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Abstract—A formal notion of gesturing defined as the modu-
lation of relative separation between mobile robots has been
explored in [1]. We extend this work by developing a peer-
to-peer communication channel and an associated distributed
communication protocol based exclusively on the modulation
of relative motion and its observation. Protocols that enable
two unicycle vehicles modulating their relative separation in the
plane to effectively exchange information, as well as nonlinear
control laws that enable these protocols are presented. Only
local information is assumed for the control action. We illustrate
the contextual nature of such signaling by showing applications
to secure communication as well as robot formation motion.
Simulations are presented to validate the work.

I. INTRODUCTION

Physical gestures are an important means of communication

in the natural world. The use bees make of an intricate dance

form to communicate information pertinent to food foraging

has been widely studied [2]. It has been theorized that birds

migrating in formation have a gesture based means for com-

municating information between each other [3]. Dragonflies

are able to catch faster moving prey mid-air by modulating

their motion to minimize their detection by prey[4][5]. There

are several other contexts where such behavior has been

documented. The underlying theme to such gesturing behavior

is the existence of two or more agents that are able to create,

observe and comprehend motion. In [1], we formalize and

elucidate this notion of gesturing in the context of mobile

robots.

As indicated, achieving a meaningful gesture involves at least

two participants – a transmitter of the gesture and a receiver

of the gesture. The transmitter needs to be able to generate

motion that can be accurately perceived by the receiver.

Modern day mobile robots are able to sense relative position

between themselves and objects in their vicinity. A transmitter

robot can exploit this fact by modulating its position relative to

the receiver as a means for communication. Control strategies

that help achieve such signaling as well as the notion of

a codebook of such messages are introduced in [1][6]. [1]

assumes the availability of global positioning information, and

hence, the availability of a centralized infrastructure. In the

present article, we extend [1] by presenting a fully distributed

strategy to achieve such signaling.
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Prior research includes the development of control laws that

enable Dubins vehicles to track a reference frame moving

with constant speed and angular velocity. In [7], the authors

develop a tracking control law based on a global coordinate

frame of reference. The same global coordinate frame of

reference is used in [8] to illustrate backstepping control

design. Such strategies require centralized information from

a global positioning system. In [9], the tracking problem is

formulated using a local coordinate frame of reference, making

the developed control laws depend only on locally observable

information. Such a formulation yields a distributed rather than

centralized solution to the tracking problem, and we adopt this

coordinate system for this article. There is also considerable

interest in the information required to maintain formation

motion between robots (for instance, [10][11]), and control

laws for maintaining formations in general (for instance, [12]

[13].) The information in these cases exists in the motion of the

agents, but is not communicated explicitly through the motion

of the agent; this is the distinguishing feature of our work.

The article is organized as follows. We first formulate the

problem as the relative motion between two unicycle vehicles

constrained to move in the plane. A robot centric coordinate

frame based on [9] is setup. Next, three different relative

motion paradigms are discussed in sections III, IV and V. In

section VI, we discuss the contextual nature of such signaling,

and illustrate applications that use motion based signaling as

a digital data channel. We present simulations validating our

work, and conclude with open research questions.

II. PROBLEM FORMULATION

As has been mentioned, our goal is to enable two agents

constrained to move in the plane to convey information from

one to another by modulating their relative separation. Figure 1

shows two unicycle vehicles constrained to move in the plane.

In the figure, ρ represents the relative separation between the

vehicles, φ and α represent the angles as indicated. φ and ρ
are measured relative to the robot, while α = θ1 − θ2 is the

relative heading angle between the robots. The equations of

motion are (1)-(4) (see [9].) As shown in the figure, the states

are (ρ, φ, α). R1 represents a receiver of information while

R2 is the transmitter of information. We represent the velocity

and angular velocity of R1 as (vr, ωr), and the corresponding

controls for R2 as (v, ω).
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Fig. 1. Relative coordinate system between robots R2 and R1. α = θ1−θ2,
where θ1 and θ2 are measured with respect to the inertial reference frame
shown.

ρ̇ = −v cosφ + vr cos(φ − α) (1)

φ̇ = −ω +
v sinφ − vr sin(φ − α)

ρ
(2)

α̇ = ωr − ω (3)

vr > 0 (4)

The goal is to design control laws {(v, ω), (vr, ωr)} so that an

observation, over time, of R2’s motion conveys information to

R1. R2’s trajectory thus serves as a message to R1.

It is possible for R2 transmit a message to R1 independent

of R1’s motion. For this, R2 simply tracks a planar curve

that R1 observes. The control law pairs (v, ω) and (vr , ωr)
are thus decoupled from each other. Clearly, R1 needs to

observe the motion of R2 as well as record its own motion

during R2’s transmission. From this information, R1 needs to

process out R2’s motion in the plane. Such a transmission

presents several practical difficulties. Sensors tend to have

finite ranges for operation, and R2 needs to move within a

favorable sensory range of R1 for R1 to faithfully observe

R2. Secondly, complex motion on the part of R1 implies

considerable signal processing effort on its part to decipher

R2’s trajectory, and possibly increase the uncertainty in the

determination of R2’s trajectory.

As an alternative, it is possible for R2 and R1 to cooperate

in the transmission of the message. For instance, R1 can

maintain a constant velocity trajectory along a straightline (or

even a circular path), while R2 signals information relative

to this known trajectory. A cooperative strategy can alleviate

the problems inherent to an independent motion strategy.

In this article, we present a communication protocol and a

sequence of control laws to achieve relative motion based

message transmission in a fully distributed and cooperative

fashion between two unicycle vehicles. We clarify the notion

of a protocol and an associated control law by the following

definitions.

Definition 1. Motion Based Signaling Protocol A sequence

of pre-determined motions that two mobile agents adopt in

order to successfully exchange information.

Definition 2. Signaling Control Law A control law that

enables mobile agents to successfully achieve a specified

signaling protocol.

Fig. 2. Robot R2 signaling to stationary robot R1. Different phases of
the protocol are shown. The xy-coordinate system is global, but arbitrarily
selected by the robot. The receiver R1 observes the received signal registers
it.

We shall henceforth refer to a motion based signaling protocol

as a signaling protocol for brevity. In the following sections,

we discuss three cooperative modes of signaling information

from a transmitter agent and a receiver agent.

III. SIGNALING INFORMATION TO STATIONARY AGENT

We consider the case of a stationary receiver capable of

sensing motion in the plane:(vr, ωr) = (0, 0). The transmitter

is a nonholonomic agent that describes a planar curve with

some curvature constraints (the message.) This motion based

messaging is one way: from the transmitter to the receiver.

Since sensors come with a range specification, the transmitter

needs to make sure that it stays within the sensing range of

the sensor. Figure 2 illustrates the case when the transmitter

moves in a nominally straightline trajectory and the receiver

is stationary. A straight line motion of the signaling robot acts

as both initiation and termination of an intervening planar

curve that serves as the message. The control objective for

the transmitter reduces to one of tracking a message curve in

the plane by the signaling robot. There are several nonlinear

control strategies available to achieve this, and we refer readers

to [1][14] as illustrative references. There are other more

complex ways of signaling to a stationary receiver (such as

transmitter moving in a nominally circular trajectory) that we

shall not discuss here.

IV. SIGNALING INFORMATION BETWEEN AGENTS MOVING

INLINE

In this scenario, both the transmitter and the receiver are

constrained to move along a straight line in-line with each

other, with vr > 0, ωr = 0. An example of such motion

includes vehicles constrained to move in traffic lanes. Figure

3 Case A illustrates this idea.

Let x2(0)− x1(0) = ρd, ρd > 0. Then, ẋ1 = v1(t) = vr =⇒
ẋ2 = v2(t) = vr + A sin(ft). Since we require the agents not

collide, one can explicitly solve the above equations to show

that A ≤ fρd/2. In addition, a bound amax on the acceleration

yields ‖v̇2(t)‖∞ = ‖a2(t)‖∞ = ‖Af cos(ft)‖∞ ≤ |Af | =⇒
|Af | ≤ amax.
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Fig. 3. Illustrates signaling between vehicles moving inline with each other.
Case A shows two vehicles moving along a straight line, with R2 signaling
to R1 by modulating the distance x2(t)−x1(t) over time. If the two agents
agree upon a common point of reference (a virtual agent) C, the the agents
can signal to each other simultaneously by modulating x2(t) − xc(t) and
x1(t) − xc(t). Case B illustrates vehicles moving in two different lanes that
can signal by modulating their relative separation.

V. SIGNALING INFORMATION BETWEEN AGENTS MOVING

WITH OFFSET BUT PARALLEL NOMINAL MOTIONS

In this section, we discuss the signaling of information be-

tween two unicycle vehicles moving in trajectories that are

nominally parallel to each other. Figure 4 illustrates this mode

of signaling between a transmitter agent R2 and a receiver

agent R1. In the following subsections, we describe control

laws that enable such signaling, as well as a communication

protocol that the two agents need to adopt for such signaling

to be feasible.

Fig. 4. R2 is transmitting a message to R1 through relative motion. The
figure shows successive positions of R1 and R2 as they signal information.
L1 and L2 represent the respective trajectories of R1 and R2. R1 is moving
with a constant velocity along L1. R2 Follows a synchronization (Sync) phase
where it moves parallel to R1 and offset from it by a fixed separation and
orientation, as shown in the extreme left R1-R2 sequence. Once the two
robots synchronize (i.e.the formation is stabilized), R2 traces the message in
the plane as shown, all the while keeping a constant distance and bearing with
respect to R1. Finally, it indicates the end of the message by the termination

(Term.) phase, which is essentially a straightline trajectory.

A. Signaling Control Law

We use a technique that draws from nonlinear feedback lin-

earization and backstepping control [15] to design a control to

transmit a message to the receiver. Through algebraic manip-

ulation, the control law (v, ω) is chosen so that the equations

(1) and (2) become linear in ρ and φ respectively. This allows

for explicit control over trajectory tracking performance with

respect to ρ and φ, as the sequel will show. The resulting non-

linearity in equation (3) is analyzed for parameter regimes in

which the states (ρ, φ, α) stay bounded for different signaling

scenarios. For better tracking performance, two integrators γ
and σ are introduced: γ̇ = ρ − ρ0, σ̇ = φ − φ0, where ρ0 and

φ0 represent the desired orientation and bearing of R2 relative

to R1 (Figure 1.) γ and σ represent integrators for errors in ρ
and φ respectively. Equations (5) and (6) are the result of the

outlined strategy:

v =
vlin + vr cos(φ − α)

cosφ
(5)

ω = ωlin +
v sin φ − vr sin(φ − α)

ρ
(6)

where

vlin = Kpρ(ρ − ρ0) + Kiργ

ωlin = Kpφ(φ − φ0) + Kiφσ

Equations (1)-(3), (5), (6) reduce to

ρ̇ = −Kpρ(ρ − ρ0) − Kiργ (7)

φ̇ = −Kpφ(φ − φ0) − Kiφσ (8)

α̇ = −ωlin − vlin

tanφ

ρ
−

vr

ρ
[tanφ cos(φ − α) − sin(φ − α)] (9)

γ̇ = ρ − ρ0 (10)

σ̇ = φ − φ0 (11)

We start by investigating the local stability of the equations

(7)-(11). We note that this reduced set of equations assumes

vr > 0 for the formulation to be valid.

Theorem V.1. The point (ρ0, φ0, 0, 0, 0) is an asymptotically

stable equilibrium point for the system (7)-(11) for Kpρ >
0, Kpφ > 0, Kiρ > 0, Kiφ > 0, φ0 ∈ (−π/2, π/2), vr >
0, ρ0 > 0.

Proof: See Appendix.

We next consider the performance of the system (7)-(11) to

sinusoidal excitation. Theorem V.3 quantifies the tracking error

and the feasible parameter ranges for this problem.

Lemma V.2. Consider constants a ∈ R
+, b ∈ R

n, a vector

x ∈ R
n, and a function g(·) : R

n → R defined as g(x) =
−a ‖x‖

2
2 + bT x. Then, ‖x‖ > ‖b‖ /a =⇒ g(x) < 0.

Proof: We have g(x) ≤ −a ‖x‖2 + ‖b‖ ‖x‖ =
a (−‖x‖ + ‖b‖ /a) ‖x‖, and hence the result.

Theorem V.3. For the system (7)-(11), let the reference input

be of the form:

ṡ = vr, [vr > 0, ωr = 0, s(0) = 0]

ρ0(s) = ρ0 − ρs cos(ωss) [0 < ρs < ρ0, ωs > 0]

φ0(s) = φ0 + tan−1(ρsωs sin(ωss))

sup
s∈R

| φ0(s) | < π/2

Let the errors to this reference input be ρerr(t) =
ρ(t) − ρ0(t), φerr(t) = φ(t) − φ0(t). For initial errors

[ρerr(0), φerr(0), α(0)] sufficiently close to the origin, there

exist feasible choices of Kpρ, Kiρ, Kpφ, Kiφ for which the

errors ρerr(t), φerr(t), and αerr(t) are bounded for all time.
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Proof: We analyze the solution on a state by state basis.

For φerr(t), we have

φ̇err = φ̇ − φ̇0 = −Kpφφerr − Kiφσ − φ̇0

= −Kpφφerr − Kiφσ +
ρsω

2
svr cos(ωsvrt)

1 + ρ2
sω

2
s sin2(ωsvrt)

(12)

The above can be collected as the following system:
[

φ̇err

σ̇

]

=

[
−Kpφ −Kiφ

1 0

] [
φerr

σ

]

+ f(t) (13)

f(t) =

[
ρsω2

svr cos(ωsvrt)
1+ρ2

sω2
s sin2(ωsvrt)

0

]

=

[
f(t)
0

]

We consider a Lyapunov function V = xTPx where x =
[φerr, σ]T , and P > 0. Let A = [−Kpφ, Kiφ; 1, 0]. We have,

for the nominal system ẋ = Ax, V̇ = xT (ATP+PA)x < 0
if and only if there exists some Q > 0 such that AT P+PA =
−Q. For Q = [1, 0; 0, 1], Kpφ, Kiφ > 0, it is not hard to show

that

P =

( 1+Kiφ

2KiφKpφ

1
2Kiφ

1
2Kiφ

Kiφ+K2

iφ+K2

pφ

2KiφKpφ

)

For the system (13), the Lyapunov function becomes

V̇ = −‖x‖
2
2 + 2f(t)

(

−
−1 − Kiφ

2KiφKpφ

φerr +
1

2Kiφ

σ

)

≤ −‖x‖
2
2 + 2f(t)

√

(1 + Kiφ)2 + K2
pφ

2KiφKpφ

‖x‖2

We observe that sup
t

f(t) = ρsω
2
svr. Lemma V.2 implies

V̇ < 0 ⇐⇒ ‖x‖2 > ρsω
2
svr

√

(1 + Kiφ)2 + K2
pφ

KiφKpφ

(14)

Thus ‖[φerr, σ]‖2 < +∞ and hence, φerr(t) is bounded.

Equation (14) implies that all trajectories starting inside

‖x‖2 > ρsω
2
svr

√

(1 + Kiφ)2 + K2
pφ/(KiφKpφ)+ǫω, ǫω > 0

have V̇ < 0, and hence, do not leave this region. Equation (14)

serves as an estimate of the bound on the error.

A similar argument can be made to prove boundedness of

ρerr(t). For ρerr(t), we have

ρ̇err = ρ̇ − ρ̇0 = −Kpρρerr − Kiργ − ρ̇0

= −Kpρρerr − Kiργ + ρsωs sin(ωsvrt) (15)

With the replacements φerr → ρerr, σ → γ, Kpφ →
Kpρ, Kiφ → Kiρ, f(t) → ρsωs sin(ωsvrt) in the arguments

for the boundedness of φerr(t), one can find a similar bound:

‖[ρerr, γ]‖2 > ρsωs

√

(1 + Kiρ)2 + K2
pρ

KiρKpρ

(16)

Thus all trajectories starting within ‖[ρerr, γ]‖2 =

ρsωs

√

(1 + Kiρ)2 + K2
pρ/(KiρKpρ) + ǫv, ǫv > 0 have

V̇ < 0, and hence do not leave this region.

Finally, for the state α, we have

α̇ = −ωlin −

(
tan φ

ρ

)

︸ ︷︷ ︸

p(t)

vlin −

(
vr

ρ cosφ

)

︸ ︷︷ ︸

r(t)

sin α

We show that ωlin, vlin, p(t), q(t) are bounded functions. We

have

‖ωlin‖2 = ‖Kpφφerr + Kiφσ‖2 ≤
√

K2
pφ + K2

iφ ‖[φerr , σ]‖2

and hence, ‖ωlin‖2 is bounded (using (14).) Similarly, ‖vlin‖2

is bounded. 0 < ρ(t) < +∞ and 0 ≤ |φ(t)| < π/2 implies

that (a) p(t) and r(t) are bounded, and (b) r(t) > 0.

Using the Lyapunov function V = 2 − 2 cos2(α/2), we have

V̇ = α̇ sin α = −r(t) sin2 α + sin α(−ωlin − vlinp(t))

≤ −r(t) sin2 α + |sin α| |(−ωlin − vlinp(t))|

Using Lemma V.2, we find a b, b ∈ [0, 1) such that

|sinα| > b = sup
t∈[0,∞)

∣
∣
∣
∣

−ωlin − vlinp(t)

r(t)

∣
∣
∣
∣

=⇒ V̇ < 0 (17)

The goal is to choose parameters that satisfy this inequal-

ity. Using a more conservative bound, we have, using

maxt ρ cosφ = ρ0+ρs, and, |φ| ∈ [0, π/2) ⇒ maxt sin φ < 1,

sup
t∈[0,∞)

∣
∣
∣
∣
ωlin

ρ cosφ

vr

+ vlin

sin φ

vr

∣
∣
∣
∣

≤ sup
t∈[0,∞)

∣
∣
∣
∣
ωlin

ρ cosφ

vr

∣
∣
∣
∣
+

∣
∣
∣
∣
vlin

sin φ

vr

∣
∣
∣
∣
< 1

⇒

√

K2
pφ + K2

iφ

vr/(ρ0 + ρs)





ρsω
2
svr

√

(1 + Kiφ)2 + K2
pφ

KiφKpφ

+ ǫω



+

√

K2
pρ + K2

iρ

vr





ρsωs

√

(1 + Kiρ)2 + K2
pρ

KiρKpρ

+ ǫv



 < 1

(18)

The above inequality yields conditions on parameters so that

α(t) is bounded. It is possible to select Kpφ, Kpρ, Kiφ, Kiρ

for the range of values of ρs, ωs > 0, vr that satisfy the above

inequality. Note that ǫω and ǫv are arbitrarily small. Since

each of the states ρerr(t), φerr(t) and α(t) are bounded for

all t ∈ [0,∞), the result follows.

We observe in (18) that for large ωs, the gains also need to

be large which can lead to saturation of the velocity/angular

velocity of the vehicle. Also, it is possible to analyze ρerr(t) in

(15) as a standard second order system with damping subject

to sinusoidal excitation.

Figures 5 and 6 illustrate the performance of this control law.

The plots show the evolution of the states of the plant as

the system follows a fixed target and a sinusoidal trajectory

respectively.
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Fig. 5. Parameters are ρ(0) = 1.3, ρ0 = 1.0, φ(0) = −π
3

+ .1, φ0 =
−π

3
, vr = .5, Kpρ = 4.0, Kpφ = 1.0, Kiρ = 1.0, Kiφ = .5, ωr = 0.0.
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Fig. 6. Parameters are ρ(0) = 1.0, ρ0(s) = 1.0 − 0.2 cos(s), φ(0) =
−π/3, φ0(s) = −π/3 + tan−1(0.2 sin(s)), vr = .5, Kpρ = 4.0, Kpφ =
1.0, Kiρ = 1.0, Kiφ = .5, ωr = 0.0.

Fig. 7. State transition diagram for the transmitter and the receiver as the
work in collaboration to achieve signaling of information from the transmitter
to the receiver. This is a simplex transmission protocol.

B. Protocol Implementation and state transition diagrams

Figure 7 shows a protocol that a transmitter and receiver agent

need to follow in order to exchange information from the

transmitter to the receiver. As one can see, there is a sequence

of states and events (messages) that help in the transmission

of information from one robot to the other. The state transition

is as follows. The receiver is in some state of motion, and the

transmitter attempts to herald the receiver. A typical heralding

motion can be that of tracking the receiver at a pre-determined

separation and orientation from the receiver. Once the receiver

senses the herald message from the transmitter, the receiver

can start following trajectories that are easy to track – such as

a straight line trajectory – as a Herald Acknowledge message.

The receiver thus cooperates with the transmitter as part of

this protocol. Once the transmitter receives a Herald Ac-

knowledge message, the transmitter starts synchronizing with

the receiver’s motion. It maintains the fixed separation and

orientation motion with respect to the receiver, and estimates

any parameters that it requires (such as vr, ωr). This motion

also serves as the Signal Begin Message. It then transmits

its message using the control laws described in the previous

section, and finally, reverts to a motion where it maintains a

fixed separation and orientation with respect to the receiver

(the Signal End Message.) Clearly this final motion needs to

be time bounded.

The protocol described is a best effort protocol, and can be

misinterpreted at various stages. For instance, the receiver

could misinterpret the transmitter’s tracking motion with intent

to herald as hostile. Alternately, the receiver could misinterpret

a hostile agents intensions as a heralding gesture. Resolving

such ambiguities with maximal reliability is part of our on-

going research.

VI. THE CONTEXTUAL NATURE OF MOTION-BASED

COMMUNICATION

Motion-based signaling can be used to communicate infor-

mation in a variety of different contexts. In what follows, we

show how a motion-based communication channel can be used

for communicating signals ranging from digitally encoded

information (which can be arbitrarily long) to explicit motion

based messages for robot formation changes (mimicking ideas

from nature such as the bee-dance[2]).

Example VI.1. A low bandwidth digital data stream channel

One can use the motion-based signaling channel for trans-

mitting a data stream. To do this, we need an alphabet of

messages that can be transmitted. Consider a codebook B
composed of a finite number of polynomials from the set of

Chebyshev polynomials of the first kind. The first five terms

are T0(x) = 0, T1(x) = x, T2(x) = −1 + 2x2, T3(x) =
−3x+5x3, T4(x) = 1−8x2+8x4. These polynomials have the

property that ‖Ti(x)‖∞ ≤ 1, x ∈ [−1, 1], i ∈ {1, 2, 3, 4, . . .}.

This property guarantees bounds on the minimum and max-

imum separation between two agents exchanging a message

from this set. A finite set of these polynomials can form the

alphabets for codewords in our signaling scheme (after scaling

them to ensure sufficient tracking performance.) We represent

by B5
p the codebook formed by concatenating elements from

the set {T0(x), T1(x), T2(x), T3(x), T4(x)}, with the element
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T0(x) being reserved to indicate the start and stop of a

transmission. We assume that the polynomials are scaled

appropriately to meet curvature and slope bounds. Circular

arcs can be used to get matching slopes at either ends of the

signaled alphabet in each codeword. Figure 8 illustrates the

states of a transmitter-receiver pair as a function of time as

the transmitter transmits a message from B5
p.
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Desired ρ

Fig. 8. The sequence T0, 0.05T1, 0.05T2, 0.05T3, 0.05T4, 0.05T1, T0,
which is an element of Bp is signaled.

Example VI.2. The Diffie-Hellman Key Agreement Scheme

using relative motion The Diffie-Hellman Key Agreement

Scheme is widely used to generate a common encryption key

for secure communication between two entities that do not

have a secure communication medium (see [16] for instance.)

Consider two agents Alice and Bob that wish to exchange

a secret shared key that is to be used to encrypt messages

that the exchange with each other. To do this, they both share

a common pair (P, g), P ∈ Z
+, g ∈ Z

+ that is publicly

known and satisfies (1) P is prime, (2) 1 < g < P , (3)

∀ n ∈ Z
+ such that 1 ≤ n < P , ∃ k ∈ Z

+ such that n = gk

mod P . Now, Alice and Bob each choose a positive integer

Ka and Kb respectively, and compute ya = gKa mod P
and yb = gKb mod P . They then exchange ya and yb over

an insecure channel. The common key can be computed as

K = (gKaKb mod P ) = (yKa

b mod P ) = (yKb
a mod P ).

Figure 9 A illustrates this protocol as a timeline diagram. The

drawback in this key exchange scheme is shown in Figure 9

B. An interloper can intercept ya and essentially impersonate

Alice to Bob by using its own key K∗

a , and vice versa. The

possibility of such an interloper is precluded by using relative

motion signaling to exchange ya and yb. Once the key is

established, secure wireless communication can be achieved

between the agents.

Typically, P tends to be a very large prime (to the order of

1024 bits.) A 4-element Chebyshev basis as shown in the

previous example will require 1024 log4 2 = 512 alphabet

transmissions. Even with a transmission of one symbol every 2

seconds (which is quite fast for such vehicles), it will takes over

Fig. 9. A illustrates the Diffie-Hellman Key Sharing Scheme. B shows
an interloper that is able to evade detection and maintain separate channel
connections between Alice and Bob. This can be prevented by using a motion-
based signaling scheme.

34 minutes to transmit such a long key! Compressing more

information into a codebook or working with a shorter key

that is constantly updated is the subject of ongoing research.

VII. CONCLUSIONS

We have shown that relative motion between nonholonomic

vehicles in the plane can be used to exchange information.

A distributed control law and a communication protocol have

been presented to achieve such signaling has been presented,

as have been some promising applications. There are open

research questions that need to be resolved for successful

deployment of this concept in the real world. Noisy motion

(such as motion on uneven terrain) needs to be accounted

for, as well as noisy observations (sensor noise). The protocol

needs to be robust to obstacles in the plane, and unambiguous

in interpretation. Control laws that are able to handle non-zero

ωr as well as uncertainties in (vr , ωr) need to be developed.

Finally, such signaling need not be restricted to the plane,

but could be extended to 3D (Unmanned Arial Vehicles for

instance.) The information theory for such signaling needs

to be investigated to determine the limits to which such a

technique of communication can be stretched. These form

parts of our on-going research.

APPENDIX

PROOF OF THEOREM V.1

The system (7)-(11) has a fixed point (verified by substitution)

(ρ0, φ0, 0, 0, 0) and is differentiable. Linearizing the system

about this fixed point yields the Jacobian (19) (see next page.)

The characteristic equation of (19) factors to 1
ρ0

[ (λ2+λKpρ+

Kiρ)(λ
2 + λKpφ + Kiφ)(λρ0 + cosφ0Vr + sin φ0Vr tan φ0)].

The conditions φ0 ∈ (−π/2, π/2), vr > 0, ρ0 > 0 ensure

that the elements of A do not diverge. The conditions Kpρ >
0, Kpφ > 0, Kiρ > 0, Kiφ > 0 ensure stable eigenvalues for

A by the Routh stability criterion ([17]).
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A =









−Kpρ 0 0 −Kiρ 0
0 −Kpφ 0 0 −Kiφ

−Kpρ tan(φ0)
ρ0

−Kpφ − vr
− cos(φ0)+sec(φ0)−sin(φ0) tan(φ0)

ρ0

−Vr sec(φ0)
ρ0

−Kiρ tan(φ0)
ρ0

−Kiφ

1 0 0 0 0
0 1 0 0 0









(19)
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