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Abstract— We consider systems of mobile robots that execute
a transportation task and periodically recharge from a docking
station. The location of the docking station has a considerable
effect on task performance. In nonstationary tasks the optimal
dock location may vary over the length of the task. In
multiple-robot systems, spatial interference between charging
and working robots can make it difficult to find an optimal
dock location, even in static tasks. We propose a new approach
whereby the dock is itself an autonomous robot that attempts to
incrementally improve its location. We show simulation results
from a simple local controller that adapts to nonstationary
tasks and spatial interference, and thus improves overall task
performance compared to a static dock.

I. INTRODUCTION

If a mobile robot is to expend more energy in work than
it can store in an initial charge, it must have a means of
obtaining more energy during runtime. The most common
strategies for powering long-lived autonomous robots are
(i) capture ambient energy directly from the environment,
e.g. with solar panels, or (ii) transfer energy from a de-
liberately provided source, such as a charger connected to
an electrical outlet. Mechanically coupling with a charging
station provides a reasonable recharging rate and straightfor-
ward electromechanical design, and so is widely used.

Consider a prototypical autonomous mobile robot task,
where robots repeatedly collect resources at one location and
drop them off at another. To work for long periods, they
must drive to a charging station (a dock hereafter) before
their stored energy is exhausted, recharge, then return to
work. Time spent driving to the dock, charging, and returning
is pure overhead and should be minimized. The physical
location of the dock can greatly effect the performance of
such a system. Placing the dock too far from the worksite
will increase travel time; time that could have been spent
working.

We might choose therefore to place the dock at or near a
worksite - either at a pick-up or drop-off point, or somewhere
along the path between them. However, placing the dock too
close to the working robot’s normal trajectory will require the
worker at best to detour around the dock, increasing the travel
distance, and at worst will block the route, disabling the
system completely. In scenarios with multiple workers an ob-
structing dock may trigger or exacerbate spatial interference
between robots, further reducing performance. Even if the
dock is designed to minimize interference (e.g. by being built
into the floor or ceiling), robots using the charging station

are a further obstacle. Considering that a typical work/charge
time ratio for current lab robots is around 2/1 (e.g. Pioneer 3-
DX), 1/1 (e.g. iRobot Roomba/Create) or worse, robots will
spend a significant time as stationary obstacles.

Further, if the dock is shared and multiple robots may
queue up waiting to charge, the obstacle presented to working
robots is even larger and changes dynamically.

Thus the optimum dock placement will be close to the
work trajectory, but not so close as to cause significant
interference. The fact that interference is often a complex
dynamic feedback process could make identifying the best
location in advance very challenging, as illustrated in the
next section.

II. THE DIFFICULTY OF DOCK PLACEMENT

To examine the effects of dock location on system per-
formance, we performed a simulation study of two robots
transporting pucks between a source and sink in an otherwise
empty environment, as depicted by Figure 1(a). We used
the well-known Stage multi-robot simulator and its standard
Pioneer-like mobile robot and SICK LMS-like laser range
scanner models [1]. The robots run for 60 simulated minutes,
shuttling between the source and sink which are located
at (-7,-7) and (7,7) respectively. When a robot’s energy
store reaches a minimum threshold after approximately three
round-trips (five minutes), it drives to the charging station,
charges for one minute, then returns to work. At the end of
the trial, the global average round-trip time is recorded as the
system performance metric. The experiment is repeated with
the dock placed at each of the 14× 14 points on the integer
grid spanning the workspace. This procedure is performed
for two scenarios: (i) where the robots do not perceive each
other or collide, so that spatial interference is absent; and (ii)
where the robots do perceive each other and must drive to
avoid collisions, so that spatial interference is possible. Of
course, only (ii) is realizable.

The results are plotted in Figure 1(b) and (c). Figure
1(b) shows that the best performance (smallest time) is
achieved when the dock is located anywhere along the
shortest path connecting the endpoints. As the robots must
detour further from their normal route, performance worsens
(time increases). As predicted in the previous section, Figure
1(c) shows that the best performance observed is not along
the robots’ working path, but nearby. Also, the results suggest
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Fig. 1. Two robots transport pucks along shortest path between endpoints
(−7,−7) and (7, 7) (a). The time to perform 100 round-trips, recharging
occasionally, is measured for each possible charger location on the spanning
integer grid. Results when spatial interference is disabled (b) show that
placing the charger on the work route gives best performance. When
interference is possible (c) performance is adversely affected and best
charger placement is elsewhere.

that dock placement does not predict performance in a
straightforward way.

A. Adaptive Mobile Charging Station concept

We have argued that dock placement can influence robot
system performance, and that optimal dock placement is a
non-trivial problem due to the dynamics of spatial inter-
ference. Since we desire practical methods for good dock
placement, we propose a novel heuristic approach whereby
the dock is itself an autonomous robot. Section IV presents
a very simple dock position controller which incrementally
improves its location in response to local information ob-
tained at run-time. Simulation results in Section VI serve as
proof-of-concept of the approach.

This concept is related to our earlier proposal of a ‘tanker’
robot that visited workers at their static worksites [2]; how-
ever in this work the aim of the dock is to find a good place
to remain still. The long term motivation of both methods
is to increase the overall energy efficiency of the system -
though this is not addressed directly in this paper - and we
suggest that these two alternative strategies may be suitable
in different scenarios.

III. RELATED WORK

Charging stations are common among mobile robots [3]
[4] [5]; however, they are constrained by the availability of

a wall outlet. Typically, when a robot’s stored energy falls
below some threshold, the robot visits the charging station
to recharge. The threshold can simply be fixed in advance,
or it can be calculated at run time based on an estimate of
the energy required to travel to the nearest charger. A better,
optimal policy is described below, originally in [6].

A docking station capable of transporting, deploying, and
coordinating a team of heterogeneous robots is presented
in [7]. To facilitate long-term tasks, the docking station is
capable of recharging the worker robots. The paper presents
an energy efficient way of recharging robots by minimizing
a cost function related to the Euclidean distance between the
docking station and all worker robots. However, this docking
station requires a shared coordinate system between robots,
and tracks the positions of all workers. The system described
below uses only local information and communication, and
no global coordinate system.

In [8] robots are autonomously reconfigured with portable
tools or ‘effectors’ with help from a standardized mounting
system. The robot is capable of transporting these tools to
different worksites. A charging station is also presented with
the same mounting system; however, it is assumed to be
stationary as it is requires a wall outlet.

A mobile ‘tanker’ robot is described in [2], which is used
to actively locate and recharge worker robots. Further work
in [9] provides a practical heuristic approach to the NP-hard
problem of finding the most energy efficient path for a tanker
robot to rendezvous with a team of heterogeneous worker
robots.

Spatial interference is used as a performance benchmark
in [10]. The measurement of interference is used as an
evaluative tool while designing multi-agent controller code.
Several puck foraging techniques are designed and bench-
marked. Further work in [11] has studied the correlation
between spatial density and interference. Territorial division
is presented as a means to evenly distribute the spatial density
of robots, thus minimizing interference. However, territorial
division is not consistent with robots sharing a common
charging station.

The issue of interference around a charging station is
discussed in [12]. When a robot fails to dock with a charging
station which is already in use, rather than wait, the robot
enters into a random wander mode for a short period before
attempting to charge again. This costly behavior reduces
robot density commonly found at a charging station.

A mobile charging station that incrementally improves
its location online does not appear to have been described
before.

IV. TASK AND CONTROLLERS

As a proof of concept of the adaptive dock approach, we
present a modification of the experiment above. A 20 ∗ 20m
world contains a fixed obstacle field and a population of
five worker robots, as shown in Figure 2. Workers must
repeatedly travel between unique fixed source and sink loca-
tions. Workers are initially placed at fixed locations near the
work site. A single adaptive dock is intially placed at a fixed
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Fig. 2. Demonstration environment - initial conditions.

Fig. 3. The robot must maintain at least enough energy to travel b units.
If the robot is not capable of travelling a + c units, then it should travel
directly to the dock before continuing to the goal.

location some distance from the work trajectory, chosen so
that performance is initially much less than optimal. Workers
and dock appear in each others’ sensors and may collide, so
are subject to mutual dynamic interference.

A. Worker Robot Controller

Worker robots are the Stage Pioneer2DX model, with
differential-steer velocity control, approximately 50×50×40
cm in size, and equipped with the standard laser rangefinder
model with 180 degree field of view. The robots are supplied
with an a priori occupancy grid map of the fixed obstacle
field and the locations of source and sink, and use Dijkstra’s
algorithm for global navigation along with a simple local
obstacle avoidance adapted from the fasr demo provided
with Stage. Any navigation strategy could be substituted, so
details are omitted for brevity.

Robots have a simple recharging policy (Figure 3). When-
ever a robot reaches an endpoint (source or sink) it calculates
if sufficient stored energy remains to travel first the other
endpoint and subsequently to the dock. If so, it travels to the
other endpoint. If not, it travels directly to the dock, charges
completely, then continues to the other endpoint. We showed
previously that this is the optimal policy [6] for a single
robot.

B. An Adaptive Dock

The adaptive dock is a mobile robot that can recharge
worker robots when physically coupled. For now we assume

the dock has sufficient energy stored to complete the exper-
iment without recharging itself. The dock is equipped with
a 360 degree range finder with range of 2.5 m with which
it avoids obstacles while moving, and a sensor which can
identify the state of nearby robots as either seeking charge or
working. This could be implemented using various fiducial-
based methods. For convenience, our dock has holonomic
velocity control. Note that the adaptive dock concept does
not require the dock itself to be a robot - it could be an inert
dock which is carried into position by another robot.

Every time a worker robot couples with the dock, the
worker evaluates the quality of the dock position as described
below, then transmits the following two pieces of data to
the dock (via a local data link, e.g. RS232, IR or Bluetooth
connection).

1) A distance score D, which is used to evaluate the
proximity of the dock based on the overhead distance
traveled to reach it. In terms of the distances from
Figure 3, the worker must travel at least a units to
reach the goal. If the worker must first go to the dock
before reaching the goal, the total distance traveled is
b + c. Thus:

D =
a

b + c
(1)

To minimized overhead, the dock must be placed along
the shortest path. Since a ≤ b + c, we have bounds
0 ≤ D ≤ 1, where 0 is a poor position, and 1 indicates
the dock is on the shortest path.

2) A navigability score N , which measures the fraction
of time a robot spends navigating (i.e. making progress
rather than avoiding obstacles):

N =
tnav

tnav + tavoid
(2)

where tnav is the amount of time spent navigating,
and tavoid is the time spend avoiding obstacles, both
measured since the last recharge. As for D, we have the
bounds 0 ≤ N ≤ 1, where 0 indicates that no progress
has been made, and 1 indicates that ideal progress
has been made (and therefore no spatial interference
is present),

Meanwhile, the dock has recorded the angle α from which
the docked worker approached, and stores a unit vector v
with direction α. In our implementation α is the heading
to the worker when it approached within 1m from the dock.
This measurement is straightforward to achieve using various
sensors.

The tuple [D,N, v], called a vote is stored for each
docking operation. Once a large enough set S of votes has
been accumulated, we compute the vector sum V of the set.

V =
|S|∑
i=0

f(Di, Ni)vi (3)

Quality function f(Di, Ni) combines our two quality
scores into a scalar value as described below. The magnitude
of resultant V provides an indication of how well positioned
the dock is. A small size indicates robots are approaching the
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dock equally from all sides, whereas a larger size indicates
the majority of the robots are coming from the direction of
V . If the magnitude of V is above some threshold, the dock
moves a short distance (1m in our implementation) in the
direction of V , while avoiding obstacles. Then the sampling
process begins again.

Intuitively, if workers are approaching consistently from
some direction, moving the dock in that direction should
reduce total worker travel distance. However, if arriving
workers are suffering from interference, moving the dock
towards them may exacerbate the situation. Thus we need to
choose f(Di, Ni) carefully. Our solution is developed below.

V. DEMONSTRATION AND INVESTIGATION OF METRICS

We first examine the behaviour of the system attempting
to maximize the distance score alone, i.e. f(D,N) = 1−D.
The system is initialized as shown in Figure 2, and runs for
200 minutes. Figure 4 shows the evolution of the system: the
lower graph shows the time of delivery of each puck (x axis)
plotted against the time interval since the previous delivery (y
axis). Triangles indicate indirect deliveries where the worker
docked to recharge along the way, while circles indicate di-
rect deliveries where the robot completed a delivery without
recharging (the majority). The graph shows that the direct
delivery interval is roughly constant until 120 minutes, while
the indirect delivery interval decreases gradually until around
100 minutes. This is due to the dock moving closer to the
worksite. Between 100 and 150 minutes, the direct interval
increases, indicating that the dock is too close to the worksite
and is causing interference that reduces performance.

The upper plot shows the quality measures D and N over
the same period. Increases in D appear strongly correlated
with reduced indirect delivery intervals, until D approaches
1.0, when direct delivery intervals increase and performance
drops. The Navigability score N varies around 0.9 and does
not appear well correlated with the delivery interval. These
data suggest that D could be used as a control input to
maximize performance, and that the ideal value for D in
this example is around 0.8, achieved at 120 minutes.

While the data show the navigability score has limited
dynamic range and does not predict performance, it can be
useful as follows. Consider a worker in a restricted alcove. If
the dock obstructs the worker’s only exit, then the robot will
be unable to navigate, producing a sharp dip in its N value.
We can use any N below 0.5 to be a sign of a trapped robot,
and convert its vote into a repulsion for the dock instead of
the normal attraction. The modified scoring function is:

f(Di, Ni) =
{

1 − Di Ni > 0.5
−1 Ni ≤ 0.5 (4)

Equation 4 is effective at driving the dock to the worksite
and preventing trapped robots. However, it still places the
dock too close to the worksite.

One approach could be to drive D to some preset value
other than 1.0, perhaps 0.8 as suggested above. However,
system performance is quite sensitive to this parameter, and
there is no principled way to set it.

sc
or

e

navigability
distance

0.
2

0.
4

0.
6

0.
8

1.
0

time (minutes)

tim
e 

to
 d

el
iv

er
 a

 s
in

gl
e 

pu
ck

 (
m

in
ut

es
)

via dock
direct

0 50 100 150 200

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Fig. 4. Maximizing the distance score moves the dock too close to the
worksite and reduces the puck delivery rate.

We wish to avoid a sudden increase in interference since
the inherent negative feedback often makes them hard to
recover from, with drastic loss of performance. Instead we
force the dock to stop before it becomes an obstacle for
working robots. Once the dock detects a robot that is working
and not seeking charge, it will stop maximizing the distance
score, using instead the Navigability-only quality function:

f∗(Di, Ni) =
{

0 Ni > 0.5
−1 Ni ≤ 0.5 (5)

A. Dynamic Tasks

In situations where the number and location of worksites
may change over time, it does not make sense to permanently
abandon D maximization once a working robot is detected.
Instead, we would like to keep the dock stationary until
the point where the task dynamics significantly change, and
would benefit from repositioning the dock. To handle this,
we monitor the local windowed mean and standard deviation
of D, and in the event where a vote is received such that
distance score < μ − 3σ, then we reinitialize the dock
controller, again maximizing D with 4 until another worker
is detected.

An overview of the dock controller state diagram is
illustrated in Figure 5.

B. Dock Queues

Due to the absence of explicit recharge scheduling, multi-
ple robots occasionally arrive at the dock. In order to provide
mutual exclusion over dock access and to minimize the
obstacle presented by a group of robots, we implemented a
queueing behaviour. Details are omitted for brevity, though
this issue is of practical importance and will be examined
elsewhere.
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Fig. 6. Locations for a statically placed dock - as determined by exhaustive
search. Values are hexadecimal where 0 indicates best performance (highest
delivery rate) and f indicates worst performance.

VI. SIMULATION AND RESULTS

For comparison with our method, we need to find the
performance of a well-placed conventional stationary dock.
For each location on a 1m grid in navigable space, we placed
a dock at that location and ran a complete simulation trial to
obtain the average time required to deliver a puck. Figure 6
shows a map of performance by location, with the values
normalized from 0 (best) to 15 (worst) and displayed as
hexadecimal integers. The best dock locations are around
(−4,−5). Note these values are used for evaluation only
and were not available to the dock controllers.

After identifying five good locations (indicated by a zero
in Figure 6), we ran 600 minutes of simulations with a single
static dock for each location, repeated for robot populations
of 5, 10 and 15 robots. The average time it took a robot
between puck deliveries is displayed in Table I. This is our
baseline for “good” performance. Note the large standard
deviation for 15 robots, suggesting that a large amount of
interference is present. The workspace is very crowded with
this large population.

We repeated the experiments with an adaptive dock, and
recorded the performance in Table II, along with the time that
the adaptive dock stabilized at its final location. The average
puck delivery rate after stabilization is similar to our baseline
performance with a well-placed static dock. However, in the

#robots avg std dev
5 0.997 0.299
10 1.12 0.464
15 2.13 1.56

TABLE I
PUCK DELIVERY INTERVALS WITH A WELL-PLACED STATIONARY DOCK.

#robots stable time total avg stable avg stable std dev
5 109 1.04 0.983 0.207
10 114 1.20 1.13 0.491
15 74.5 2.19 2.03 4.31

TABLE II
PUCK DELIVERY INTERVALS WITH AN ADAPTIVE DOCK. STABLE TIME IS

WHEN THE DOCK REACHED ITS FINAL POSITION. TOTAL AVG IS THE

AVERAGE DELIVERY INTERVAL OVER THE WHOLE TRIAL. STABLE AVG IS

THE AVERAGE DELIVERY INTERVAL AFTER STABILIZATION.

15-robot case we see a very large standard deviation.
Data from the beginning of an adaptive dock trial with 5

robots is plotted in Figure 7. The indirect delivery interval
decreases to around 1.4 minutes at 110 minutes and stays
there. The direct delivery interval remains constant, indicat-
ing that the dock did not interfere with the work route. The
upward curve in the plot of delivered pucks (top) indicates
that the delivery rate increases up to about 90 minutes then
stabilizes.

A. Dynamic Task demonstration

In a second demonstration, the location of the source and
sink changes after 300 minutes, as indicated by “task 2”
in Figure 8. The trajectory of the adaptive dock is shown.
From its starting position at (6,6), the dock first stabilizes
around (-4,-5) until the task locations switch. The dock then
detects a significant drop in D following the change, and
repositions itself for task 2. Figure 9 shows the change in
puck delivery intervals between tasks 1 and 2, the dip in
D and the improvement in indirect delivery intervals as the
dock repositions itself.
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Fig. 7. Rate of puck delivery increases as the adaptive dock improves its
location. The direct delivery interval does not change.
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Fig. 8. An example of a path taken by an adaptive dock for two back
to back tasks. The first task transported pucks between the source and sink
located in the bottom of the figure, and the second task used the source and
sink in the top half of the environment. Each task ran for 5 hours. Task 2
started immediately after task 1. The dock successfully detected change in
its solution quality and repositioned itself for task 2.
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Fig. 9. Rate of puck delivery changes between tasks 1 and 2. The dock
successfully detects the change in D and repositions itself to improve the
delivery rate.

VII. CONCLUSIONS AND FUTURE WORK

A novel concept for online incremental improvement of
charging station location was presented, along with a simple
controller for a mobile dock. The method was shown to
achieve performance comparable to a well-placed static dock
in a simple simulation demonstration. An attractive feature
is its ability to adapt to dynamically changing and random
task schedules.

Future work will determine the feasibility of using an
adaptive dock in a real world environment with rooms,
corridors and obstacles. In this case the adaptive dock must

be capable of positioning itself in a sufficiently large open
area in order to minimize spatial interference.

We have ignored recharging the dock itself here. An
obvious extension is to include a service robot capable of
resupplying and managing a collection of adaptive docks.

An important general issue for future robotics is in opti-
mizing energy consumption in addition to performance. The
reduced travel overhead provided by a mobile dock could
potentially have efficiency advantages, depending on the cost
of moving the dock and the longevity of the whole system.

An interesting usage scenario is long-lived nomadic robot
systems that explore and exploit vast terrains with no per-
manent installations.

Like our previous work on rendezvous [9], this system
is an example of embodied iterated approximation, which
we have proposed as a framework for approaching various
parallel distributed, spatially embedded problems [13]. We
aim to formally analyze its convergence properties and
performance bounds as future work, but this paper provides
proof of concept. Resources permitting, we will implement
a physical adaptive robot mobile charging station.
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