In three of the five experiment sets, all tasks were assigned

the same period. In the remaining two sets, the period of the

LASEROBSTACLEAVOIDANCE was varied to see its affect

on the overall performance of the experiment. We chose to

lower this period because of safety issues of both the robot

and environment.

It was hypothesized that these experiments would help

demonstrate the effect of task frequency on the overall

system. We believe that the frequency of each task impacts

the performance of the system independently. Tasks should

not be permitted to run either too fast or too slow. For

instance, if LASEROBSTACLEAVOIDANCE is run at too fast

a period then it may cause the robot to hit an obstacle. Since

OCCUPANCYGRIDMAPPING uses both laser and position

data, it is critical that it run at an appropriate rate so

that the map is updated correctly. An incorrect map may

cause DIJKSTRAPATHPLANNER to plan an incorrect path

and WAYPOINTPLANNER to move through an obstacle.

Trials were considered complete if they circled the ob-

stacle approaching and passing each waypoint. If the robot

either got stuck on an obstacle or did not reach all waypoints

after six minutes, the trial was considered incomplete. Missed

deadlines and run time for each trial was recorded.

VI. EXPERIMENTAL RESULTS

Table I summarizes the results of the experiments. Each

experiment set tested different intervals of periods to de-

termine the effect of timing on the program’s performance.

Good performance was based on the following categories:

run time, distance to the finish position and low standard

deviation.

Figure 7 shows the percentage of missed deadlines for

each individual task for each Set. It is shown that Set

1’s individual tasks had the highest percentage of missed

deadlines. The percentage of missed deadlines for all tasks

was recorded for each experiment set (see Figure 8), which

followed the same trend as missed deadlines per task.

The time that it took each run to finish as well as the

robot’s distance to the finish position were recorded for all

runs. The average and standard deviation was then calculated

for time (see Table I) and position (see Table II).

3426

TABLE I

EXPERIMENTAL RESULTS.

Behavior Periods (ms) Trials
Experiment Average Run Standard

Set Waypoint Obstacle Occupancy Planner Time (s) Deviation (s)

1 10 10 10 10 266.95 6.64
2 100 10 100 100 267.34 10.39
3 50 50 50 50 265.89 11.19
4 100 50 100 100 276.97 5.17
5 100 100 100 100 272.68 6.28

Fig. 7. Missed deadlines for each individual task.

Fig. 8. Percentage of missed deadlines for each experiment set.

TABLE II

DISTANCE FROM FINISH POSITION.

Average Standard Min Max

Set Distance (m) Deviation (m) Distance (m) Distance (m)

1 2.19 0.17 2.04 2.45
2 2.21 0.23 2.02 2.59
3 2.18 0.21 1.96 2.45
4 2.14 0.43 1.80 2.86
5 1.93 0.17 1.70 2.12

VII. ANALYSIS

Figure 7 shows that as the individual tasks’ periods

increase, the tasks missed deadline rate decreases. In Sets

1, 4 and 5, the tasks’ with the highest missed deadline rate

are DIJKSTRAPATHPLANNER followed by OCCUPANCY-

GRIDMAPPING, WAYPOINTPLANNER and finally LASER-

OBSTACLEAVOIDANCE. The computational requirements of

the tasks follow in that order. Figure 8 shows that as the

tasks’ periods increase, the overall missed deadline rate

decreases. When the tasks’ periods are low, the system has

less computation to do then compared to when the periods

are high.

Table I shows that although Set 3 has the fastest average

run time, it also has the highest standard deviation. The run

time values and distance from the finish position are almost

identical (Tables I - II). T-tests were used to determine if

the results are statistically significant. The t-test results for

distance from the finish show that the data sets were not

statistically different. The total run times from Sets 1 and

4 were statistically different as well as Sets 1 and 5. Since

the only difference between the sets were the frequencies

of behaviors, the results suggest that task timing does affect

the overall system performance. It is also worth noting that

the t-test results for run time values of Sets 2 and 4, Sets

3 and 4, and Sets 4 and 5 had confidence intervals of 82%,

85% and 79% respectively. Therefore those sets are on the

verge of being considered statistically significant. Note that

the only difference in Sets 2 and 4 and Sets 4 and 5 is the

period assigned to LASEROBSTACLEAVOIDANCE; the other

tasks all have a period of 100 ms. It is also worth noting

the standard deviation for Sets 2 and 3 are almost double of

Sets 1, 4 and 5.

Experiments were also run with periods larger than 100

ms. These experiments were problematic because the robot

would hit the wall as well as obstacles. Experiments were

also run with periods of 5 ms and less, which resulted in the

robot becoming non-responsive and locking up which would

require a reboot of the system. This supports our hypothesis

that a system should not be run too fast or too slow. In

control theory [12], the sampling rate needs to be at least

two times the fastest input signal. In our system, the Hokuyo

laser sends out its data at a rate of 10Hz. Therefore, any

behavior in our control system that depends upon the laser

information (LASEROBSTACLEAVOIDANCE and OCCUPAN-

CYGRIDMAPPING) should have a period of at most 50 ms.

WAYPOINTPLANNER uses position information that updates

3427

on average at 16Hz, suggesting that WAYPOINTPLANNER

may need to run with the faster period. In contrast, even

though the position information is updated from the robot at

16Hz, the grid size is only 0.5 meters. With the top speed

of the robot being 0.1 meters per second, the occupancy cell

only changes at most once every 5 seconds. This suggests

that available resources may be increased by slowing down

the DIJKSTRAPATHPLANNER. This may be significant given

the resources needed to replan, even in a large resolution grid.

VIII. CONCLUSION

Many robot architectures view correct frequency as a

function of resource availability. By not properly addressing

timing concerns mobile robot systems may not fully utilize

system resources. Furthermore, ignorance of timing details

can lead a developer to produce unstable systems. This is

partially because our intuition is that only the critical tasks of

a robot control program need to run fast, which is wrong. One

must apply the laws of Control Theory to robotics, requiring

all behaviors and their input dependencies to be analyzed

instead of just the critical tasks.

We presented a means of extending a robot software plat-

form to incorporate temporal awareness. The system, written

in Java and added to the Player interface, allows individual

program components to be assigned a schedule frequency.

Although it cannot override the underlying OS, this system

can report missed deadlines and enforce subtask hierarchy

and priority through application of scheduling intervals. We

presented the details of the system and its implementation.

Experiments demonstrated how manipulating the timing of

subtasks affects overall task performance. The results of

testing validate the hypothesis and show how important

proper timing is to resource utilization in mobile robot

systems.

In future work, the architecture will be extended to Java

RTS, which is required to run on a RTOS such as Solaris. The

JVM will also provide run time information that can be used

to adjust the timing behaviors automatically. This extension

will require a better understanding of appropriate frequencies

and their relationship to code features. This includes which

tasks depend on specific input devices, such as the URG

Laser, as well as the dependencies between the different

tasks. Then Digital Control System theory can be used to

find the required task periods. The hardware will be varied

to show the effects of different hardware on timing and

resource requirements. The architecture will also be written

in a more real-time friendly language such as C. The next

step will be to map the entire architecture to a RTOS, in

turn making it actually real-time instead of real-time aware.

Human studies that evaluate programmer proficiency may

shed light on features of the architecture that are useful in

teaching embedded programming techniques.

IX. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the

following NSF grants: IIS-0846976 and CCF-0829827.

REFERENCES

[1] J. Kramer and M. Scheutz, “Development environments for au-
tonomous mobile robots: A survey,” Autonomous Robots, vol. 22,
no. 2, pp. 101–132, 2007.

[2] M. Anderson, “Help wanted: Embedded engineers why the united
states is losing its edge in embedded systems. . . ,” Today’s Engineer,
February 2008.

[3] B. Gerkey, R. Vaughan, K. Stoy, A. Howard, G. Sukhatme, and
M. Mataric, “Most valuable player: A robot device server for dis-
tributed control,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent

Robots and Systems (IROS), Maui Hawaii, 2001.
[4] R. Brooks, “Intelligence without Representation,” Artificial Intelli-

gence, vol. 47, no. 1-3, pp. 139–159, 1991.
[5] K. Konolige, “Saphira robot control architecture,” Technical report,

SRI International, Menlo Park, CA, April 2002, Tech. Rep.
[6] T. Balch. (2001) TeamBots software and documentation.
[7] M. Scheutz, “ADE: STEPS TOWARD A DISTRIBUTED DE-

VELOPMENT AND RUNTIME ENVIRONMENT FOR COMPLEX
ROBOTIC AGENT ARCHITECTURES,” Applied Artificial Intelli-

gence, vol. 20, no. 2, pp. 275–304, 2006.
[8] D. Stewart, D. Schmitz, and P. Khosla, “The Chimera II real-time

operating system for advanced sensor-basedcontrol applications,” Sys-

tems, Man and Cybernetics, IEEE Transactions on, vol. 22, no. 6, pp.
1282–1295, 1992.

[9] G. Phipps, “Comparing observed bug and productivity rates for Java
and C++,” Software—Practice & Experience, vol. 29, no. 4, pp. 345–
358, 1999.

[10] R. Rusu, R. Robotin, G. Lazea, and C. Marcu, “Towards Open Archi-
tectures for Mobile Robots: ZeeRO,” Proceedings of the Automation,

Quality and Testing, and Robotics International Conference (AQTR

2006), May, 2006.
[11] G. Bollella and J. Gosling, “The Real-Time Specification for Java,”

COMPUTER, pp. 47–54, 2000.
[12] J. Dorsey, Continuous and Discrete Control Systems. New York:

McGraw-Hill College, 2001.
[13] S. Bennett, Real-Time Computer Control: An Introduction. New York:

Prentice Hall International, 1994.

3428

