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Abstract— In this paper we present a novel approach to
perform indoor self-localization using reference omnidirectional
images. We only need one omnidirectional image of the whole
scene stored in the robot memory and a conventional un-
calibrated on-board camera. We match the omnidirectional
image and the conventional images captured by the on-board
camera and compute the hybrid epipolar geometry using lifted
coordinates and robust techniques. We map the epipole in the
reference omnidirectional image to a ground plane through a
homography in lifted coordinates also, giving the position of the
robot in the planar ground, and its uncertainty. We perform
experiments with simulated and real data to show the feasibility
of this new self-localization approach.

I. INTRODUCTION

In recent years the use of catadioptric omnidirectional sys-
tems in mobile robot localization and navigation tasks and in
visual surveillance applications has increased considerably.
The main advantages of such systems is their wide field
of view and the central single view point property. These
characteristics allow overcoming the visibility constraint and
help the geometrical analysis of the information captured
by catadioptric cameras. Many authors have studied such
systems, from their geometric properties [1] to the relation
between two or more images [2], [3]. Others deal with the
problem of mixing such systems with perspective cameras
and establish geometrical relations such as hybrid funda-
mental matrices and tensors [4], [5], [6] to help the image
matching. A comparative between some of these methods
using lifted coordinates is presented in [7]. Recently Sturm
and Barreto [8] developed a complete model for all central
catadioptric systems.

Catadioptric systems are usually used in tasks of robot
navigation and self-localization. Ishiguro and Tsuji [9] de-
scribe a method for robot localization from memorized omni-
directional views, which are stored using Fourier coefficients;
similarly, Pajdla and Hlaváč [10] use the image phase of
a panoramic view for robot localization. Cauchois et al.
[11] present a method for robot localization by correlating
real and synthesized omnidirectional images, but they can
only handle small viewpoint changes. Matsumoto et al.
[12] present a similar method based on simply comparing
cylindrical gray-level images. In [13] they propose their own
representation which is called fast wide baseline feature
matching and the use of a topological map instead of a metric
one. In [14] a new method for navigation and localization
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Fig. 1. Scenario where an omnidirectional image is taken from a camera
on the ceiling and a conventional camera on the robot is used for self-
localization.

using a collection of 1D omnidirectional images formed
by averaging the center scanlines of a cylindrical view is
proposed. More recently some authors assume they have a
sequence of omnidirectional images stored in memory, [15],
[16] from which they find the closest to the current frame. In
[15] a fisheye lens is used. The essential matrix is computed
from the current frame and the next in the visual memory,
which is used to feed a control law to guide the robot to
the next position. In [16] a catadioptric system is used to
perform a hierarchical localization. They go from topological
localization using features matching to metric localization
using the trifocal tensor.

As we have seen many authors try to deal with the problem
of navigation and robot localization using omnidirectional
images acquired by dioptric (fisheye) or catadioptric system
mounted on the robot. Many times this type of sensors are
expensive and not easily available as perspective cameras.
Some other times the omnidirectional sensors are in a fixed
position (surveillance) or they are used to explore a certain
environment as in the Street View System1. In these cases
we could use a different type of sensor to acquire the current
image and to perform a matching between them. A similar
scenario is depicted in Fig. 1 where, a virtual surveillance
omnidirectional camera is located on the ceiling and a mobile
robot, with a perspective camera on-board, share the field
of view (FOV). We say virtual because the omnidirectional
images of the scene are stored in the robot memory and there
is neither required of a physical omnidirectional camera nor
the communication with the robot. In this work we propose to
use a combination of omnidirectional and perspective images
to perform the robot localization in a scene. To perform the
self-localization the robot matches the current perspective
image acquired by the perspective camera with the omnidi-
rectional image of the scene stored in memory. Once we have
enough correspondences we compute the epipolar geometry
encapsulated in the hybrid fundamental matrix. From this
fundamental matrix we compute the omnidirectional epipole

1http://maps.google.com
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Fig. 2. Projection of a 3D point using the sphere camera model.

representing the perspective camera in the scene, in this case
the robot. Once the robot is located in the omnidirectional
image we can obtain some geometric information using the
hybrid homography. This homography relates the position of
the robot in the omnidirectional image with the ground plane
giving us the relative position of the robot in meters with
respect to the origin of the ground plane. We also studied
the uncertainty of the location of a point in the ground
plane adapting the methodology developed for conventional
cameras [17] to omnidirectional ones.

The rest of the paper is organized as follows. In Section
II, we present the generic camera model and the lifted
coordinates used. Section III explains the method used to
compute the position of the robot on a ground plane using a
hybrid homography. Section IV explains the method used to
compute the hybrid fundamental matrix and how to extract
from it the position of the robot in the image. In Section
V some experiments with synthetic and real images are
presented. Finally conclusions are stated in Section VI.

II. GENERIC CAMERA MODEL

In this section we introduce briefly the sphere camera
model which can explain all central catadioptric systems and
the perspective cameras with radial distortion. The earliest
work was developed by Geyer and Daniilidis [18] where they
show the equivalence of the image geometries obtained by
the catadioptric projection and the composition of projections
of a sphere. In [5] Barreto and Daniilidis extend the model
to consider perspective cameras with distortion. Recently in
[8], Sturm and Barreto propose the generic projection model
which considers any central catadioptric system. This model
assumes all central catadioptric cameras can be modeled by a
unit sphere and a perspective camera, such that the projection
of 3D points can be performed in two steps (Fig. 2). First, one
projects the scene onto the sphere, obtaining the intersection
of the unit sphere and the line joining its center and a 3D
point. There are two such intersection points, r+ and r−.
These points are then projected into a perspective image,
resulting in two image points, q+ and q−, one of which
is physically true. This model covers all central catadioptric
cameras, encoded by ξ, which is the distance between the
center of the second projection and the center of the sphere.
If 0 < ξ < 1 we have a hyper-catadioptric system, ξ = 1 a
para-catadioptric and ξ = 0 the classical pin-hole model.

The two intersection points of the sphere r± and the line
joining its center and the 3D point Q are (Q1, Q2, Q3 ±√
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T. Their images in the perspective camera are
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where K represents the intrinsic and extrinsic parameters of
the perspective camera. A more detailed explanation can be
found in [8].

A. Lifted coordinates

The derivation of (multi-) linear relations for catadioptric
imagery requires the use of lifted coordinates. They allow to
generalize the transformations and multiview tensors from
conventional perspective images to catadioptric systems,
where the projective invariant entities are conics instead of
lines. The Veronese map Vn,d of degree d maps points of
℘n into points of an m dimensional projective space ℘m,

with m =
(

n + d
d

)
− 1. Consider the second order

Veronese map V2,2, that embeds the projective plane into
the 5D projective space, by lifting the coordinates of point
q = (q1, q2, q3) to

q̂ = (q2
1 , q1q2, q

2
2 , q1q3, q2q3, q

2
3) (2)

III. FROM OMNIVIEW TO GROUND LOCATION

In this section we explain the process to map a point
in the omnidirectional image to a position in the ground
plane. We assume a planar robot motion. To perform this task
we calibrate the omnidirectional image with respect to the
ground plane using a homography with lifted coordinates. We
have tested two models to compute the hybrid homography.
The generic 6×6 homography model Hcata and a simplified
3× 4 model Hsim.

A. Generic Homography

This homography maps a point in the omnidirectional
image in lifted coordinates q̂c to a degenerate dual conic
containing the point in the ground plane Ω ∼ qp+qT

p− +
qp−qT

p+.

Ω = Hcata q̂c (3)

To compute this homography we use a DLT-like (Direct
Linear Transformation) approach. As in the perspective case
we need correspondences qi

p ↔ qi
c between points in the

ground plane qi
p and omnidirectional image points qi

c. From
Eq. 3 we obtain

[̂qc]× Hcata q̂p = 0 (4)

If the j-th row of the matrix Hcata is denoted by hT
j and

arranging Eq. 4 we have

[̂qc]× ⊗ q̂p


hT

1

hT
2

hT
3

hT
4

hT
5
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6

 = 0 (5)
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These equations have the form Aih = 0, where Ai is a
36 × 6 matrix, and h = (hT

1 ,hT
2 ,hT

3 ,hT
4 ,hT

5 ,hT
6 )T is a 36-

vector made up of the entries of matrix Hcata. The matrix
Ai has the form

Ai =


0 0 q2

3q̂p · · ·
0 −q2

3q̂p 0 · · ·
q2
3q̂p 0 0 · · ·
0 q3q2q̂p −q3q1q̂p · · ·

−q3q2q̂p q3q1q̂p 0 · · ·
q2
2q̂p −2q2q1q̂p q2

1q̂p · · ·

0 −2q3q2q̂p q2
2q̂p

q3q2q̂p q3q1q̂p −q2q1q̂p

−2q3q1q̂p 0 q2
1q̂p

−q2
2q̂p q2q1q̂p 0

q2q1q̂p −q2
1q̂p 0

0 0 0

 ,

(6)

and is rank 3, so each correspondence gives 3 equations.
Thus we need at least 12 correspondences to compute Hcata.

To get the two points encapsulated in the conic Ω we have
to verify the equation (q1, q2, 0)Ω(q1, q2, 0)T = 0 and solve
the resultant quadratic equation for q1, q2.

B. Simplified Homography

The second approach is derived from the hybrid epipolar
geometry approach used in [7]. In this work, a 3× 4 hybrid
fundamental matrix was tested which is the theoretical model
for a para-catadioptric systems, being a good approximation
for other central catadioptric systems if the camera has square
pixels. From this example we compute a 3× 4 homography
Hsim which maps a 4-vector lifted coordinates of a point in
the omnidirectional image q̂c to a point in the ground plane
qp in homogeneous coordinates.

qp = Hsimq̂c (7)

The lifting from 3-vector to 4-vector is q̂c ∼ (q2
1 +

q2
2 , q1q3, q2q3, q

2
3)T [4]. To compute this model we need at

least 6 correspondences since each correspondence gives two
equations and in Hsim we have 11 degrees of freedom.

C. Uncertainty

This homography transformation produces a non-
homogeneous uncertainty distribution. So in order to have an
estimation of the uncertainty of the robot location we must
consider the uncertainty transformation from the image to
the ground plane. We adapt the approach proposed by [17] to
omnidirectional images using lifted coordinates. We assume
uncertain image points q with σq1 = σq2 = σ the covariance
in the image coordinates and we consider an exact Hsim.

As we are dealing with lifted coordinates in the image
plane we use the Jacobian J of this lifting to translate the
error into the lifted coordinates

Λq̂ = JΣJT (8)

Now we propagate the error from the points in the image
to the points in the plane by

ΛQ = HsimΛq̂Hsim
T (9)

As result we have a covariance matrix for homogeneous
coordinates of a point in the plane Q = (Q1, Q2, Q3) which
have to be converted into a 2 × 2 covariance matrix Λ2×2

Q ,
which is performed as

Λ2×2
Q = ∇fΛQ∇fT (10)

where

∇f = 1/Q2
3

(
Q3 0 −Q1

0 Q3 −Q2

)
(11)

IV. ROBOT LOCATION IN THE OMNIDIRECTIONAL IMAGE

As it is well known, the epipoles are the location of
the camera center in one view seeing by the other view.
Extracting the epipole in the omnidirectional image we can
locate the robot camera in a wide field of view. When
the epipolar geometry is encapsulated by the fundamental
matrix the computation of epipoles is reduced to extract
the null vectors of such matrix. This problem increase its
complexity when omnidirectional images are used, the null
vector becomes a null space. Before computing the epipoles
we have to compute the fundamental matrix between an
omnidirectional image and a perspective one. In this work
we use the 4 × 3 fundamental matrix F43 analyzed in [7].
This matrix is a useful simplification of the complete model,
the 6×6 matrix F66. We choose the F43 matrix because as it
is shown in [7], it requires less correspondences than the F66
and its performance is good enough with the mirror shape
we use in this work. The following constraint describes the
hybrid fundamental matrix:

q̂T
c Fcpqper = 0 (12)

where q̂c is the 4-vector lifted coordinates of a point in
the catadioptric image and qper represents a point in the
perspective image in homogeneous coordinates.

The automatic computing of the hybrid fundamental ma-
trix can be found in [7]. In our current solution we avoid
to do an unwarping in polar coordinates and use directly
SIFT [19] points in the omnidirectional image. In this case
a flip transformation is required to correct the reflexion
transformation made by the mirror in the omnidirectional
image. This transformation allows to match directly the
SIFT points extracted from both images, and without this
flip transformation the matching using SIFT points does not
produce coherent results. Note that the SIFT descriptor is
rotation and scale invariant but it is not projective invariant.

An example of the epipolar conics and lines can be seen
in Fig. 3. The automatic matching before and after the robust
hybrid fundamental matrix computation can be seen in Fig.
4(a) and Fig. 4(b).
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(a) (b)
Fig. 3. Example of epipolar conics (a) and epipolar lines (b) computed
from the hybrid fundamental matrix F43.

(a)

(b)
Fig. 4. (a) Putative matching using just SIFT. (b) Matching using the
hybrid fundamental matrix.

A. Computing the epipoles

The hybrid fundamental matrix F43 has a one-dimensional
left null-space and the two epipoles of the catadioptric
camera (Fig. 3(a)) are the left null-vectors that are valid
lifted coordinates. This means that this 4-vectors must fit
the following quadratic constraint:

q̂c ∼


q2
1 + q2

2

q1q3

q2q3

q2
3

 ⇔ q̂c1q̂c4 − q̂2
c2 − q̂2

c3 = 0 (13)

Once we obtain the 4-vectors which fit this constraint we
use the same process explained in Section III-A to compute
the two solutions for the epipole.

V. EXPERIMENTS

First we analyze the behavior of the two approaches to
compute the homography described in section III. Once we
define the model to compute the homography we perform
experiments of the whole system with synthetical data to
analyze its accuracy. Finally, to confirm the results we
perform some experiments with real images going from a
point A to a point B inside the same room with just one
omnidirectional image stored in the robot memory and a
perspective uncalibrated camera installed in the robot.

A. Generic Model (Hcata) vs. Simplified Model (Hsim)
In this experiment we use a simulator which generates

omnidirectional images coming from two different catadiop-
tric systems using a hyperbolic mirror with ξ = 0.9662 (m1)
and ξ = 0.7054 (m2) using the sphere model [5]. We take
the parameters from two real hyperbolic mirrors designed
by Neovision2 and Accowle3, respectively. The pattern to
compute the homography is composed of a squared plane
with 11× 11 points and a distance between points of 40cm.
The goal of the first experiment is to know the behavior
of the two homography approaches in presence of noise.
We add different amounts of Gaussian noise described by
its standard deviation (σ) to the coordinates of the points
in the omnidirectional image. The DLT algorithm is used
to compute the homographies. For every σ we repeat the
experiment 10 times in order to avoid particular cases due to
random noise. The mean of these iterations is shown in Fig.
5(a). When the amount of noise is low both models shows a
good performance, but when the amount of noise increases
the performance of Hcata decreases and Hsim remains. This
result shows that Hcata is more sensitive to noise than Hsim,
this can be caused by the overparameterization of the general
model. We also observe that the error corresponding to the
mirror m2 is smaller than the one obtained with the mirror
m1, this is explained because the area occupied by the pattern
in the omnidirectional image is bigger using the mirror m2
than using the mirror m1.

(a) (b)
Fig. 5. Comparison between the two approaches to compute the hybrid
homography, Hsim = H43, Hcata = H66. (a) Performance with presence
of noise. (b) Different heights test.

The goal of the following experiment is to show the
behavior of the two approaches when the height between the
omnidirectional camera and the plane pattern changes. We
try 4 different heights, 0.5, 1.0, 1.5 and 2 meters. We also
add σ = 1 pixel Gaussian noise to the image coordinates.
The result of this experiment can be seen in Fig. 5(b). We
observe that the error given by Hsim is smaller than the
one coming from Hcata in both mirror cases. In the case of
m1 this can be explained because this systems is close to
a para-catadioptric system where Hsim is the exact model,
but it also shows good results with a real hyperbolic mirror
(m2). We also observe that the error using the mirror m2 is
smaller than the one given by the mirror m1. With the last
results we decided to choose Hsim to implement our system.

2http://www.neovision.cz
3http://www.accowle.com
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(a) (b)

Fig. 6. Propagation error in the plane using Hsim. The theoretical ellipse
of uncertainty is shown in green in (a) a point close to the center and (b)
a point in the periphery. Units in the plane are meters.

TABLE I
ESTIMATIONS OF POSITION IN THE PLANE USING THE LIFTED

HOMOGRAPHY

Real position Estimated H50 Estimated H100
Point 1 (154,-114) (155.92,-112.49) (154.90,-110.92)
Point 2 (260,108) (266.07,106.22) (259.70,106.39)
Point 3 (0.0,-471) (0.02,-469.36) (0.01,-467.62)

B. Uncertainty

In this experiment we show the error propagation through
Hsim. We select a point in the grid used to compute the
homography. This point is used as the center for a Gaussian
distribution with σ = 1 pixel. In Fig 6 we observe the
error propagation in the plane corresponding to two different
points in the omnidirectional image, one close to the center
Fig. 6(a) with an error of ±1.35cm and the other one close
to the periphery Fig 6(b) with an error of ±14.66cm. We
observe that the error varies depending on the position in om-
nidirectional image. This is because of the perspective effect,
since there is high uncertainty approaching the line (conic)
of the horizon of the ground plane, which corresponds with
far away observations.
C. Homography using real images

Here we test different heights for the omnidirectional
camera checking for location accuracy. The plane used has
7× 7 points and the distance between them is 40cm giving
a pattern of 240×240cm. The omnidirectional camera is
located at the center of the scene. In Fig. 7 we can see two
different omnidirectional images obtained from two different
heights, 50cm (H50) and 100cm (H100) respectively. We
also show the reprojection of the points used to compute the
homography. To test the performance of the homographies
we choose three different points which do not belong to
the pattern. The goal is to check the accuracy when the
points are far from the image center. Table I shows the
location results of this experiment in centimeter units. This
inaccuracy is caused by the perspective effect and by the non-
homogeneous resolution of the omnidirectional image, i.e. a
few pixels in the periphery of the image means more distance
than the same pixels close to the image center. This situation
validates the uncertainty analysis presented in Section V-B.

D. Epipole Estimation

In this experiment we analyze different positions for the
perspective camera in the scene and compute the epipole

(a) height = 50cm (b) height = 100cm
Fig. 7. Omnidirectional images of the pattern at two different heights with
the reprojection of the pattern points

TABLE II
ERROR IN THE EPIPOLE ESTIMATION DEPENDING ON THE CFOV,

DEFINED BY THE BASELINE AND THE # OF MATCHES.

CFOV (rads) Baseline(m) # of Matches Error(pixels)
1.83 2.91 246 0.57
1.13 2.50 219 0.84
1.04 2.12 200 1.08
0.97 1.80 176 1.25
0.75 1.58 149 2.86
0.54 1.50 119 4.96
0.26 1.58 90 25.83

Fig. 8. Three different CFOVs, represented by the common observable
points (red points) depending on the position of the perspective camera
(green square) (See digital version).

in the omnidirectional image. We move the perspective
camera along the y−axis at a height of 0.5m in the same
x coordinate as the omnidirectional camera. Fig 8 presents
three omnidirectional images showing the matched points
in the scene (red points) being in the Common Field of
View (CFOV) of both cameras. We naturally observe that
moving the perspective camera decreases the CFOV causing
a reduction in the number of matches and decreasing the
accuracy of the epipole computed. We add Gaussian noise
with σ = 0.5 to points in both images. Table II shows
the estimation of the epipole location depending on the size
of the CFOV. We observe that even when we have enough
correspondences to compute the hybrid fundamental matrix
the estimation of the epipole could be 25 pixels far from the
real value. This is explained because these correspondences
are localized in just a small part of the omnidirectional
image.

E. Self-localization of the robot

In this experiment we will show the behavior of the whole
self-localization system. We have a single omnidirectional
image of the scene stored in the robot memory and we
obtain a perspective image at different positions of the
perspective camera. We match the perspective image with the
omnidirectional one to compute the fundamental matrix. We
have observed that the features used to perform this matching
have to be distributed in a wide part of the omnidirectional
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Fig. 9. Matching between the omnidirectional and the perspective image.

(a) (b)
Fig. 10. (a) Epipole trajectory with uncertainty. (b) Uncertainties of the
epipoles in the ground plane, units are in meters.

image. If we do not fit this constraint the estimation of the
epipole gives bad results. This is the reason why we give
some correspondences manually. Once we have computed
this matrix, we extract the epipole which gives the position
of the perspective camera in the omnidirectional image.
Previously, we calibrate the height of the omnidirectional
camera with respect to the on-board perspective camera. We
set the height between the two optical centers at the same
height used to compute the homography. The robot follows a
simple straight path, advancing for 3.5m. In Fig. 10 we can
see the two phases of the whole approach, camera location on
the omnidirectional image (matching and epipole computing)
and the ground location through the homography. In Fig.
10(b) we show the uncertainty estimation. We observe that
the estimation of the position is better when the robot is
in the central area of the omnidirectional image. When the
robot is in the periphery the location uncertainty increases
as expected.

VI. CONCLUSIONS

In this paper we present a new approach to perform the
robot self-localization, mixing one reference omnidirectional
image and perspective images. We avoid the use of any
catadioptric system by storing the omnidirectional images
of the scene in the robot memory. The only sensor used
is the on-board perspective camera installed on the robot.
We propose a schema where the epipole, computed from
the hybrid fundamental matrix, in the omnidirectional image
is mapped to a ground plane by a hybrid homography
previously computed. We observed that the accuracy of the
epipole estimation depends on how well the correspondences
are distributed in the perspective and omnidirectional images.
The hybrid homography proposed uses a generic model
that can relate a scene plane to any catadioptric image.
We test our approach with simulated data and we obtained
promising results using real images. We observed that the

major drawbacks in practice are the hybrid matching and the
computation of epipoles. In both cases we the features must
be well distributed in both images which is difficult when the
CFOV is small. If the matching is done between the whole
perspective image but just a part of the omnidirectional one
we can match the images but the epipole estimation could
have big errors. We also observed a highly inhomogeneous
uncertainty related to the position on the omnidirectional
image, which is however well coded in our model. There is
still work to do with this new self-localization approach, but
it seems to be a good option since a set of omnidirectional
reference images can describe easily the environment, and
only a conventional uncalibrated camera is required on-
board.
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