
Simultaneous Multi-Line-Segment Merging for Robot Mapping using

Mean Shift Clustering

Rolf Lakaemper

Abstract— Line segment based representation of 2D robot
maps is known to have advantages over raw point data or
grid based representation gained from laser range scans. It
significantly reduces the size of the data set. It also contains
higher geometric information, which is necessary for robust
post processing. The paper describes an algorithm to convert
global 2D robot maps to line segment representation, using a
pre-aligned set of point-based single scans as input. Mean-shift
clustering on the set of all line segments is utilized to merge
perceptually similar segments to single instances: locally linear
features in the environment are unambiguously represented by

single line segments in the final global map. Apart from a
scaling parameter, the approach is parameter free. Experiments
on real world data sets prove its applicability in the field of
robot mapping.

I. INTRODUCTION

Robot mapping based on laser range scans is a major field

of research in robotics in the recent years. The basic task

of mapping is to combine spatial data usually gained from

laser range devices, called ’scans’, to a single data set, the

’global map’. The global map represents the environment

scanned from different locations. Although most of the

current approaches [6], [13], [16] use data points to create

and to represent the global map, it becomes increasingly

popular to use geometric mid level data representation, like

line segments, basic geometric objects or splines, or, in

3D, linear patches [17]. The main advantages of such a

representation are

• High data compression rate. Representing e.g. a wall as

a single segment means storing its two endpoints only.

• Higher geometric information level. Storing data using

mid level geometric elements simplifies further process-

ing steps. For example, finding rectangles in a map is

significantly simpler if the map data consists of line

segments, not of raw data points, see e.g. [9].

• High level of accuracy: compared to grid based map

representation, segment based maps are ”...more accu-

rate since they provide floating point resolution and do

not suffer from discretization problems” [18].

This paper aims at representation of 2D laser data using

line segments. More specific, it processes a simplification of

already segment based robot maps. This is not a limitation,

since in general it is simple to compute a non optimal

segment-based pre-representation of a global map: in the

typical case, global robot maps consist of aligned single

scans. (Non optimal) segment detection in point-based single

scans is a solved task, see e.g. [14], [8] or Figure 5a,b. The

Rolf Lakaemper is with the Department of Computer and Information Sci-
ence, Temple University, Philadelphia, USA lakamper@temple.edu

problem with such single scan line segment representation is,

that a single object might be present in multiple scans; in the

aligned global map, a single object might be represented by

multiple line segments. This representation is not only highly

redundant, but errors in data acquisition and alignment lead

to inconsistencies. Figure 5a,b shows an example.

However, having advanced point-based alignment algo-

rithms and simple and fast line segment fitting for single

scans at hand, the presented approach offers fast and reliable

conversion of aligned point-based global maps to segment-

based global maps. The approach merges perceptually similar

segments to a single segment and solves the problem of

inconsistency and redundancy.

The approach utilizes a classic clustering approach, ’mean

shift clustering’ [5], [3], [4], which simultaneously and

iteratively moves all segments in a parameter space to certain

density modes. Segments ending in the same mode belong to

the same cluster, and can be further processed to determine

a single representative segment, see Figure 5c,d.

In practice, the mean shift merging approach needs a sin-

gle parameter only. It defines the scale of the map, or, more

intuitive, the minimum size of a significant detail (strictly

spoken, there are three further parameters, the bandwith ’h’,

and kernel widths σx, σy . However, these are directly derived

from the scaling parameter and turned out to be constant

over all experiments). Since the scale of objects in robot

mapping is known, this parameter can be determined once;

the algorithm stays parameter free from there on. The length,

location and direction of the line segments is automatically

adjusted. Since mean shift clustering is a ’soft approach’, no

bin sizes or spatial/directional resolution must be defined.

The presented approach works in two phases, both utiliz-

ing mean shift clustering. Phase one detects clusters Cα of

segments of similar direction α with the additional condition

of mutual spatial nearness. Phase two computes sub-clusters

of each Cα, joining nearly collinear segments.

A short introduction to mean shift clustering is given

in section III. Section IV explains the merging process,

experiments and results are reported in section V.

II. RELATED WORK

Segment extraction as well as segment merging are clas-

sic problems in computer vision. [18] gives a thorough

overview, especially examining three different methods. The

first method is closely related to our method in the sense that

it computes line segments in a single scan, and then merges

it with a set of previously computed segments. In contrast to

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1654

our method, this method is incremental, while we perform si-

multaneous off-line merging. As [18] reports for incremental

methods: ”The disadvantage of such approaches is that it is

harder to detect and filter out dynamic aspects such as beams

reflected by people walking by and outliers”. The advantage

of incremental methods is, that they can be used on-line to

assist e.g. the alignment process. The incremental method in

[18] has a rather simple merging step, which traces back the

point-data of segments to merge, it is therefore not entirely

segment based. In contrast, in our approach the point data

can be omitted as soon as the pre-segments in single scans

are computed. The second, off-line approach in [18] is an

advanced version of the Hough Transform [7]. It operates on

the entire point set, and therefore does not take advantage

of the partially ordered data points. The third technique in

[18] is a widely accepted line fitting approach, Expectation

Maximization (EM). EM suffers from multiple problems: it

tends to converge to local minima if insufficiently initialized.

Additionally, the model has to be known to a certain extent,

i.e. the number of line segments. Additionally, it operates on

the entire point set, which reduces the runtime performance.

A modified EM version for line fitting is described in [12].

It is able to find line segments in unordered point sets with

high robustness with respect to the initial model. It is a more

general approach, with the drawback of multiple parameters

and slower performance.

[14] compares different line extraction algorithms for 2D.

In contrast to the presented approaches, we only extract lines

in a single scan (any of the presented methods in [14] could

be used for that); the main contribution of this paper is

the clustering and merging of segments. All of the methods

in [14] aim to extract line segments from arbitrary point

sets, which in an off-line setting can be arbitrarily large.

Using the information of point-order in single scans, we

drastically reduce the runtime, since we convert each single

scan to segments immediately. Hence the raw data points are

processed in O(n), the follow up processes work on the set

of segments.

[1] presents a method for line segment reduction in maps.

The technique is based on the notion of a matching chain,

which describes a set of segments connected by a geomet-

rically simple ’matching’ relation. This method is critical,

since dissimilarities accumulate and transfer through the set

of the matching chain. In data sets with ambiguous matching

relation, like the ’spiral’ example (see Figure 2), such an

approach would lead to over-merging, i.e. merging segments

belonging to different underlying subsequent sections of the

spiral. The merging methods looked at in [1] are additionally

closely linked with the scan alignment process, i.e. they are

designed for online merging purposes.

Our approach of mean shift clustering is simple, robust

and fast: mean shift is simple to implement and takes no

input parameters. Robust: since the mean shift clustering

process works on all data points simultaneously, the effect

of outliers is reduced. Clustering is done with respect to

modes of data density, which is an averaged property of a

certain neighborhood. Fast: the approach takes advantage of

the setting of robot mapping; in each single scan the order

of points is known. This makes the pre-processing step, i.e.

detecting segments in single scans, a fast O(n) task. The

runtime order of mean shift is O(k log(k)), k=number of

segments. k is usually significantly smaller than n.

In contrast to online processes, our approach is meant as

a post-processing step after scan alignment, it is an off-line

process which does not aid e.g. in the alignment process. It

is designed to translate data of successful yet point based

alignment algorithms like ICP-based approaches [16], [2],

[13] or Particle Filter based approaches [6]; especially it

can be used to simplify the result of already segment based

alignment approaches like FFS [11].

III. MEAN SHIFT

Mean shift, first described in [5], generalized in [3] and

made further approachable for Computer Vision applications

by [4], is a gradient descent procedure to find multiple modes

of density distributions. It iteratively shifts data points to

their mean in a certain neighborhood. Using mean shift as

a clustering method, data points converging to the same

mode belong to one cluster. The main advantage and, at

the same time a drawback of mean shift is that, except

for the definition of the neighborhood, it is parameter free.

This includes that neither the number of clusters nor the

step-width of the gradient steps have to be determined. The

drawback is, that mean shift is known to be very sensitive to

the selection of the kernel, which determines the degree of

local vs. global operation. Therefore, using mean shift must

be a careful consideration. In our case, domain knowledge

is available to determine the kernel for robust operation. The

domain knowledge consists of the size of significant elements

in the environment.

[3] broke the ground for mean shift, showing its mathemat-

ical foundation, proving convergence and showing example

applications. The following will give a short introduction to

mean shift.

For data points p ∈ P ⊂ R
n, the sample mean m(x) with

kernel K at x ∈ R
n is defined as

m(x) =

∑

P K(p− x)p
∑

P K(p− x)
(1)

In our approach, we utilize a multivariate Gauss kernel,

see section IV. Mean shift denotes the difference ∆m =
m(x) − x. For a finite set {ti} = T ⊂ R

n, the cluster

centers, the algorithm iteratively performs steps ti → m(ti)
simultaneously for all ti until max(∆m(ti)) is sufficiently

small, i.e. the algorithm converged. For each ti the mean

m(ti) (equation 1 with x = ti) is computed simultaneously,

before all ti are replaced by m(ti).
[3] describes two versions of mean shift, blurring and

non blurring. In both versions, the point set T 0 (= T at

iteration 0) is initialized to T 0 = P . In the blurring version,

P is iteratively set (blurred) to P ← T j−1 at iteration j,

i.e. the computation of ∆m(ti) is based on the previous

iteration result T j−1. In contrast, the non-blurring version

keeps the set P fixed, i.e. ∆m(ti) is computed using the

1655

original data set P . Our merging procedure follows the

non-blurring approach. In this approach and with a Gauss

kernel K , the mean shift ∆m is in the gradient direction

of the density estimate q(x) =
∑

P K(p − x) using the

same kernel K . Hence mean shift is steepest gradient ascent

to the modes of the density distribution of P (with K)

without explicit computation of the density. [3] proves that

the step size is well-adjusted, i.e. no overshoots are possible.

Under the non-blurring assumption (P does not change,

and therefore its density does not change either), this leads

directly to convergence of the algorithm: each individual

point ti ∈ T climbs until it reaches a mode. The ordered

set Ti = (t0i , .., t
r
i) point ti at iterations 0..r is called the

trajectory of ti. Figure 2,a,b, shows examples of trajectories.

As mentioned before, mean shift mode seeking can be

interpreted as clustering: since T was initialized using P ,

it is possible to assign all points pi the same label if the

corresponding ti converged to the same mode. The mode

represents the cluster center, or the location of locally highest

density in P . The design of the kernel, i.e. the standard

deviation σn for each dimension n is an important factor.

It designs the neighborhood for the mean shift process and

is responsible for the number of modes. The two extremes

are a broad kernel (σn = ∞ ∀n), which leads to a single

mode, and the zero-radius kernel (σn → 0∀n), which makes

each data point pi a density mode. Careful choice of the

kernel is of paramount importance for successful application

of mean shift. Section IV will show the kernel definition for

segment merging.

The runtime for mean shift is (brute force implementation)

O(n2) in the number n of line segments. It can be easily

reduced to O(nlog(n)) using appropriate data structures (e.g.

KD-trees). Pre processing single scans to gain line segments

is an O(n) process, n=number of data points.

IV. SEGMENT MERGING USING MEAN SHIFT

The basic motivation of segment merging using clustering

is the simple idea to combine spatially close segments with

similar directions in a single cluster. The clustering process

is performed in two separate phases, determining locally

common directions (phase 1) and collinearity of segments

(phase 2). The clustering is followed by the actual merging

process, combining segments of a single cluster.

A. Data Representation: Center-Direction Joint Space

Let S = {s1, .., sm} be a set of m 2-dimensional line

segments. We represent each si in the 3-dimensional center-

direction joint space,

si → pi = (x, y, α) ∈ R× R× [0..π] (2)

where (x, y) is the center of si. α is the direction of si, i.e

the angle between si and the x-axis (mod π, i.e. heading

independent). In the following we denote for p = (x, y, α):
p[1:2] = (x, y) and p[3] = α.

The segments are gained from a pre-processing step: in

each single scan, segments are created using the approach of

[8]. Finding segments in single scans is a simple task, since

the order of scan points is known. S is the set union of all

segments gained from all single scans.

Segments si exceeding a certain length are first split into

smaller subsegments (for ease of notation we denote this

set also with S = {si}). The center-points and directions

of these subsegments form the initial data set P = T 0

for mean shift clustering process. The length constraint is

directly derived from the kernel design (related to σ) and

does not impose a new parameter. This step guarantees that

the center point is an appropriate location description for

si and that short and long segments are likewise represented

by locally near-uniform distributed center points. The locally

near uniform distribution justifies the geometric meaning

of the density modes to be cluster centers. Additionally,

segment shortening renders unnecessary the introduction of

weights to represent significant differences in length. Figure

1 shows a segment set and its representation in center-

direction joint space. Please keep in mind that α is to

interpret mod π, i.e. 0 = π, hence the illustration is topo-

logically inaccurate in the third dimension p[3]. The center-

Fig. 1. Center-direction joint space of data set ’Spiral’, with 300 points
representing the 300 segments (at bottom). The data set ’Spiral’, shown in
Figure 2c,d, consists of 10 superimposed spirals with 30 segments each.
The 10 spirals are slightly rotated and translated relative to each other.

direction joint space combines perceptually different segment

features, spatial location and direction. In our approach, we

account for this difference by linear scaling of the direction

value relative to the spatial (p[1:2]) values: for robot mapping

in real world scenes, we assume that a spatial difference

of ||p[1:2]|| = 20cm relates to a directional difference of

10 degrees. This means, we are using a certain constant

bandwidth h to scale the direction dimension, see equation

4.

B. Phase 1: Detection of Locally Common Directions

Goal of this phase is to cluster segments by their

direction and spatial region. Emphasis in this phase is on

separation of segments of sufficiently different direction,

and consolidation of segments of similar direction. This

phase is meant to learn sets of common directions of

spatially near segments. We use a symmetric Gauss kernel

(same σn = σ ∈ R
+ for all dimensions n). σ is the only

parameter in the entire system. It depends on the scale of

the data. Defining σ once based on the scale of the data

1656

(i.e., based on the minimal unit-size of a significant feature,

in our case 20 cm), σ can be determined once: the system

stays parameter free for environments of identical scale.

Looking at the spatial dimensions p[1:2] only, we define

symmetric neighborhoods which are not biased towards

any direction in the spatial distribution of the segments’

center-points. This approach is geometrically motivated as

follows: since we do not assume any expected directions a

priori, we do not prefer collinearity to the weaker condition

of parallelism. This is the main difference between the first

and second phase. The influence of spatial distance and

distance in direction is governed by the aforementioned

bandwidth h. Taking into account the kernel symmetry, the

bandwidth h and the mod computation in α, we define the

kernel K1(x) (index 1 for phase 1) for equation 1 by:

K1(x) = K1(x
[1:2], x[3]) = e

d(x)2

2σ2 (3)

with distance d

d(x) =

√

||x[1:2]||2 +

(

min(|x[3]|, π − |x[3]|)

h

)2

(4)

(a) (b)

2 1

1

1

1
2

2

2

1

3

3

4

4

5

5

5

2

1a

1b

2
2

1c

(c) (d)

Fig. 2. Result of phase 1. a) 2D (x,y) view. blue: Trajectories Ti, black
points: T 0, red points: T̂ . b) same as (a), but 3D x, y, α view. The vertical
jumps in the display of the trajectories are a result of the topology (mod
π) of the center-direction space. c) labeled segment clusters. Same color
displays same cluster (some example clusters are numbered). d) magnified
view of center of (c). Segments 1a, 1b, 1c still belong to the same cluster.
They will be separated in phase 2.

Starting with the set of points {ti} = T 0 = P representing

the (split) segments si, we apply the mean shift clustering

using kernel K1 until it converges, forming the final point

set T̂ . A cluster Cl in T̂ consists of points at the same mode.

We assign the label l(si) to the corresponding segments,

i.e. l(si) = l(sj) ⇔ d(ti − tj) < ǫ, with d(.) being

the distance measure defined in equation 4. Figure 2,a,b,

shows the initial point set, the trajectories Ti and the final

point set of the ’spiral’ example. Figure 2,c,d, shows the

resulting segment clusters. Segments of similar direction

and spatial neighborhood are clustered. Please note that

clustering by spatial neighborhood and direction is different

than just (1-dimensional) clustering by direction alone: it

allows segments to differ more strongly by direction if

they are spatially close. Vice versa, it allows for distinction

of smaller directional distances if segments are located in

different neighborhoods, which is in accord with human

perception. As an example, see Figure 2,d: a few segments

in cluster 1 and 2 (black/red) share approximately the same

direction, but are part of different clusters.

C. Phase 2: Clustering by Collinearity

Phase 1 determines locally common directions, but can

not distinguish between collinear and non-collinear (both

approximately), e.g. segments 1a, 1b, 1c in Figure 2,d. Phase

2 aims to sub-cluster each phase 1-cluster using the infor-

mation of the cluster’s direction: only collinear segments are

merged. For simplicity of notation, we denote clusters in T̂
and their corresponding clusters in S by the same symbol

Cl.

We define the direction of a cluster as the average direction

θ = t
[3]
i of any corresponding point ti ∈ Cl (as a result

of phase 1, all points have approx. the same direction).

The cluster’s direction is the only information we keep

from phase 1, the clusters’ locations T̂ [1:2] are omitted.

Omitting the location information is the price we pay for

higher robustness: in the second phase, the locations are re-

computed but with given direction. Re-computation does not

increase the order of magnitude of the algorithm, but doubles

(in the worst case of a single cluster) the processing time.

Since all segments in one cluster are now assigned the same

direction, it is sufficient to represent the segments si in a

2-dimensional space: phase 2 mean shift clustering operates

in a 2-dimensional space, defining a single cluster’s points’

location. We initialize the process by T 0 = P [1:2].

We design an anisotropic kernel K2. Elongated in the

cluster’s direction, and narrowed in the perpendicular direc-

tion, it aims to merge collinear segments only. It emphasizes

the density in direction θ; each mean shift gradient ascent

therefore favors gravitation between center points belonging

to collinear segments. We define the standard deviation

σx, σy for the kernel based on σ defined in phase 1. In

our implementation, we fix σx = 2σ and σy = σ/10. With

cluster direction θ = t
[3]
i , the 2-dimensional Gauss kernel

K2 is defined by

K2(x) = e−
1
2xT Σx (5)

with covariance matrix

Σ =
[

a b
b c

]

(6)

with a =
cos2(θ)

2σ2
x

+
sin2(θ)

2σ2
y

, b =
− sin(2θ)

4σ2
x

+
sin(2θ)
4σ2

y
,

c =
sin2(θ)
2σ2

x
+

cos2(θ)
2σ2

y

Remark: Splitting the process into 2 phases makes the

approach more robust. However, for ’simple’ data sets the

1657

(a) (b)

(c) (d)

Fig. 3. Phase 2 and segment merging. a) Segments of single cluster from
first phase with center points. The ellipse illustrates the anisotropic kernel
K2, which is elongated in the average cluster segment direction. b) result of
phase 2: sub-clustered segments. Different colors are different sub-clusters.
c) Cluster centers (density modes) of all sub clusters. d) Result set M of
merging process. The 30 segments correspond to the 30 modes of (c). The
’overshooting’ at segment intersections is caused by the original segment
distribution, see Figure 2d. It can easily be removed by a post processing
step.

phases can be combined: in order to compute ∆m(ti),
replace the average direction θ with the ith segment’s di-

rection p
[3]
i at iteration 0, which is p

[3]
i . Use a kernel with

covariance matrix Σ =

[

a b 0
b c 0
0 0 1

σ2h2

]

(a, b, c, h, σ defined as

above) in phase 1 (phase 2 is then omitted). In this case,

the neighborhood of each point ti is defined by a different

kernel K(ti). Since we use the non-blurring approach, K(ti)
stays constant over the iterations. Hence the convergence is

still guaranteed. This single phase approach is less robust

since it uses directions of single segments, instead of average

directions of sets of segments. Hence, if phase 1 of the 2-

phase clustering would lead to clusters with low intra cluster

direction deviation of segments, the data set is ’simple’, a one

phase approach could be performed. The 2 phase approach

is more robust since in the second phase, parallelism can be

assumed. This strong assumption makes it easier to model a

’slimmer’ directed kernel K2, i.e. σx >> σy .

D. Segment Merging

Having the clusters computed, the actual merging is a sim-

ple, straightforward geometric procedure. Phase 2 splits each

cluster Cl into sub-clusters C
[1]
l , .., C

[kl]
l . The corresponding

modes M
[1]
l , .., M

[kl]
l are points of single lines R

[1]
l , .., R

[kl]
l ,

the cluster representative lines: R
[j]
l is defined by M

[j]
l and

the cluster’s direction θ. To compute the final result of the

merging process, we project all segments si of a single sub-

cluster C
[j]
l onto R

[j]
l and merge overlapping segments to

a single segment. Figure 4 illustrates this process. The set

M of all (merged) projected segments is the result of the

segment merging phase, see e.g. Figure 3c,d and results in

section V.

s
1

s
2

s
3

R
1

Fig. 4. Merging process. The segments s1, s2, s3 are projected onto the
cluster-representative line R1. Overlapping segments (s1, s2) are merged.
The result of the merging process are the (merged) projected red segments.

V. EXPERIMENTS AND RESULTS

A. Hallway

The data set, originating from [14], consists of 100 scans

of 722 scan points each. After removal of invalid scan

points, the data set contains 59245 points, see Figure 6a.

The algorithm of [8] is utilized to compute segments for

each scan. It connects the first and last point in a sequence

of sufficiently collinear points. To improve the result, we

additionally perform a least square fit with each segment.

Figure 5 shows an example of segments extracted from a

single scan and segments being superimposed. The segment

set S gained from single scan segment extraction consists of

1654 segments, see Figure 6a, or the detail in Figure 5. S is

the input to our mean shift process. Phase 1 identifies 495

clusters. Phase 2 splits these clusters to a total of 525. The

merging resultM, 525 merged segments, is shown in Figure

6b. In a post processing step we erase small segments with

insufficient scan point support (density too low). This cleans

M to a final result of 255 segments, Figure 6c. To evaluate

the quality of the segment merging, we compare the average

distance of the scan point set X to the input S and the

outputM of the merging algorithm. We define the distance

D(x, S) between a point x and a set S of segments by

mins∈S(d(x, s)), with d(x, s) denoting the shortest distance

between point x and a single segment s ∈ S. Since the

process of extracting segments from single scans has a filter

which erased small segments, certain outlier points in X
have a high distance to the nearest segment. We therefore

erase points outside of 2 standard deviations of the minimum

distances and recalculate the mean distance on the inlier point

set X ′. The average distance DS = meanx∈X′(D(x, S)) for

the input set S is DS = 0.0050 meters. For the output M,

1658

(a) (b)

(c)

(d)

Fig. 5. Detail from data set ’Hallway’ (see Figure 6). a) points from single
scan b) extracted segments, single scan c) segments of superimposed scans
d) result of scan merging in same area.

the average distance DM = meanx∈X′(D(x,M)) increases

to DM = 0.0064 meters. As Figure 5 shows, details like

small corners of door entrances are preserved. Comparison

of Figure 6 (a) and (d) illustrate that the overall appearance

of the map did not change significantly. However, a data

compression of 1:116 is achieved. In addition, the segment

data structure allows for simpler computation of higher level

geometric features.

To compare different line extraction algorithms, [14] uses

a set of manually created ”truth lines”. Unfortunately, we did

not have the data set to compare our results. However, [14]

reports 679 truth-lines. Our merging step (before cleaning)

results in 525 segments. The (better) lower number of

our approach results from creation of truth lines in single

scans in [14]. Since visual inspection (e.g. Figure 5,(d) or

the accompanying video) does not show over-merging, the

resulting 525 lines seem consistent with the underlying data

set. With an order of magnitude of O(n) + O(k log(k))
our approach is faster than all compared algorithms in [14].

However, such a comparison has to be taken with a grain of

salt, since, as mentioned before, the 6 algorithms in [14] are

differently motivated than ours.

Please have in mind that the merging step is neither

responsible for the alignment errors in the underlying data

set, nor is it designed to solve the alignment problems.

(a) (b)

(c)

Fig. 6. Data set ’Hallway’(100 scans). a)Input to merging process: 1654
segments. These segments were generated from single scans. Gray: underly-
ing points (59245 points) b) Result of merging process M: 525 Segments.
c) post processed, short segments removed: 255 segments. Compression rate
between a and c is 1:116. Compare also Figure 5

B. Laser on a Stick: Low Cost Low Effort Scanning - NIST

Response Robot Evaluation Exercise

The data for this experiment was collected during the

organized Response Robot Evaluation Exercise organized by

NIST (National Institute of Standards and Technology) in

Texas, November 2009 ([15]). The exercise was located in

’Disaster City’. Disaster City is a TEEX (Texas Engineering

Extension Service, a part of Texas A&M University, Col-

lege Station) facility. It offers multiple sites, for example

collapsed buildings, trains etc. for simulated disaster envi-

ronment training. During the exercise, different sites were

scanned with different kinds of equipment (2D scanners,

3D scanners, cameras etc.) to evaluate the performance of

sensors and algorithms and to demonstrate their usability to

first responders. The purpose of this specific experiment was

to gain experiences with extremely cost efficient equipment.

The equipment consisted of a single Hokuyo URG-04LX 2D

laser scanner (< 2500 US$) mounted on a stick, see Fig. 7.

This device was carried through the environment by a human

first-responder to retrieve scans in a ’step and shoot’ manner.

No additional sensors were used. The executing responder

was instructed to keep a constant step-length, and to trigger

three single horizontal scans (90◦ left, walking direction, 90◦

right) at each step at knee height. A photo of the scanned

area (Disaster city location ’House of Pancakes’) can be seen

in Figure 7. The result of the superimposed 27 raw scans

1659

Fig. 7. Retrieving data in Disaster City. Photo of the scanned environment
(the wall to the left appears at the top in Figure 8, the drawer (right) appears
on the bottom of 8). The foreground shows the simple scan-tool, a stick-
mounted laser.

is shown in Figure 8. The superimposition assumes a pre-

determined constant step length (93cm) of the responder.

The 27 scans were aligned using a technique described in

[10]. Expectedly, the alignment can not show a consistent

map of the environment: since angular errors are unavoidable

in the retrieval process (human estimated, error-prone pitch,

roll and yaw of the laser), the imprecise and inconsistent raw

data lead to representation of single features by multiple line

segments. Figure 9 shows the result of the segment merging

(a) (b)

Fig. 8. Result of scanning the environment shown in photo Figure 7(c). a)
27 scans superimposed using the estimated odometry (human step length).
b) Result of alignment

algorithm, based on the input shown in Figure 8b. The result

consists of < 25 line segments. The compact representation

of the environment is extremely useful in disaster scenarios:

data like this can be reliably transmitted even to hand held

devices for the responders; high redundancy, which might be

necessary in disaster scenarios, can be added due to the low

data volume.

VI. CONCLUSION AND OUTLOOK

We presented a merging technique based on mean shift

clustering to represent robot maps by line segments. Being

scaled once, the approach is parameter free. It takes ad-

vantage of the simplicity of generating line segments from

single scans, and to merge these in global maps based on

spatial nearness and collinearity. It is sufficiently direction

sensitive to represent approximations to round structures

(spiral). Experiments with real data showed its applicability

to robot mapping.

VII. ACKNOWLEDGEMENTS

We would like to thank Raj Madhavan, Oak Ridge Na-

tional Labs, Chris Scrapper, Adam Jacoff and Elena Messina

Left Wall

Desk

Fig. 9. Result M of merging segments S of Figure 8b. Compare the image
with photo Figure 7. The wall on the left and the desk to the right are easily
detectable. The result consists of 23 segments and can easily be submitted
even with limited equipment, e.g. hand held devices.

(all NIST, Gaithersburg, MD) for their great and hard work of

organizing and building the 2008 Response-Robot-Exercise

experience. We also want to thank Steve Richards, Acroname

inc., for helping to collect the data set Figure 8.

REFERENCES

[1] F. Amigoni and S. Gasparini. Analysis of methods for reducing line
segments in maps: Towards a general approach. In Proceedings of

IEEE/RSJ 2008 International Conference on Robotics and Systems

(IROS 2008), pages 2896–2901. IEEE Press, 2008.
[2] P. Besl and N. McKay. A method for registration of 3.d shapes. IEEE

PAMI, 14(2), 1992.
[3] Y. Cheng. Mean shift, mode seeking, and clustering. Pattern Analysis

and Machine Intelligence, 17(8):790–799, August 1995.
[4] D. Comaniciu and P. Meer. Mean shift: A robust approach toward

feature space analysis. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(5):603–619, 2002.
[5] K. Fukunaga and L. Hostetler. The estimation of the gradient of a

density function, with applications in pattern recognition. Information

Theory, IEEE Transactions on, 21(1):32–40, Jan 1975.
[6] G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based

slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling. ICRA, 2005.

[7] P. V. C. Hough. Methods and means for recognizing complex patterns.
US patent 3,069,654, 1962.

[8] P. D. Kovesi. MATLAB and Octave functions for computer vision
and image processing. School of Computer Science & Software
Engineering, The University of Western Australia. Available from:
<http://www.csse.uwa.edu.au/∼pk/research/matlabfns/>.

[9] D. Lagunovsky. Ablameyko s. fast line and rectangle detection by
clustering and grouping. Proc. of CAIP’97, Kiel, Germany, 1997.

[10] R. Lakaemper and N. Adluru. Improving sparse laser scan alignment
with virtual scans. In IROS, pages 2915–2921, 2008.

[11] R. Lakaemper, N. Adluru, L. Latecki, and R. Madhavan. Multi robot
mapping using force field simulation. Journal of Field Robotics,

Special Issue on Quantitative Performance Evaluation of Robotic and

Intelligent Systems, 2007.
[12] R. Lakaemper and L. Latecki. Using extended em to segment planar

structures in 3d. 18th Int. Conf. on Pattern Recognition (ICPR), Hong

Kong.
[13] F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. Auton. Robots, 4(4), pages 333–349, 1997.
[14] V. Nguyen, S. Gächter, A. Martinelli, N. Tomatis, and R. Siegwart.

A comparison of line extraction algorithms using 2d range data for
indoor mobile robotics. Auton. Robots, 23(2):97–111, 2007.

[15] NIST. Response robot evaluation exercise. Website:
http://www.teex.com.

[16] A. Nuechter. 3D Robotic Mapping. Springer Tracts in Advanced
Robotics (STAR). Springer Verlag, 2009.

[17] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak. Fast plane
detection and polygonalization in noisy 3d range images. International

Conference on Intelligent Robots and Systems (IROS), 2008.
[18] D. Sack and W. Burgard. A comparison of methods for line extraction

from range data. In Proc. of the 5th IFAC Symposium on Intelligent

Autonomous Vehicles (IAV), 2003.

1660

