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Abstract— This paper presents an approach for the closed-
loop control of actuated biped that allows natural looking
and energy efficient walking. Rather than prescribe kinematic
trajectories or kinematic constraints, the approach is based on
the prescription of state dependent torques that ”encourage”
patterned movement. Some of the prescribed torques are refer-
enced to the inertial reference frame, which largely decouples
the angular dynamics of the robot, and as such greatly simplifies
the selection of control parameters. Implementation of torques
from the inertial coordinate frames is enabled by a joint
torque computation which is motivated by Gauss’s principle
of least constraint. The proposed approach is implemented
in simulation on an anthropomorphic biped, and is shown
to quickly converge to a natural looking gait limit cycle.
Simulations are conducted with various control parameters
and different initial conditions. The authors also show that
walking speed can be altered in a simple manner by varying
two intuitive controller parameters. The mechanical cost of
transport computed on a representative dynamic walk is used
to validate energy efficiency of the proposed control approach.

Index Terms— Legged Robots; Dynamics.

I. INTRODUCTION

Recent literature on the topic of walking robots describes

two fundamentally different approaches for achieving bipedal

locomotion. Perhaps, the most comprehensively developed

is the ZMP approach, which utilizes trajectory tracking to

control the motion of the robot, [1], [2], [3], [4], [5], [6].

This type of approach provides versatility and robustness in

gait, but since it prescribes and tracks trajectories, it overrides

the natural dynamics of the walking robot, which results in

a stiff and unnatural looking gait with a concomitant low

efficiency [7].

On the other hand, one can leverage the natural dynamics

of the robot, and attempts to use these dynamics as the basis

for a stable limit cycle that will result in locomotion. This

approach to locomotion includes fully passive walkers, [8],

[9], [10], actuator-assisted walkers based largely on passive

versions, [11] and [12], and actuated walkers that utilize

control approaches in order to leverage some open-loop

dynamic behavior, [13], [14], [15], [16]. One form of the

latter is the work by Pratt et al. [17], which imposes virtual

forces rather than kinematic constraints on the robot, and

thus need not override the open-loop dynamics of the biped.
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This paper has supplementary downloadable multimedia material pro-
vided by the authors. This material includes a video (walking video.mpeg)
demonstrating dynamic bipedal walk coordinated by the proposed controller.
The video can be played with Windows Media Player. The total size is 4
MB.

Such an approach additionally enables a reasonably intuitive

manner in which to control the biped. However, the virtual

Cartesian forces imposed on the body center of mass interfere

with the ”natural” motion of the robot. That is, the motion of

the robot should result from the dynamic interaction between

the body, legs, and ground, (i.e., the body should ”ride” atop

the legs, and should not otherwise be pushed or pulled in a

Cartesian sense).

This paper presents a control approach that enables dy-

namic biped walking on an actuated robot, which can provide

a more efficient gait than trajectory tracking approaches.

Rather than prescribing a kinematics (i.e., joint angle tra-

jectories), the approach subjects the robot to a set of state-

dependent torques. These torques are constructed from an-

gular springs and dampers with fixed equilibrium points,

which influence the natural dynamics to generate a stable

gait. The present approach references some of these torques

to an inertial reference frame and others to the internal robot

frame; and develops a model-based solution for joint torques

utilizing the Gauss principle of least constraint [23], [24].

The proposed modeling and control framework does not

neglect the foot of the robot and in this context provides

a nontrivial extension to the works [13], [14], [15]. More-

over, we relax a usual flat-foot assumptions made by other

control approaches such as ZMP, which can be consider as

another nontrivial extension on large body of control methods

previously presented in literature. It is also important to

point out that unlike other approaches applied on actuated

biped robots, the presented one neither enforces predefined

trajectory nor dictates any other time, position, or velocity

based attribute of the walking-cycle (i.e., desired walking

speed, stepping frequency or step length). Rather, all such

gait characteristics are obtained indirectly by the interaction

between the robot and environment under the influence of

the control forces.

The proposed control approach, the application of which

leads to an energy efficient and natural looking dynamic

walk, is described herein and subsequently demonstrated via

simulation.

II. BIPED MODEL

The control methodology is based upon a dynamic model

of the robot introduced in this section. This model is derived

by means of the Gauss principle of least constraint utilizing

the Udwadia-Kalaba approach [18]. Unlike traditionally used

biped models derived separately for single support, double

support and ”flight” phase, the present model offers a unified

representation which is valid for all phases of gait. The pro-

posed analytical description of the biped dynamics which is
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valid under redundant constraints and kinematic singularities,

allows the formulation of a control methodology with no

restriction on biped configuration.

In order to facilitate model and controller development,

both are developed in the context of a seven-link (nine

degree-of-freedom) planar biped, as illustrated in Fig. 1. The

configuration of the biped is defined with the generalized co-

ordinates, q = [x, y, θ, θ1, θ2, θ3, θ4, θ5, θ6]
T , defined relative

to the inertial reference frame. The biped is assumed to be

actuated at each joint (i.e., right and left hip, knee, and ankle

joints), such that, the dynamics of the robot are affected by

the joint torques, u = [u1, u2, u3, u4, u5, u6]
T , which are

assumed positive in the same direction as the joint angles.

Fig. 1. Seven-link biped with generalized coordinates and associated
geometric and inertial properties. The corresponding links on both legs are
geometrically and inertially identical. For each segment, the moment of
inertia with respect to the center of mass of the associated link is calculated
as I∗ = m∗r2

∗
.

A. Unconstrained Dynamics

Consider an n-dof autonomous multibody system, the

configuration of which is uniquely specified by q ∈ ℜn

generalized coordinates. The equations of motion, for the

unconstrained ”flying” biped, can be written as:

M(q)q̈ + h(q, q̇) + G(q) = Qu, (1)

where M ∈ ℜn×n is a symmetric and positive definite mass

matrix, h ∈ ℜn represents the normal and Coriolis inertial

forces, G ∈ ℜn represents the gravitional forces, while

E ∈ ℜn×m is a matrix mapping control inputs u ∈ ℜm

to generalized actuator force space Qu = Eu.

B. Kinematic Constraints

For the biped in Fig.1, neither foot can penetrate the

ground, the knee joints cannot extend beyond the fully

straight position, and both feet are assumed not to slide

when in contact with the ground. Since each toe and heel

are independently characterized by non-penetration and no-

slip with the ground, the biped dynamics can be subject to

ten (dependent) kinematic constraints. Following a general

notation, the set of kinematic constraints imposed on the

biped is given by:

Φ = [Φh(q)T ,Φn(q, q̇)T ]T = 0, (2)

where Φh represents the holonomic constraints (e.g., the

non-penetration between the toe and heel and the ground,

or the full extension of the knee joint), and Φn represents

the nonholonomic constraints (i.e., the non-slip condition

between each foot and the ground).

We assume that Φh is twice and Φn is at least once differ-

entiable while the initial conditions are constraint consistent.

In this case, (2) can be equivalently represented as:

A(q)q̈ = b(q, q̇), (3)

where, A = [AT

h
,AT

n
]T is the constraint matrix defined

in terms of Ah = ∂Φh/∂q and An = ∂Φn/∂q̇, while

b = Aq̈ − [Φ̈T

h
, Φ̇T

n
]T , [19]. Note that when a constraint

becomes inactive (as a function of system configuration), it

is eliminated by zeroing the corresponding row in (3). On

the other hand, when a constraint switches from passive to

active (e.g., during ground contact or when the knee hits a

full extension stop), engagement of the constraint will impart

an impact to the system dynamics.

C. Constrained Dynamics

Based on the Gauss principle of least constraint [20], [19],

the constrained acceleration q̈, which satisfies (3), can be

obtained from:

q̈ = a + R−1C+(b− Aa), (4)

where a = M−1(Qu − h − G) is the acceleration the

system would have without the imposed constraints (2)),

R is defined as the upper triangular Cholesky factorization

of the mass matrix M = RTR, [21], C = AR−1, is the

weighted constraint matrix, while C+ is the pseudoinverse

(i.e., the Moore-Penrose inverse) of C [22]. This formulation

explicitly defines the acceleration of the constrained motion,

which is well defined under dependent constraints, see [18].

III. SELECTING TORQUES FOR DYNAMIC WALKING

Our objective in walking is to maintain an upright body

position, and also to sustain a stable oscillation in leg motion

characterized by a ballistic component in swing. The first

objective, to maintain an (essentially) upright body position,

can be achieved by prescribing a torque that attracts the

torso to a nominally vertical position. In order to drive leg

oscillation, the thigh segments are subjected to alternating

torques, where the alternation is driven by changes in biped

configuration (e.g., heel strike and heel off). Specifically,

during swing phase, the prescribed torque drives hip flexion

by attracting the thigh segment toward a given (flexion)

angular orientation. Upon heel strike, another torque drives

hip extension by attracting the thigh segment toward a given

(extension) angular orientation.

During swing, the knee is not subject to a driving torque,

but rather is subject only to damping (and as such, the swing

leg dynamics are in essence ballistic). During early stance
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phase (i.e., heel strike to heel off) a somewhat stiff spring

maintains the knee in a fully extended position. The ankle

is subject to a torque during swing that encourages slight

flexion (to prevent stumbling), and to one during stance that

generates a slight push-off before the stance leg enters swing.

The torso and the thigh segment torques are defined

relative to the inertial reference frame, while the knee and

ankle torques are defined relative to the respective adjacent

links. The respective torques attract the three segments (i.e.,

the torso, right thigh, and left thigh) each to a respective

angular configuration, and as such, the angular dynamics of

the biped is mainly reduced to three decoupled and relatively

low-order dynamic subsystems (i.e., two inverted pendulums

and one non-inverted double pendulum). Achieving a desired

(angular) dynamics in each of these subsystems is consider-

ably simpler than considering the fully coupled system.

A. Transforming the Desired Control Torques to the Actuator

Space

In order to implement the presented approach, we propose

a transformation between the desired generalized control

torques and the joint torques as follows. The objective of

the transformation is to achieve the same constrained motion

forcing the dynamics (1), (2) with Qu = Eu as would be

achieved with the application of a set of desired generalized

actuator forces Qd. Denoting the desired constrained accel-

eration as q̈d and the constrained acceleration generated by

the actuator torques as q̈, the objective of the transformation

can be stated as q̈ = q̈d. This equivalence relation, however,

cannot be realized exactly on underactuated motion phases

(i.e., if only a toe or a heel touches the ground in single

support phase). To handle this issue, we propose a general

formulation to define the joint torques:

u = min{u ∈ ℜm : (q̈ − q̈d)
TM(q̈ − q̈d)}. (5)

Using (5), we will derive an explicit relation u = u(Qd). In

this light, let us substitute (4) (where q̈ is calculated using

Qu = Eu while q̈d is calculated using Qu = Qd) into (5)

to obtain an explicit quadratic program for u as

u = min{u ∈ ℜm :
1

2
uTAT

u
Auu− bT

u
Auu}, (6)

where Au = N(R−1)T E and bu = N(R−1)T Qd while

N = I − C+C ∈ ℜn×n is a symmetric projection operator

to the null space of the weighted constraint matrix C.

Considering the fact that N is in general rank deficient, a

particular solution to (6) can be defined as:

u = (N(R−1)TE)+N(R−1)T Qd. (7)

The solution expressed by (7) can be used to compute

joint torques regardless of whether the robot is underactuated

or overactuated through a considered motion phase. Specif-

ically, if the number of control inputs is equal or greater

than the number of degrees of freedom of the robot, the

solution to (7) satisfies the matching dynamics criterion (i.e.,

q̈ = q̈d), while also minimizing the squared Euclidean norm

of u. On the other hand, if the biped is underactuated, (7)

minimizes the acceleration energy between the desired and

the actual motion via the Gauss principle. In the present

context, we expect any uncontrollable motion, if present,

to occur only for brief periods (i.e., for periods much

shorter than the characteristic times associated with the biped

dynamics). As was recognized through numerous simulation

this condition ensures stable realization of the underactuated

motion phases.

IV. IMPLEMENTATION ON A SEVEN-LINK BIPED

We illustrate and further describe the proposed approach

via implementation and simulation on the seven-link biped

presented in Fig.1.

A. Choice of Control

As previously described, we impose seven state-dependent

torques on the biped, each of which can be constructed from

energetically passive elements with fixed equilibrium points.

These include an angular torque on the torso, state-dependent

alternating angular torques on the thighs (both with respect

to the inertial reference frame), and state-dependent torques

on knees and ankles, defined with respect to the respective

adjacent links. The simplest construction for these torques is

the combination of a linear spring (with a fixed equilibrium

point) and linear damper. Using these elements, the vector

of desired generalized control forces can be expressed as:

Qd = −Kd(φ − φd) − Bdφ̇, (8)

where Kd is the stiffness matrix, Bd is the damping matrix,

φ = [q3, q4, q5−q4, q6−q5+π/2, q7, q8−q7, q9−q8+π/2]T ,

and φd = [θb, θ
r

l
, 0, θr

a, θ
l

l
, 0, θl

a]
T defines the equilibrium

point of each spring. The parameters that define Qd for the

seven-link biped are shown schematically in Fig.2 (where the

right and left side parameters are indicated with superscripts).

Fig. 2. Schematic representation of the control elements.

B. Event Driven State Logic

As previously mentioned, leg oscillation is generated by

application of alternating torques applied to each thigh

segment. This alternation is switched based on an event
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driven finite state structure. Specifically, heel strike induces

application of the hip torque that attracts the thigh toward

a hip extension configuration, while the heel off event (i.e.,

when the heel leaves the ground) switches the hip torque to

one that attracts the thigh towards a hip flexion configuration.

In addition to these two states, two additional states are used

to facilitate stable locomotion. Specifically, following the toe-

off event (when the swing foot is entirely in the air), the

swing leg ankle equilibrium point (i.e., angle of attraction)

is moved to a slightly flexed position, which enhances ground

clearance during swing. The final state, defined by the knee

reaching full extension, is used to retain the knee at full

extension. Thus, the gait controller consists of four states, as

illustrated in Fig.3. Note that the states apply independently

to each leg, and do not apply at all to the torque acting on the

torso. As such, (for each leg), state one consists of stance,

state two is initiated by heel-off, state three initiated by toe-

off, state four initiated by full knee extension, and the leg is

returned to state one by heel strike.

Fig. 3. State flow diagram. The presented state-event chart corresponds to
the solid leg.

C. Simulation

For the biped illustrated in Fig.1, the associated geometric

and inertial parameters normalized to a body height L and

mass M , as given by [23], are listed in Table I. For purposes

of control implementation and simulation, the biped was

parameterized according to the values listed in Table I using

a height L = 1.8 m and a mass M = 75 kg. The simulation

was conducted by utilizing the desired generalized force

vector described in (8), and by using the joint torque control

solution (7). For the (adult) human-scale anthropomorphic

biped, the control parameters used for an approximately

normal walking speed are listed in Table II (where the upper

index (∗) = r/l represents the right or left leg, respectively).

A stroboscopic image of the motion results of this controller,

simulated over a period of t ∈ [0, 10]s, is shown in Fig.4. The

corresponding real-time video of the resulting gait is included

in the supporting material. For the simulation shown, the

initial configuration of the biped was (starting at rest) in

the double-support phase with both feet flat on the ground.

The average forward walking speed for this simulation was

0.88m/s.

Multiple possibilities exist for varying the control parame-

ter set to achieve stable locomotion with different walking

TABLE I

GEOMETRIC AND INERTIAL PARAMETERS, WINTER [23].

Description no. (∗) l∗/L lc∗/l∗ m∗/M r∗/l∗
Upper body 1 0.288 0.626 0.6780 0.496

Thigh 2 0.245 0.433 0.1000 0.323

Shank 3 0.246 0.433 0.0465 0.302

Foot 4 0.152 0.250 0.0145 0.475

Foot geometry
a/l4 b/l4 h/L
0.75 0.25 0.039

TABLE II

CONTROLLER PARAMETERS; k∗
d()

[Nm], b∗
d()

[Nms], θ∗
()

[deg].

States kd1 k∗
d2

k∗
d3

k∗
d4

bd1 b∗
d2

b∗
d3

b∗
d4

1 400 750 30 20 50 300 5 15

2 400 70 30 20 50 1 5 15

3 400 70 0 5 50 1 1 1

4 400 0 30 5 50 0 5 1

States 1 2 3 4

θb 85
θ∗
l

68 122 122 −

θ∗a 0 0 10 0

speeds. A couple intuitive parameters that can be varied

to influence the walking speed are the hip stiffness during

stance (i.e., kd2 in state one), and the desired upper body

angle θb. Figures 5 and 6 show stroboscopic images of the

biped walking at faster and slower walking speeds (relative

to Fig.4), respectively, both simulated over a period of

t ∈ [0, 10]s, and both of which were generated by utilizing

the same control parameter set given in Table II, but with

different values for the hip stifness at stance kd2 and the

upper body angle θb. Specifically, to achieve these gaits,

the parameters were set to kd2 = 800Nm, θb = 82.5o

and kd2 = 655Nm, θb = 87.5o for the faster and slower

gait respectively. The faster gait, which is shown in Fig.5

starting from rest at an initial condition of double-support

(with the forward heel on the ground and the backward

toe on the ground), is characterized by an average walking

speed of 0.96m/s. The slower gait, which is shown in Fig.6

starting from rest at an initial condition of single-support with

the foot flat on the ground, is characterized by an average

walking speed of 0.6m/s. Corresponding real-time videos of

these simulations are included in the supporting material.

Figure 7 shows the respective forward velocities (of the

center of mass of the torso) at each of the three walking

speeds. The corresponding time evolution of the upper body

angle are depicted in Fig.8. As can be seen in the figure,

the torso for each case starts at an upper body posture away

from the sustained limit cycle, and in each case converges

within a few steps to a stable steady-cycle.

As was outlined in the paper, the presented control approach

is designed not to suppress to natural dynamics of the robot.

A direct consequence is that the simulated motions have

natural human style. Beyond this qualitative characteristic,

the efficiency of dynamic walking should be improved
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Fig. 4. Stroboscopic view of dynamic walking with 0.88m/s average forward speed. The motion is started from double support with both feet flat on
the ground, q(0) = [0, 1.24, 1.5, 1.86, 1.86, 0, 1.23, 1.23, 0]T , q̇(0) = 0.
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Fig. 5. Stroboscopic view of dynamic walking with 0.96m/s average forward speed. The motion is started from double support phase while only the
forward heel and the backward toe are on the ground, q(0) = [0, 1.27, 1.57, 1.82, 1.78, 0.2, 1.31, 1.04,−0.35]T , q̇(0) = 0.

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

x [m]

y
 [

m
]

Fig. 6. Stroboscopic view of dynamic walking with 0.6m/s average forward speed. The motion is started from single support with the forward foot flat
on the ground, q(0) = [0, 1.25, 1.3, 1.75, 1.75, 0, 1.2, 1.2, 0]T , q̇(0) = 0.

relative to a ZMP-based approach. The efficiency of gait

can be characterized by the specific mechanical cost of

transport, cmt=(mech. energy)/(weight × distance traveled)

[24]. Based on the simulation shown in Fig.4, the calculated

mechanical cost of transport of the proposed approach is

cmt = 0.2. Comparatively, the specific mechanical cost of

transport of the ZMP-based Honda Asimo is estimated as

cmt = 1.6 [11], while the cost of transport of the actuator-

assisted Cornell dynamic walker is cmt = 0.05 [11]. While

these numbers may not be particularly accurate estimates,

they support our claim by which utilization of the proposed

control approach can provide energetic advantage over usual

ZMP-based trajectory tracking approaches. The order of

magnitude difference in the estimated values also provide an

intuitive prediction by which using closed-loop control on

all joints may unlikely to be energetically competitive with

actuator-assisted passive dynamic walkers, although walking

under closed-loop control is expected to be considerably

more robust and versatile.

D. Comments on the Proposed Approach

Based on our experience with simulation of the biped was

not particularly sensitive to initial conditions. Stable walking

is achievable with different foot contact configuration, see

Figs.4-6, by having the upper body in different initial angular

position, see Fig.8, with a relatively large range of control

parameters. Differing sets of control parameters result in

a differing character of gait, some of which appear more

natural and efficient than others. Other sets of parameters

generate gaits that appear either more relaxed or more

deliberate. There also obviously exists a large space of

parameters that fail. These failures are mainly due to lack

of coordination, which result in a stumble and ensuing fall.

Beyond the presented results the authors conducted numer-

ous simulations to evaluate the robustness and versatility of

the presented walking controller. The results showed that

the current walking simulations can handle in average 10%
variation with respect to model parameters, specifically M

and A; downhill and uphill walk was achieved on ±5o

slope; robustness with respect to forward and backward push
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type disturbance was verified with 200N force applied at

the center of mass of the upper body for 0.2s duration.

Numerical results also indicate that by changing kd2 and θb

one can obtain safe and smooth transitions between different

walking gaits.

For the simulations presented here, the control parameters

which have clear physical meaning, see Fig.2, were selected

by hand tuning and intuition.

V. CONCLUSION

The authors have proposed an approach for locomotion

control that allows biped walking in natural human style.

Rather than prescribe kinematic trajectories, the approach

is based on the prescription of state dependent torques

that ”encourage” patterned movement through the natural

dynamics of the biped. The control method is implemented in

simulation on an anthropomorphic biped, which is shown to

quickly converge to a natural-looking gait limit cycle with

various control parameters and different initial conditions.

The authors also show that walking speed can be altered by

varying two intuitive controller parameters. The mechanical

cost of transport calculated on a representative dynamic walk

verifies that the presented approach allows control which

works with instead of against the robot dynamics. Experi-

mental validation of the presented approach on a 7-link biped

robot built at the Vanderbilt University Center of Inteligent

Mechatronics: http://research.vuse.vanderbilt.edu/cim, is part

of our future work.
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Fig. 7. Forward velocity of the upper body CoM for walking at three
different speeds.
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