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Abstract— The forward moving target segmentation from
a moving platform with a pinhole camera is an important
and relatively unexplored problem in visual tracking. This
paper proposes a novel segmentation algorithm for extracting
a moving target when using a moving platform (that follows a
similar trajectory and has a camera that is not calibrated for the
particular scene). When the target has unpredictable motions,
we are unable to model it and the pertinent backgrounds are
very different. We introduce a new entropy-based clustering
algorithm in order to find a bounding box representing the
target. A target model based on graph representation is used
for matching the moving target. To demonstrate the robust
target segmentation scheme, we apply the method to a team of
miniature robots (the Explorers developed at the University of
Minnesota) in real tracking missions.

I. INTRODUCTION

Cameras provide rich information, especially in identify-

ing or differentiating particular objects in real-world appli-

cations. This strength provides moving platforms like robots

the possibility to be used in various high-level applications in

search, rescue, surveillance, security, amongst others. Visual

tracking is one of the popular applications for both static

and moving cameras. Visual tracking with a moving camera

includes the possibility that a moving platform follows a

moving target. Following a target includes different scenarios

based on the trajectories followed. In particular, the followers

may have a similar trajectory with the target or they may

follow a different one. Conventional tracking research using

cameras has mainly dealt with cases where the target and

the tracking system follow different trajectories. A significant

difference when similar trajectories are involved is that when

the following platform has almost the same movement as

the moving target, the follower’s camera should detect the

target moving in front of it. This requires forward motion

segmentation in order to extract a moving target from the fol-

lowing camera. However, the detection of a forward moving

object has been relatively ignored in the object segmentation

research field, especially when the target model is unknown.

A prevailing assumption in tracking is generally that a

target has constant velocity or acceleration. This assump-

tion in the estimation theory allows algorithms based on

prediction models to effectively work in traditional tracking

problems. As robots are more and more required to function

in complex environments, the assumption regarding constant

velocity or acceleration may not apply. For instance, when

a human or a moving object suddenly stops or moves due

to the requirements of its mission, prediction models are not

sophisticated enough. This requires an accurate analysis of

the moving target from images to provide proper information

for executing the tasks without relying on prediction models.

While static cameras frequently apply background subtrac-

tion, moving cameras are unable to do this since the images

grabbed from a moving camera have variant background

views. Moving cameras therefore need to correct continu-

ously changing views for object segmentation. This issue

worsens when cameras move quickly but have a low frame

rate. Currently applied methods for image correction are

commonly based upon optical flow or matched features. Im-

age correction is challenging since similar motions between a

moving target and a moving camera result in similar changes

in optical flow. This work tries to correct image differences

by combining optical flow with feature matching.

After correcting the images, we first apply a Temporal

Difference (TD) method on consecutive images, and then use

a clustering method for the selected features on the resulting

image to find candidate clusters. The clustering method saves

computational time by reducing the number of candidates as

compared to other pertinent algorithms. The created clusters,

grouped together consist of the occupied pixels and highlight

the differences between consecutive images. The clusters are

parts of the target on the image. Our goal is to find these

clusters and then compute a bounding box representing the

target. While most image classification methods focus on

distinguishing similar objects after a training process takes

place, our image classification is applied to the features

produced by the TD that may belong to the target, other

moving objects, and possibly noise. Since any unsupervised

classification requires the number of clusters, we need to find

this number k. However, this is not realistic in real-world

situations with an unknown number of moving objects. We,

therefore, propose an entropy-based algorithm to find the best

number of clusters and the other pertinent parameters. The

goal in our clustering is to find ‘good clusters’ like those

mentioned in [1] that provide a proper number of candidates

for target matching.

We also describe a target modeling scheme that uses a

graph representation for the extracted clusters. In the graph,

nodes include feature information and edges represent the

connectivity between clusters. To distinguish a target from

noise or other moving objects, we apply a color histogram

along with a similarity measure to determine whether or
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not extracted features represent the target. For real-world

experiments, we use the Explorer and the eROSI robots

[2], developed in the Center for Distributed Robotics at the

University of Minnesota.

II. RELATED WORK

This section considers previous work on object segmen-

tation from a moving camera system. When using a static

camera for a moving object segmentation, it is often required

to adjust to changing environmental conditions. Peterfreund

[3] uses snakes to extract an object’s silhouette while a static

camera is utilized. Stein et. al. [4] use the combination of

appearance cues with motion cues after over-segmentation to

find object boundaries. A representative algorithm for mov-

ing objects’ extraction from a static camera is background

or foreground subtraction. Ke et. al. [5], on the other hand,

propose a correlation of spatio-temporal shapes to video

clips without background subtraction. The authors utilize a

learning method to track motion by using the target model.

A segmentation algorithm based on both pixel and region

analyses for moving objects is presented by Fujiyoshi [6] to

detect multiple overlapping objects from a static camera.

While there are plenty of promising algorithms on moving

object segmentation from a static camera, moving object

segmentation from a moving camera has been relatively

unexplored. Representative methods for image correction

from a moving camera use optical flow associated with

the Lucas-Kanade algorithm [7] or matching features. Jung

et. al. compensate for the movement of a camera using

selected features which are represented by corners [8]. The

authors deal with visual tracking from a moving camera

similarly to our approach. There, however, exist several

significant differences: (i) the moving object has a different

trajectory than the moving camera platform, (ii) the camera’s

frame rate is relatively high, and (iii) the moving object

exhibits sideways movements as it is seen from the camera.

Talukder et. al. also use real-time optical flow to find moving

objects between consecutive images [9]. The authors describe

both monocular-based moving object detection and stereo-

based moving object detection; however, their detection of

sideways movement is limited. Braillon et. al. utilize optical

flow on each pixel to find ground motion from consecutive

images by using a similarity measure [10]. Du et. al. detect

a forward moving car [11], but the work is limited to the

segmentation of symmetric shapes for the target through edge

detection.

III. IMAGE CORRECTION

A. Optical Flow

This section considers how the objects in the 3D world

map on the image plane when the camera is moving due

to the motion of the moving platform that carries it. The

velocity when a camera or a target is moving is discussed

in [12], but our interest is the case when both the camera

and the target are moving. Let T = (νx, νy, νz)
T and R =

(ωx, ωy, ωz)
T denote the linear and angular velocity of a

camera platform, and P = (px, py, pz)
T be the position of

objects in 3D space. We assume Q = (q1, q2, q3)
T is the

velocity of moving objects (q1, q2, and q3 ∈ ℜ). Then, the

velocity of moving objects w.r.t the moving camera frame is

Ṗ = −T − RP + Q. (1)

The perspective projection (x, y) on the 2D image plane

from the position P is represented as x = px

pz
and y =

py

pz
,

and the derivatives of (x, y) are

ẋ = (
ṗx

pz

− x
ṗz

pz

), and ẏ = (
ṗy

pz

− y
ṗz

pz

). (2)

From the Eqs. (1) and (2), the derivatives of x and y on

image plane are represented as follows:

ẋ = (
xνz

pz

− νx

pz

) + (xyωx − (x2 + 1)ωy + yωz) + Ox (3)

ẏ = (
yνz

pz

− νy

pz

) + ((1 + y2)ωx − xyωy − xωz) + Oy, (4)

where Ox = ( q1

pz
− xq3

pz
) and Oy = ( q2

pz
− yq3

pz
) in the case

that both the camera and the target are moving.

B. Image Correction

Image correction is the process of compensating for the

differences between consecutive images, due to the camera’s

motion. This requires appropriate factors for image transla-

tion and scaling during the process. From Eqs. (3) and (4), we

know that the derivatives of the positions on an image plane

for both the moving object and the moving camera are not

proportional to px or py . When we assume known linear and

angular velocities for the moving camera, we can estimate

the depth in the case of static objects. We can also estimate

it when we have predictable motions of a moving object.

However, we assume that moving objects exhibit sudden

accelerations or decelerations. Under these assumptions, the

equations regarding ẋ and ẏ are unsolvable due to the four

unknown variables (q1, q2, q3, and pz). Matching features

promises to estimate the values of the variables q1, q2, and

q3 to solve Eqs. (3) and (4).

For image correction at time t, we apply translation and

scaling on the image. The translation and scaling factors

are based on the average differences of ẋ and ẏ. Let fi be

the matching features and fi(~u) = (fi(~u), fi−1(~u))T , where

~u = (ẋ, ẏ)T and i = 1, ..., N , and N is the number of

features. We now classify the matching features into moving

or static objects, and Si = {~u|‖fi(~u)‖ < 1

N
ΣN

i=1
‖fi(~u)‖}

represents a set of static object features. The norm of the

vector u has outstanding differences that correspond to

moving features that have a different moving direction from

the one associated with the camera platform. The slope for

each matched features is also used. We classify matched

features into 4 classes represented by {SE, NW, NE, SW}.

Icomp(~x) = A~x + ~z,

where A =

(

δx 0
0 δy

)

, ~z =

(

αx − ǫ1
αy − ǫ2

)

, and ~x =

(x y)T . The translational and scaling factors are αx =
1

|S|Σ
|S|
i=1

Si and δx = mW (~x) − mE(~x), where mW (~x)

and mE(~x) are the mean of the classes {SW, NW} and

{SE, NE} on the x-axis, respectively, and ǫ1, ǫ2 ≈ 0.
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IV. OBJECT SEGMENTATION

Although we apply the image correction as in Section III,

the corrected images still include differences irrelevant to

the target due to various reasons such as low resolution,

other moving objects, and so on. This section describes the

entropy-based clustering algorithm where the goal is to find

candidate clusters, characterized by a Gaussian distribution.

These clusters make a target blob. Since features involve

not only target features but also others such as noise or

other objects, a target matching algorithm finding the correct

clusters amongst the selected candidates is also applied.

A. Entropy-based Clustering

Finding clusters with high density, approximately drawn

as Gaussian correlations in the Euclidean space, needs un-

supervised classification algorithms such as the k-means, the

mixture model based EM (Expectation Maximization), or the

density-based DBSCAN (Density-Based Spatial Clustering

of Applications with Noise). Prior to the explanation of the

proposed clustering algorithm, we discuss the most important

issues in motion segmentation. Fig. 1 shows the example

images resulting from the TD. As we mentioned in Section

I, a forward moving object corresponds to a certain boundary

in the image differences. Figs. 1(a) ∼ 1(c) include a moving

robot and noise, and Figs. 1(d) ∼ 1(f) have a moving robot

with forward movement and another moving object (hand)

with sideways movement. The examples show that the hand’s

entire shape is perfectly visible, while the moving robot is

represented by a faint boundary. In Figs. 1(b) and 1(e), the

dashed blue ellipses denote candidate clusters for the selected

attribute. For these images, knowing the number of clusters is

an essential issue in segmenting a particular target. However,

although we know the number of clusters, the results from

the various clustering algorithms show some differences.
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(f) DBSCAN

Fig. 1. Comparative examples when different classification algorithms are
applied with the same number of clusters k = 7 (up) and k = 5 (down) on
the example images including other moving obstacles.

Since the DBSCAN algorithm is based on density, it can

be effective to find a density-based object such as in Fig.

1(f), but it is not promising when the features’ characteristics

have discontinuities, only showing parts of an object or

when disjoint objects have connected features. The results

of both the k-means and EM algorithms vary as the choice

of initial parameters, and the number of clusters are subject

to change. An important issue for unsupervised classification

is how to know or choose the proper number of clusters

before applying the algorithm. A representative method that

identifies the best number of clusters is involving human

subjectivity based on a similarity measure. However, target

clustering on images including noise or other obstacles is less

informative than the one required by a similarity measure.

Issues arise when the only information available is the

position of features through the TD on images, the number

of clusters is unknown, the number of clusters is flexible at

each image, and features represent parts of a target.

1) Choose the principal attribute: For these issues, we

consider an uncertainty measure from the concept of the

entropy in information theory to find candidates representing

a target and also reduce the overall number of candidates.

The choice of the principal attribute can reduce the number

of candidate clusters required for a matching algorithm. We

want to choose these clusters in order to have less uncertainty

and simultaneously reduce computational time. The amount

of uncertainty represents how much information is involved

in the selected attribute. If we assume that A = {a1, ..., an}
is a set of attributes and B = {b1, ..., bk} is a set of possible

values, then the entropy of each attribute is as follows:

E(ai) = −
k

∑

j=1

(pai
(bj)log2pai

(bj)), (5)

where pai
(bj) is the probability mass function of ai for each

bj . From Eq. (5) we choose the best informative attribute

with minimum entropy as in Eq. (6). Since the entropy

shows the amount of uncertainty, we choose the attribute

with minimum uncertainty.

amax = arg max
ai∈A

(1 − E(ai)
n
∑

j=1

(E(aj))
). (6)

2) Find candidate clusters for each attribute: The objec-

tive of the clustering algorithm is to find candidate clusters

consisting of a target’s boundary, which is represented by

a bounding box. From this requirement, we apply the clus-

tering algorithm in each attribute separately to find clusters

consisting of a square box. The process is started from the

selected attribute in Eq. (6). This attribute is used for the

principal attribute (axis) of the bounding box of a target and

is changing for each image. After choosing the attribute with

the minimum entropy, we first apply Gaussian Distributions

(GDs) to the histogram of features from the TD result

with respect to a chosen attribute. There is an iteration

until the condition in Eq. (7) is satisfied. The increasing

condition for the number kai
of clusters for the attribute

ai is based on the user-defined minimum threshold Tmin

of the variance (or standard deviation). This is considered

to distinguish the features overlapped from other moving

objects or corresponding to the inside of the target shape. As

discussed before, forward movements preserve parts of the
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object. The threshold can vary depending upon the object’s

motion. We utilize the k-means clustering algorithm for

the selected number kai
, and there is an iteration until the

following condition is satisfied:

σi < Tmin for ∀i ≤ k, (7)

where pi(x) = 1√
2πσi

exp(− 1

2σ2

i

(mi − x)2), and σi is the

Standard Deviation (SD) of the pi(x). We note that x is the

variable for the histogram applied on the selected attribute

(axis). For example, x and y are the variables for the x-axis

and the y-axis, respectively.

After finding clusters associated with the selected principal

attribute, we apply a similar algorithm to the histogram

corresponding to each chosen cluster. For instance, if we find

n clusters by applying for the algorithm finding the GDs

on the principal attribute, we need to apply for a similar

clustering algorithm for the histogram corresponding to the

other attributes within each cluster. We then find the number

kxj
of clusters for the other attribute xj(xi 6= xj).

(a) The features through the TD
and the clusters.

(b) The GDs applied on the x-
axis.

(c) The 3 GDs on the y-
axis for the 1st cluster.

(d) The 2 GDs on the y-
axis for the 2nd cluster.

(e) The 4 GDs on the y-
axis for the 3rd cluster.

Fig. 2. An example to show the process of the choice of the number of
clusters and the parameters. There are three candidate clusters on the x-axis.

3) Combine each cluster to derive the number of clusters

and the parameters: Through the process of finding kai
and

kbj
for each i, we find the number of clusters along with the

parameters. Eq. (8) represents the choice of the parameters

resulting from the GDs on each axis. Eq. (8) corresponds

to the case that the principal attribute is the x-axis, and

kx is the number of clusters on the x-axis. The parameters

and the number of clusters can be used by any clustering

algorithm such as the EM or the k-means algorithm as the

initial information. However, we utilize the entropy to choose

a principal attribute, and thus use these parameters without

requiring clustering algorithms for the mixture model:

M = {(mxi
, myj

)|i ≤ kx, j ≤ ky(i)} (8)

ky =
n

∑

i=1

ky(i), (9)

where mxi
and myj

are the mean of pi(x) and pj(y),
respectively. Here, |M | = ky , and ky is the number of total

clusters aggregated for each ky(i) which is the number of

clusters on the y-axis resulting from the ith cluster xi.

Example 1: Fig. 2 shows an example of the selection of

the number of clusters and the parameters. The principal

attribute through the entropy computation is the x-axis in

this case, and three GDs on the x-axis by Eq. (7) are found

(kx = 3) and shown in Fig. 2(b). For each GD on the x-

axis, other GDs with respect to the histogram applied on the

y-axis within the ith GD are executed. The three results on

each GD are shown in Figs. 2(c) ∼ 2(e). The 3, 2, and 4 GDs

are chosen as follows: ky(1) = 3, ky(2) = 2, and ky(3) = 4.

The combined clusters for both attributes with the number

of the clusters and the means are shown in Fig. 2(a).

B. Target Modeling

After extracting clusters, a target modeling process is

required to achieve proper target segmentation. The aim of

the target modeling is to choose proper clusters amongst the

candidate clusters for further fitting boundaries to the target.

1) Target Representation: We deal with a graph based

target representation where the graph consists of clusters as

nodes and the connectivity between clusters is represented

by links. The graph representation is

G = (V,E) and Gt = (Vt,E), where (10)

V = Vt ∪ Vn = {c1, c2, · · · , ck}, and (11)

E = {cij |cij = (ci, cj), 1 ≤ i, j ≤ k}. (12)

A set of vertices V is composed of extracted clusters

processed from the algorithm described in Section IV-A, and

Vt is a set of clusters that belong to a target along with

the number of clusters (k). We discriminate the target from

others by a color matching algorithm along with a similarity

measure. The graph Gt represents a graph model for a target,

and each node includes the following information:

• Parameters - The mean and variance are associated with

the position of the centroid in each cluster.

• Direction - The information here is the location of each

cluster and is represented by D = {E,W,N, S}, which

are east, west, north, and south directions.

• Connectivity - The connectivity of edges is represented

by a matrix, Ce = {E}ij , where eij(∈ E) = 1 if ci

and cj are connected and eij = 0 otherwise.

• Length - The edges having a connection also include

the distance of the two clusters.

2) Target Matching: For the target matching we choose

2 clusters for each attribute representing a target’s boundary.

A set of target clusters Vt is chosen from a set of nodes V
by considering the position, size, and direction of clusters.

We first choose the clusters from the principal attribute as

the entropy indicates. If the chosen attribute is the y-axis,

the clusters represent N and S. All remaining clusters are

candidates for the other directions. Then a target matching

algorithm through a color histogram is applied. We compute

the color histogram for an extracted bounding box to repre-

sent a target in each step, and measure the similarity between

the extracted targets at t− 1 and t. The color histogram has
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m-bins for the RGB values which consist of 3
√

m-bins in

each one of the R, G, or B values. The target model extracted

from the image at time t is represented by:

pt = {pi(x)}i=1,...,m, where
m

∑

i=1

pi(x) = 1. (13)

We use the Bhattacharyya distance to measure the similarity

of the two target models at times t−1 and t. It is represented

by the Bhattacharyya coefficient,

BC(pt−1, pt) =

m
∑

i=1

√
pt−1pt. (14)

V. EXPERIMENTAL RESULTS

For the experiments, we used images taken from the

eROSI and Explorer robots in executing real-time tracking

missions [13]. Each robot is equipped with a camera and

differentially driven wheels. During the experiments, the

target leading other moving platforms moves forward or

rotates with certain linear and angular velocities. We show

the results of image correction and the choice of the clusters

along with the parameters used by the proposed methods.

A. Results from Image Correction

This section shows the result from the image correction

by using the proposed method. In Fig. 3, (a) and (b) show

the consecutive images along with the features extracted by

the Harris corner operator. Fig. 3(c) shows the result of the

matched features for the consecutive images (shown in Figs.

3(a) and 3(b)). We compute the translational and scaling

factors from these matching features (based on the distance

and slope of the differences). Figs. 3(d) and 3(e) correspond

to the TD result for the original image and the corrected

image, respectively.

(a) At time t. (b) At time t + 1. (c) Matched features.

(d) The original TD. (e) The corrected TD.

Fig. 3. The results of the image correction. The original image and the
extracted corner features are shown in 3(a) and 3(b).

B. Results from Target Segmentation

This section shows the results for target segmentation

by using the proposed algorithm with the target modeling

method. The target moves continuously, and the following

platforms equipped with a camera try to keep the target on

the center of the image while they maintain a pre-defined

distance between them. If the algorithm picks a small number

of clusters, we may not find these corresponding to the

target model. If the algorithm, however, picks a large number

of clusters, it will provide many candidate clusters which

impacts the computational time. Therefore, we show that our

proposed algorithm can find the proper number of clusters,

which means that it supplies the minimum information

needed to construct a target model.

(a) The GDs applied on
the histogram of the y-
axis (principal axis).

(b) The GDs applied on
the histogram of the x-
axis for the 1st cluster.

(c) The GDs applied on
the histogram of the x-
axis for the 2nd cluster.

(d) The TD result and the cho-
sen clusters.

(e) The bounding box for
the target.

Fig. 4. The results of target segmentation from multiple moving robots.

Fig. 4 shows the result of the target segmentation from the

second following robot. The principal attribute by the entropy

computation (Eqs. (5) and (6)) is the y-axis in this case.

The GDs on the y-axis are generated through the process of

finding the number of ky , and the results are shown in Fig.

4(a). There are 2 clusters on the y-axis (ky = 2), and each

cluster has found the GDs on the x-axis (kx(1) = 3 and

kx(2) = 3). The clusters on the x-axis for each cluster from

the y-axis are shown in Figs. 4(b) and 4(c). The number of

the clusters and the parameters are represented on the TD

features in Fig. 4(d). From these clusters (generated on the

principal attribute), we can find the N and S directions, and

by applying the color histogram we can find the E and W
directions from the clusters on the x-axis. The bounding box

for the target is shown in 4(e), and it could be segmented by

the moving robots.

Fig. 5 shows the sequences of the extracted targets from

the followers. In the experiment, there are three robots

following each target moving in a line or a circle, where the

first leader had constant linear and angular velocities (0.02m
and 0.02rad/sec, respectively). The tracking task is repeated

for about 30 minutes in the uncontrolled environment in our

laboratory. Each image in Fig. 5(a) is grabbed from the first

follower. Fig. 5(b) shows the selected features from the TD

and the segmented target’s boundaries (represented by the

white bounding boxes) as seen from the second follower.

Fig. 6 shows the comparison between the EM and the

proposed algorithm when the candidate clusters are chosen.
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(a) From the first follower.

(b) From the second follower.

Fig. 5. A sequence of extracted features from the TD (up) and the
segmented target (down).

Since most of the features from the TD are located in

the hand, the clusters from the EM are more concentrated

on the hand than the target. However, the result from the

proposed algorithm includes enough clusters to find the

target. With respect to the processing time, the proposed

clustering algorithm is significantly faster than the EM. Fig. 7

shows the comparison between the proposed algorithm and

the template matching applied on the sequence of images

taken from the first following robot. The upper three figures

are the results of the template matching for the target robot,

and the lower figures are the results of the proposed method.

(a) The EM clustering. (b) The proposed clustering.

Fig. 6. The comparison of the clustering results between the EM with the
defined 12 clusters and the proposed algorithm.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a forward moving target segmentation

algorithm from a camera following the target. This camera

exhibits a similar trajectory. To segment a moving target,

we propose an entropy-based clustering algorithm with the

choice of the number of clusters and the parameters auto-

matically done. This algorithm also reduced the number of

candidates for the target model. In addition, this is applicable

for moving platforms like robots having limited resources or

low resolution cameras. We applied the proposed algorithm

to segment each target from each robot executing a tracking

task in the team. Future work can be extended to segment

non-rigid body objects or to estimate 3D shapes.

(a) (b) (c)

(d) (e) (f)

Fig. 7. The comparison of the matching results between the proposed
algorithm and the template matching algorithm.
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