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Abstract— This paper focuses on the simplification of the
on-line programming process of industrial robots. It presents
in detail the input part of a modular on-line programming
environment presented as overview in [1]. Main concept of
this programming environment is an intuitive way of moving
and teaching robots, while supporting the user with assist-
ing algorithms like collision avoidance and automatic path
planning. Goal is the combination of different approaches
from tele-operation, programming by demonstration, Virtual
Reality and off-line programming, and to reuse them in a new
fashion on-line on the shop-floor. This paper presents some
ideas and concepts, how input devices and strategies for robot
programming could look like and how to use them to set up
an intuitive manual motion control of the robot.

I. INTRODUCTION

A. Motivation

As stated in [1] the main purpose of the proposed on-
line programming environment is the simplification of jog-
ging and programming industrial robots. In the industrial
environment a lot of energy was put in off-line algo-
rithms and only few efforts were spent in supporting on-
line programming/jogging with appropriate user interfaces.
Untrained people getting frustrated when trying to program
a robot using the pendant, coming along with a standard
industrial robot. Since these pendants have to give access
to all functionalities provided by the robot and the robot
controller, they have some drawbacks: big, heavy and not
very intuitive to use. Following the idea also mentioned
in [2], [3] the combination of a human, being one of the
most versatile sensors, and a intuitive way of jogging a
robot could greatly improve efficiency in production and
could create new applications for industrial robots. In this
paper we focus on the input part of the proposed on-line
programming environment in [1] (s. Fig. 1). A compact
overview of usability in human-machine-cooperation can be
found in [4] and a good motivation for the need of intuitive
user-interface for robot programming can be found in [5]. To
summarize the above: There is a need for new input devices
and input strategies for robot programming.

B. Related Work

Investigations were done concerning usability of teach
pendants or input devices to identify which are the ap-
propriate ways for jogging industrial robots for untrained
users [6]. Moving an industrial robot with six degree of
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Fig. 1. Concept of the developed “Modular On-line Programming Envi-
ronment” - It is based on the idea of combining an intuitive input device,
a geometric model representing the environment and assisting algorithms
that are based on the geometric model and react on the given input. In this
paper we focus on the Human-Machine-Interface: input devices, motion
compatibility, . . .

freedom is a mental challenge Normally the user has to adapt
himself and always think in different coordinate systems
(world/robot/user centric). Therefore in [7] was investigated,
how jogging in certain coordinate systems (user centric vs.
robot centric) influences the number of wrong user actions.
In [8] the matrix of confusion was introduced. It describes
which input action causes which robot movement depending
on the relative position of user and robot. In [9] the effect
of this matrix on user input using teach pendants was
investigated. Additionally to the “standard mode” the “com-
patible mode” was introduced. In the “compatible mode” the
coordinate system is adapted in 90◦ degree steps depending
on the position of the user and therefore simplifies the matrix
of confusion. The time and the numbers of errors for ac-
complishing a given task was evaluated and the “compatible
mode” drastically reduces errors and programming time.

Besides the coordinate systems the input device/panel
itself is under investigation. Instead of one universal pendant,
smaller and smarter devices, that are dedicated to special
applications, seem to be an appropriate way to reduce
complexity in robot programming. Already in the early
80ties [10] jogging with joystick or buttons was compared.
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Based on a force-torque-sensor, a programming system was
presented, that creates robot programs out of inaccurate user
input data through compliant motion generation [11], [12]. A
joystick with force feed-back was proposed [13] to program
polishing tasks. Instead of transforming user input 1:1 to
robot movements in [14], [15] a digital pen is used to
describe and program a robot task by hand-writing. It is
mainly 2D but allows recording of writing speed and pen
pressure to be used as variables and transformed e.g. to
moving speed, acceleration, force,. . . . For recording hand-
writing an inertial sensor based pen was proposed in [16],
which could be used to record smooth robot trajectories. A
3D approach is shown in [17], with an tracked hand held
input device, an industrial robot can be directly controlled in
a master-slave manner. Combining VR and robot program-
ming a free movable device is proposed in [18]. A virtual
paint gun is connected to the tracked input device simulating
the painting process. Then the robot program can directly
downloaded to the robot. Other research uses force-torque-
sensors to interact directly with the robot [19]. Additionally
in [20] the geometric model (space without obstacles) is
cleverly generated on the fly during user interaction. Based
on this geometric data in a second step the user generated
path and can be automatically optimized. Due to the model
based approach the latter directly relates to our approach [1].
But instead of direct interaction, we focus on free movable
6D input devices to be in a certain safety distance to the
robot and to create programs and motions without the robot
itself moving. Regarding robot input devices the research on
usability of input device in VR [21], can be a source for
inspiration for input devices in robot programming.

C. Outline

The paper is organized as follows: In section INPUT
DEVICES the developed input devices will be shown and
explained. Afterwards the needed and therefore implemented
modules for an intuitive motion control based on these
devices will be discussed. The following sections LAB-
ORATORY SETUP is giving a brief overview about the
test environment. The paper closes with conclusions and an
outlook on future steps.

II. INPUT DEVICES

A. Hardware

Some of the developed input/guiding devices are shown in
Fig. 2 and Fig. 3. They all are equipped with reflective sphere
markers that allow position and orientation (6D) tracking by
an infrared-camera system. In Fig. 4 the laboratory of the
IPR and the volume that is captured by 4 infrared cameras is
shown. The common idea behind all proposed input devices
in this paper, is either to transform user movements with the
input device directly to the robot or to use the input device as
direction indicator, pointing in the direction the robot should
drive to.

Our “design” decisions for these input devices are based
on simplicity and flexibility. First of all, the input device
should be suitable for one hand use. Therefore it has to be

Fig. 2. Input devices - They are tracked via a tracking system by the sphere
markers. Left: device with a trigger button controlled by the forefinger, a
control dial and a sliders button controlled by the thumb.; Right: device
with a trigger button on the back controlled by the thumb (invisible on this
picture) and a drill-machine-like slider button.

Fig. 3. Input devices - They are tracked via a tracking system by the
sphere markers. Left: General input device with different kind of knobs,
sliders and buttons installed; right: pen-like input device.

light-weighted and should easily fit in a hand, while all dials,
sliders and buttons are reachable with the fingers of the same
hand. Second, we are looking for a one button motion control
meaning that all actions that affects motion control of the
robot (e.g. starting, moving, stopping the robot and including
the needed calibration) should be possible with only one
button. For investigation and to test different kind of setups
we firstly build up the two hand held devices shown in Fig. 2.
On the left side it is demonstrated how it fits in one hand.
The forefinger is on a pushbutton, which triggers actions as
long it is pressed based on the current state of the robotic
system (e.g. move robot). Furthermore there are two analog
buttons - a control dial and a slider button - reachable by
the thumb. The control dial stays in its adjusted position, the
slider button automatically resets to zero position. These two
buttons can be mapped to different control parameters (e.g.
speed of the robot, scaling between user and robot motion).

The input device on the right side of Fig. 2 consists only
of two buttons. In contrast to the other device the trigger
button is not pushed by the forefinger but by the thumb. A
big analog button like the one of a drilling machine can be
operated by the fore- and middle finger and is in our tests
typically mapped to robots acceleration.

The input devices in Fig. 3 are designed for more ded-
icated applications. The pen-like input device on the left
is mainly used for calibrating the environment, teaching
points/paths the robot has to move to/along, and generating
virtual objects/obstacles [1]. The pointer can also be used for
simulating a virtual pen (s. YouTube [22]).
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Fig. 4. Laboratory at the IPR: 2 KR16 robots, a 4 × 4 × 2m3 volume
is covered by the infrared tracking systems. Devices shown in Fig. 2 and
Fig. 3 can be used in this volume to control the robots.

The proposed input devices (Fig. 2 and Fig.3 on the left)
are adequate for research and study. But regarding safety in
industrial environments, it is useful that both hands forced to
be on the control device when jogging an robot. To simulate
this academically a Logitech-Controller was modified and
added to the collection of input devices (s. Fig. 3 on the
right). To guarantee that both hands are on the controller
additionally to the motion trigger button a second buttons on
the rear of the device has to be pushed simultaneously. In
this case we have abandoned the one hand use but try to keep
the one button motioncontrol. The controller is additionally
equipped with a rumble motor, so feedback can be given to
the user (collision danger or leaving work area).

B. Input processing - Frame Filter

As described above, all input devices are tracked via their
sphere markers (s. Fig. 2 and 3). The local coordinate system
given to the input device is arbitrarily placed by the tracking
system somewhere in between these markers (s. Fig. 6). In
this paper every coordinate system is defined by using the
well known approach of 4× 4-matrices or so called Frames.
The following paragraphs are presenting the transformations
from the first frame coming from the tracking system until
the last frame that is used as output to control the robot.
Every frame transformations is called a Frame Filter (s. Fig.
5). A Frame Filter has as input and as output a Boolean value
and a frame. The Boolean value coming from a preceding
filter indicates that the frame on the input port is valid and the
output Boolean value marks that the output frame is valid.
The complete data flow between consecutive filters is called
the Frame Pipeline.

1) Rotation-Calibration-Filter: user - input device: First
the input device and its position to the user has to be
calibrated. For the input devices in Fig. 2 it turned out that the
wrist is an appropriate place to locate the coordinate system.
Turning the hand will lead the robot to turn around its“Tool
Center Point” (TCP) correspondingly. A fast calibration
technique was chosen to compute the “Wrist Center Point”
(WCP). In calibration mode the operator has to turn the input
device around the wrist to 4 different locations (s. Fig. 6),
on which the WCP can be directly computed. For a sphere

Filter

port< bool >

port< frame >

port< bool >

port< frame >

Fig. 5. Frame Filter - it has on the input side as well as on the output
side a Boolean and a frame port. A “true” on the input port<bool> imply
a valid frame on the input port<frame>. After transformation the frame
filter sets its output ports correspondingly.
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Fig. 6. Rotation-Calibration-Filter - input device: Tracking system places
local coordinate system of input device arbitrarily (LCS); to identify “Wrist
Center Point” (WCP) the user has to enter 4 points (A, B, C, D), while
turning around the wrist.
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The radius it can also be expressed like r2 = x2
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0−u.

This results in

x · x0 + y · y0 + z · z0 + u = x2 + y2 + z2

Using the translational part of the 4 measured coordinate sys-
tems A → (ax; ay; az), B,C, D (s.Fig. 6) we get following
linear system of equations


ax ay az 1
bx by bz 1
cx cy cz 1
dx dy dz 1
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Fig. 7. Calibrate position of user with respect to robot - user has to enter
3 points: first the origin P1 and then desired direction of x-axis with P2

and y-axis with P3; z-axis is computed via
#        —
P1P2 ×

#        —
P1P3.

Using the Cramer’s rule the system is directly solvable:

x0 =
det(M1)
det(M)

with M1 =


a2

x+a2
y+a2

z ay az 1
b2x+b2y+b2z by bz 1
c2

x+c2
y+c2

z cy cz 1
d2

x+d2
y+d2

z dy dz 1


y0 =

det(M2)
det(M)

, z0 =
det(M3)
det(M)

After determining the center c, the transformation frame from
the local coordinate system of the input device to the WCP
can be calculated by normal frame calculations.

The time needed for this calibration step: 3sec. If the
equation system is not solvable the user has to try again
with 4 new points. The same calibration principle is used
for the pen-like input device. The tip has e.g. to be placed
on surface and then turned around recording 4 points. The
Logitech controller was manually calibrated in a way that the
coordinate system is located in the middle of the controller
and parallel to its.

2) Position-Calibration-Filter: input device - robot: The
next step is to define the coordinate system the user wants
to work in. It can be freely chosen to be aligned with the
robot or in any other appropriate way (e.g. a work bench). It
is simply done by giving 3 points (origin and direction of x
and y axis; s. Fig.II-B.2). The origin is set by the first point
P1, P2 defines direction of x-axis and P3 direction of y-axis.
In

T =

 ~x ~y ~z ~t

1 1 1 1


the translational vector ~t is the vector of the first given point
P1. The x-axis ~x is defined by the normalized vector

#        —

P1P2

and y-axis ~y is defined by the normalized vector of
#        —

P1P3.
The z-axis ~z is then generated by the normalized vector of
#        —

P1P2 ×
#        —

P1P3.
Based on the inverse of T the coordinates of the tracking

system can be converted to the desired coordinate system of
the operator.

It takes about 3sec to enter the 3 points via the input
device. When using the pen-like input device this calibration
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Fig. 8. Stabilisation - As long as input signal is in the A-region the
output stays constant, by subtracting ∆a from the input (s. lower part).
When entering B-region output follows the input value (∆a = const.).
If the Boolean input port (s. Fig. 5) changes from false to true, current
robot position (dotted line in the middle) is updated. When choosing a
appropriate, noisy data and tremor of user can be removed.

can be done very accurate. After the two calibration steps
(rotation and position) the motion compatibility is achieved
in every point in work space.

One interesting thing is to mention: when jogging the robot
via an human operator an exact calibration is not crucial.
A human is stunningly flexible and corrections are done
unconsciously. Even when changing the coordinate system
secretly during jogging, the tested human operators haven’t
noticed this change until a significant offset was reached.

3) Stabilisation-Filter: The noisy data given by the track-
ing system and the human tremor causes the robot to move,
even when the input device is held steady at a fixed position.
Therefore a stabilisation filter was added. It is derived from
the concepts of [23] using only 2 zones A and B (s. Fig 8).
Not until the input device is moved more than a given radius
a (s. Fig. 8) around the current robot position, the output
signal changes. With the appropriate size of a the noise and
the tremor can be removed.

4) Relative-Move-Filter: This frame transformation out-
puts the relative displacement of the incoming frames, since
the time the input port (s. Fig. 5) was set to true.

5) Scaling-Filter: One of the input device’s dials or
sliders adjusts the scaling between user motion and robot
motion. Using a high scaling factor, the user can move the
robot very fast from the given start position to the end
position, using only small movements of the wrist. A low
scaling factor allows very accurate movements. Using the
pen-like input device (s. Fig. 3, left) it is e.g. possible to
write a name with a pen attached to the robot on a sheet of
paper (s. Fig. 11 right or s. accompanying video). All this
can be done with none or very little amount of practice.
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C. Filter Pipeline

The setup of the Filter Pipeline is done by concatenating
the different filters (s. Fig. 10). If a filter is not correctly
working (e.g. a calibration filter not correctly initialized),
its output port<bool> is set to false. The successive filter
will then discard the received frame and set its output
port<bool> to false, too, and so on. . .

As seen in Fig.10 on the left, the input device itself is
represented in the pipeline as frame filter. Every time the
trigger button is pressed with the forefinger (s. Fig.2 on the
left) the output port<bool> is set to true and the frame
given by the tracking system is set on output port<frame>.
Consequently all filters will be turned on and the robot will
move and stop when the forefinger releases the button an the
output port<bool> is set to false.

At the beginning, the Rotation-Calibration-Filter is not
initialized. If the input device’s trigger button is pushed for
the first time, the Rotation-Calibration-Filter takes the given
frame as first point, subsequently if the trigger button is
pushed again the next frames are taken. As mentioned above
after 4 points the Rotation-Calibration-Filter is calibrated.
Next time the trigger button is pushed the Calibration-
Rotation-Filter transforms the given frame and sends it to
the output and sets the output port<bool> to true. From
this moment on, the Position-Calibration-Filter gets the next
frames, and so on. . . With this technique all filters can be set
up with just one push button. Therefore we call it the one
button motion control.

III. LABORATORY SETUP
The hardware setup is shown in Fig. 9. It consists of a

KUKA KR16 Industrial Robot, a KRCed05, a Real-time-
Linux PC running RTAI and RTnet, two tracking-cameras
and one of the proposed guiding devices. The Real-time-PC
is the master. It gets the information about the position of
the guiding device via Ethernet from the Tracking-PC, and
via USB the status of the dials, sliders and buttons of the
guiding device. The entire on-line programming environment
is running on the master PC. Based on the given user input,
it generates the necessary motion profiles and sends the
joint values every 12msec to the robot controller. The robot
controller is then driving the robot with these commanded
values. The proposed frame filters are programmed using the
framework OROCOS [24].

IV. RESULTS AND CONCLUSIONS
A. Results

To compare the traditional way of programming with the
proposed input method, several benchmarks were build up
compuaring the number of errors and the time needed to
fulfill a task. An error was counted once a wrong movement
was executed (s. video). Before given the task, all probands
could train both of the techniques for 1 minute.

Table I contains results for 4 persons of the benchmark
shown in the video. Using the new input technique the ] of
errors and the needed time could be significantly reduced.
People - untrained in classical robot programming - could

Fig. 9. Hardware setup - The guiding device (1) is tracked by cameras (2),
the information about the position is sent to the Master-PC (3). Based on
the position of the guiding device, it’s status and the used assisting modules,
joint values are generated and sent via real-time Ethernet every 12ms to the
KR-C2 Controller (4), which drives the robot (5).

Fig. 11. Video scenes - Left: Jogging the robot with the input device
shown in Fig. 2; right: Writing with a virtual pen - The manual movement
is executed and copied at the same time by the robot.

quite fast adapt the new technique and made in contrast
to the classical way no errors. Person 4 - experienced in
robot programming - had to get used to the fact, that
it is unnecessary to mentally adapt the coordinate system
during jogging. In any way, he still was faster and did
less errors. Other benchmarks using the simplified car frame
(s. Fig. 4, background) simulating spot welding applications,
e.g. moving the TCP to 20 given positions on the car frame,
did show similar significant results.

The video (s. Fig. 11) is presenting the benchmarks of which the
results are shown in Table I. Additionally writing on a sheet with
the pen-like input device (s. Fig. 3 on the left) is shown. Doing this
with the teach pendant is impossible.

B. Conclusions
Using the new input technique some remarkable results could be

observed in benchmarks performed by students:
• Untrained people could fast and error-free solve standard

programming tasks due to the intuitive way of jogging robots
and the developed one button motion control.

– Jogging the robot to specific points in space (s. video).
– Writing/painting on a sheet of paper (s. video).
– Following pre-printed patterns with a pen mounted on

the robot.
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Fig. 10. Cut-out of the input part of the Frame Pipeline - The ports of the filters are connected consecutively. The precessing filter is signaling with its
Boolean output port, whether its frames are valid or not. If all Boolean ports are set to “true”, the robot will move. If e.g. an error occurs in one filter, its
Boolean output port will change to “false”,correspondingly all succeeding filter will also turn to “false” and the robot will stop.

TABLE I
COMPARING ] OF ERRORS AND ] OF TIME NEEDED FOR CLASSICAL AND

NEW WAY FOR PROGRAMMING BENCHMARK SHOWN IN THE VIDEO

person class.]err class.]sec new ]err new ]sec
1 6 78 0 49
2 11 86 0 59
3 7 73 0 51
4 3 72 2 55

• The system requires only a small amount of brain work
(Natural Hand-Eye-Coordination)

• Complex trajectories are generated intuitively compared to
other input method (s. video).

The proposed tests did focus mainly on moving and placing the
robot. At the moment some investigation are done adding a PDA
or mobile phone mounted on the forearm of the user keeping
his mobility but allowing to enter technological parameters via a
touch screen and giving textual feedback. Further steps will be the
investigation how continuous movements can be programmed (e.g.
gluing, arc welding, milling,...) using the proposed input techniques.
Especially regarding path quality, speed and accuracy.
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