
  

  

Abstract—This paper presents a novel evolutionary 

G3–continuous (continuous-differentiable curvature) path 

planner for nonholonomic wheeled mobile robots. The evolu-

tionary path planner generates intermediate configurations 

connected via η
3-splines that yields a collision-free 

G3–continuous path, which each point on the path has a 

closed-form expression. The path planner is implemented as 

architecture of island parallel genetic algorithm (IPGA) run-

ning a variable-length genetic algorithm in each island. The 

techniques of spatial fitness-sharing in search space and a 

crowded measure of generated paths are integrated in the 

planner to implement a high-diversity evolutionary optimizer of 

paths that could self-adjust the spacing and number of inter-

mediate configurations. The experimental result demonstrates 

the robustness and self-adjusting capability of evolutionary path 

planner in discovering shorter and smoother composite 

η
3-splines paths in complex environments. 

I. INTRODUCTION 

HERE are various path planning for nonholonomic mobile 

robots utilizing different path primitives and planning 

schemes in a given static environments published recently, as 

in the literature [1]-[10], [12]-[14]. Approaches based on 

introducing randomness into the path planner, e.g. PRM[18], 

RRT[19], adaptive random walk [13], and simple genetic 

algorithm [1,3,5,9] or parallel genetic algorithm [14],[7],[10], 

show the effectiveness in searching a feasible path in difficult 

environments.  

In addition to nonholonomic constraints, path planning 

problems for the practical autonomous mobile robots must 

consider other constraints. The criterion of minimal length 

path is favored for fuel and time efficiency. Smoothness of 

the path yields non-stop motion suitable for high speed mo-

tion to reduce the traversal time. A continuous and bounded 

curvature path is necessary for smooth wheel motions. Fur-

thermore, the continuity of the derivatives of curvature also 

helps to eliminate the jerk effects generated from the sudden 

changes of acceleration. These requirements of practically 

useful paths, therefore, are directly reflected on the geometric 

features of the chosen path primitive.  

For a smooth control of mobile robots, path planners 

usually choose one or more parametric curves as path primi-

tive connected into a composite path with sufficient degrees 

of parametric or geometric continuity. Numerous attempts of 

blending novel parametric curves (e.g. [2], [8], [13], [17]) and 
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various splines (e.g. [12]) are recently adopted for smooth 

path generation. For example, a continuous-curvature steer 

for a car-like mobile robot proposed in [16] was made up of 

line segments, circular arcs and clothoid arcs. Some parame-

tric curves, e.g. clothoid or cubic spiral, are described by the 

curvature function parameterized by arc length along the 

curves. The robot can be guided easily by controlling its 

steering angle as following the curve. However, these curves 

have no closed-form expression of the position of each point 

on the curves, which can only obtained by numerical inte-

gration. The η
3
-splines published by Piazzi et al [8] is a pa-

rametric curve [x(t),y(t)] composed of seventh order poly-

nomials. It has been shown that the η
3
-splines can represent 

any seventh-order polynomial curve with third order geome-

tric continuity, denoted as G
3
 continuity [8] (continuous in 

position, tangent, curvature, and the derivative of the curva-

ture), in addition to the advantage of easily calculating the 

coordinates of the point on the curve. More importantly, 

η
3
-splines reveals its superior ability to approximate a rich 

class of commonly-used path primitives such as straight line 

segment, circular arc, clothoid (Conru spiral), and cubic spiral 

[2]. Such superior features of η
3
-splines are very suitable for 

smooth point-to-point path planning of wheeled mobile ro-

bots.  

For path planning problem, to improve the efficiency of 

evolution toward feasible paths, parallelism of genetic algo-

rithm [11], [14] was proposed as a viable means. Parallelism 

can significantly improve the efficiency and solution quality 

of simple genetic algorithm by encouraging a good tradeoff 

between exploration and exploitation of the search space.  In 

particular, we design and implement the Island parallel ge-

netic algorithm (IPGA) [11], [7] as a path computing 

framework which allows more flexibility in searching for 

useful solutions, since the architecture includes several design 

parameters that can be tuned to improve actual and statistical 

performance. This work implements a variable-length genetic 

algorithm for composite η
3
-splines path planning, which 

adopts variable chromosome size within a given range for 

initial population. The generated G
3
-continuous path guar-

antees that smooth control of heading and turning angle and 

rate, collision-free and shorter motion for nonholonomic 

mobile robot. Another major advantage is that there is no 

need to manually pre-specify the number of path primitives 

for different environments. Deciding a priori adequate or 

optimal number of waypoints connecting the path primitives 

and geometric arrangement of these waypoints on the free 

space of the map that achieve a good trade-off between path 

length and avoidance of obstacles are in general hard by 
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manually setting based on heuristics, especially in large

complicated environments. In addition, the extens

lations performed on a fixed number of waypoints 

our previous work [10] shows that there is a m

of waypoints that provides a minimally necessary degrees of 

freedom to ensure the existence of a feasible path. 

it is computationally expensive to determine an appropriate 

number of waypoints for a shorter collision

paper employs a variable-length genetic algorithm so that a 

chromosome can vary its size during evolution.

range of number of waypoints of initial population is set, the 

path planner will be self-adjusting in accordance with the 

complexity of environment, so that the waypoints inse

tion/removal and their spacing/location could be 

achieve the continuous shape, curvature and the derivate of 

curvature. Thus, the proposed path planner is very robust and 

could effectively decrease the amount of manual efforts i

volved in smooth path generation. 

This paper is organized in five sections; section II intr

duces the primitive curve segments, η
3
-splines, used in this 

path planner. Section III shows the detail and the impleme

tation of proposed variable-length genetic algorithm. Section 

IV presents the simulation results of the evolutionary path 

planner in complex environments and demonstrates its r

bustness. Section V is the conclusion. 

II. THE η
3
-SPLINES 

The η
3
-splines was firstly developed by Piazzi 

specifying the position, direction, curvature, and derivative of 

curvature at two terminals, a seventh-order polynomial 

representing a G
3
-interpolating curve is generated. Besides 

the given spatial configurations, this curve can still have 

additional six degrees of freedom, which is stated through the 

η vector: 
T],,,,,[ 654321 ηηηηηηη =

� . 

The configurability of the splines is very flexible but results 

in a huge search space, causing unacceptable executing time. 

 In this paper, simplification is made to reduce the degrees 

of freedom by enforcing  
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the Euclidean distance between two terminal configurations, 

06543 ==== ηηηη , 

and make the curvature and the derivative of it zero at both 

terminals. Following the standard formulae given by Piazzi 

[8], an advantage of the η
3
-splines is we can easil
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and similar formulae for the simplified y-coordinate coeff

cients are 

pecially in large-scale 

complicated environments. In addition, the extensive simu-

a fixed number of waypoints scheme in 

our previous work [10] shows that there is a minimal number 

cessary degrees of 

tence of a feasible path. However, 

pensive to determine an appropriate 

number of waypoints for a shorter collision-free path. This 
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This leads to a family of the η
3
-splines which has been n

merically demonstrated its capability in its effect of min

mizing the maximal curvature and maximal curvature der

vates [8]. 

III. THE VARIABLE-LENGTH GENETIC 

A. Individual representation 

It is natural to represent a path composed of connected 

η
3
-splines as an ordered sequence of 

N+1 connected segments of η
3
-splines can be fully defined by 

N intermediate control points between two boundary points, 

including start and end terminal. Obviously, an individual 

can be represented as  

;...;;[ 2,21,1 Nrrrp θθ
���

=

where 
i

r
�

, θi are the position vector and the tangent direction 

of the path at the control points, respectively, 

the number of control points and is not fixed but within a 

range.   

B. Mutation, Crossover, and Selection

We employ the crossover operator reported in [9]

As shown in Fig. 1, the crossover operator is defined as

random combination between two individuals. 

point in each parent path is selected, 

dents are obtained by recombining

ferent permutation. If the size of chromosomes in two ind

vidual are M and N (two terminals included), respectively, 

then that of the resulting descendents is between 

2 (two terminals included), resulting a variable

sover operation. Finally, the mutation operator is defined as 

the random perturbation of parameters with

range [7], and the mutation rate are defined as the mutation 

probability per gene; i.e. it means several mutations can occur 

in the same individual. Finally, the selection method adopts 

the rank-based selection by giving the feasible paths

priority. Feasible paths are sorted according to the path length; 

while infeasible paths are sorted according to the path penalty 

introduced in the following subsection.

Fig. 1  (a) Two chromosomes before the crossover (b) Generated offspring  

after the crossover. The offspring contains information from both parents 

but  may have different number of waypoints.
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It is natural to represent a path composed of connected 
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Mutation, Crossover, and Selection 

sover operator reported in [9] and [15]. 

, the crossover operator is defined as the 

random combination between two individuals. A random 

is selected, and then two descen-

dents are obtained by recombining the segments with dif-

. If the size of chromosomes in two indi-

minals included), respectively, 

then that of the resulting descendents is between M+N-2 and 

(two terminals included), resulting a variable-length cros-

sover operation. Finally, the mutation operator is defined as 

the random perturbation of parameters within its allowable 

range [7], and the mutation rate are defined as the mutation 

probability per gene; i.e. it means several mutations can occur 

in the same individual. Finally, the selection method adopts 

based selection by giving the feasible paths higher 

priority. Feasible paths are sorted according to the path length; 

while infeasible paths are sorted according to the path penalty 

introduced in the following subsection. 
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after the crossover. The offspring contains information from both parents 

but  may have different number of waypoints. 

979



 

C. Infeasible Path Penalty Method  

In order to accelerate the convergent process, proper co

lision penalty algorithms can be used to provide an i

provement direction of the evolution. For example, the mo

ified intrinsic cost presented in [7] as an improvement of 

intrinsic cost [4] adopted the penetration depth on infeasible 

paths, giving a measure of the difficulty in making the path 

collision free. Basically, this method finds a nearest vertex of 

the intersected polygonal obstacle to penetrated segments and 

to measure the distance between them and the vertex, 

representing the distance to move the segment out of the 

obstacle. In Fig. 2, however, it demonstrates a situation that 

the method fails:  a path intersects a concave

In this situation, the vertices used to calculate the modified 

intrinsic cost may not provide a direction to guide the co

liding path to become collision-free. In order to guide a co

liding path around a concave polygons correctly, a more 

efficient infeasibility penalty method similar to [9] is pr

posed. As demonstrated in Fig. 3, the shortest path between 

two intersections along the contour of an obstacle is taken, 

and the length of this contour segment, which points out the 

extent of the infeasibility or how deep the path segments 

intersect an obstacle, is employed as a measure of the cost of 

collision.  

D. Spatial Fitness Sharing 

Fitness-sharing method is widely used to improving the 

diversity of the evolution process. This method first

ures the closeness between individuals, and then adjusts the 

fitness according to the measurement. The distance usually 

defined as the difference between solutions on the Pareto 

Front of the objective space; the main idea is to let nearby 

individuals compete limited resources. However, the me

surement of closeness is usually defined on

tion and is not reflected in the actual search space. That is, the 

nearby individuals on the Pareto Front are not necessarily 

nearby in the search space, so the diversity cannot be e

hanced efficiently. Therefore, for path-planning problem

Fig. 3 The proposed path penalty method; the shortest contour segment 

(red) is chosen. 

Fig. 2 Malfunction of the modified intrinsic cost  may happen in case of 

concave-shaped obstacle. The points with red circle will be selected for 

computing modified intrinsic cost 
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where the subscript denotes the specified 

are the standard deviations in two 

and Y are the position of an arbitrary control point, and 

�� are the mean position of all control points.

assume the probability of every control point is the same so 

the expectation and the standard deviation of them can be 

easily obtained. By using this new measuring function, the 

fitness sharing is now reflected in the actual search space of 

the map, not in the objective space.  

E. Crowd Measurement among Individuals

The spatial-fitness-sharing method can also be utilized to 

measure the extent of how crowded the paths in a generation 

or, equivalently, the inverse of diversity in search space. 

Using the same concept of spatial fitness sharing, the 

crowded factor (CF) can be defined a

,

( , ) / ,

11 ,
N

i k

i k

CF correlation p p N

CF

=

≥ ≥

∑

where N is the total population size. As will be demonstrated 

in simulations later,  crowded factor can provide a deeper 

understanding to the evolution process, and this information, 

of course, can be used as a help function to design an adaptive 

evolution process [15]. 

F. Parallelism of Genetic Algorithm

In this paper, we use the implementation of island parallel 

genetic algorithm (IPGA) [7], [11]. The parallel evolutionary 

feature can simultaneously improve the diversity and co

vergent speed. Furthermore, the divid

scheme can also reduce the execution time and provide the 

possibility of parallel computation among multiple proce

sors. 

IPGA begins with several isolated s

islands; each evolves independently with different u

er-setting crossover and mutation rates. A small portion of 

individuals will exchange among these islands periodically 

via a common pool serving as a migration

meters among the islands are usually quite different in order 

to form high-diversity and high-convergent

While these islands exchange their individuals via migration, 

the ultimately better individuals during evolution via separate 

genetic parameters in each island are preserved and migrated 

into whole population. Obviously, t

fected by four factors: the number of migrants, the migration 
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possibility of parallel computation among multiple proces-
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islands; each evolves independently with different us-
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individuals will exchange among these islands periodically 
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meters among the islands are usually quite different in order 

convergent-speed islands. 
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into whole population. Obviously, the performance is af-

fected by four factors: the number of migrants, the migration 
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interval, the selection and the replacement algorithm. Too 

large migration size and too small migration interval will 

break the isolation among islands, implicating poor diversity. 

IV. EXPERIMENTAL RESULT 

 To demonstrate the capability of the path planner based on 

island parallel variable-length IPGA, three maps with dif-

ferent size and topology feature, which includes a chan-

nel/narrow corridor of varying width, maze-like, and a me-

diate-scale environment consisting of a higher density  of 

mixed convex and concave polygons, are examined to cha-

racterize the behavior of the variable-length GA. It is worth 

noting that sorts of difficulties can occur in path planning in 

each of these three testing maps. An evolutionary path plan-

ner like the one proposed in this paper may not be complete, 

i.e. it is likely that the planner could not discover an accept-

able path in one run even if such a path does exist. However, 

an evolutionary path planner is possible to discover more than 

one alternative path. The path planner is programmed in the 

programming language C++, and the dumped text-based 

result file is used for analysis and illustration. The IPGA is 

composed of three equal-sized islands, which differ in set-

tings of mutation rate and crossover rate; it migrates three 

percent of the total population size every ten generation. 

Equivalently, with sub-population size of 100 individuals in 

each island, a total of 9 individuals, 3 for each island, mi-

grates in the given migration period. Also, in order to pre-

serve diversity, three islands are configured as 

high-mutation-rate, high-crossover-rate, and balanced one 

respectively. Here some selected simulation results in a suc-

cess run are presented in Fig. 4 to Fig. 6, where the shown 

paths may be of different number of intermediate nodes. In 

addition, the black line shown in these figures represents the 

shortest path composed of only straight line segments, which 

can be easily obtained from traditional deterministic path 

planners. Note that no attempts are made to look for the best 

combinations of parameters in our presented simulations. The 

simulation results of the proposed path planner are summa-

rized below: 

A.  Evolution Characteristics 

 For generation of initial population, a number (between 4 

and 10) of waypoints is randomly generated and linked by 

η
3
-splines. During evolution, the chromosome can vary its 

size using the crossover operation. As demonstrated in Fig. 7, 

for simpler maps, e.g. map I, the average of converged gene 

length is between five and six; too high or too low initial gene 

length setting in these maps will cause longer converging 

process or worse—unable to find feasible paths. 

 We denote min(M) as the minimum path penalty of all 

paths, avg(L) as the average path length of all paths, min(FL) 

as the minimum path length of “feasible” paths, and avg(N) as 

the average gene length of all paths. Note that the generation 

number at which min(M) firstly reaches zero indicates the 

speed of finding at least one collision-free composite 

η
3
-splines. Very often, the feasible paths found will be pre-

served to evolve to shorter length and thus min(M) is zero 

afterwards. Simulation results of three maps in 50 generations 

are depicted in Fig. 7 to Fig. 9. 

An interesting phenomena can be observed; the evolution 

process of map II and map III both shows a sudden rise of 

avg(L) just before any feasible path is found. The evolution 

characteristics of the proposed variable-length genetic algo-

rithm in success runs can be stated as following.  

Firstly, the path penalty is high in the earlier generations 

due to the random distribution of chromosomes. Then a sig-

nificant evolutionary improvement is observed at the first few 

generations; all min(M), avg(L), and avg(N) are reduced to 

much smaller value as the evolution progresses. However, for 

complex map like Map II and Map III, finding a collision-free 

path may not be easy. Before obtaining a feasible path, the 

evolution may temporarily reach a local minimum and pos-

sibly no improvement can be made in next few generations 

until leaving the local minimum. If the evolution stays on the 

local minimum, it means the most portion of paths collide to 

some obstacle, so it cannot easily get rid of them by cros-

sovers. Although it can still have little possibility to escape 

via mutation, before escaping, all chromosomes will even-

tually become similar due to the rank-based selection and 

crossovers; the indistinguishable population will lead to a 

random crossover. Since the fitness value is only related to 

the path-penalty value before obtaining a feasible solution, 

individuals with similar fitness value may have extremely 

different gene length and path length. The random crossover 

will randomly combine any two individuals, resulting 

offspring with larger or smaller gene length and path length. 

Trivially, there must be a lower bound of gene length and path 

length but no upper bound of them. This asymmetry will 

eventually increasing the gene length and path length. Also, 

the longer gene length provides more flexibility, thus helping 

escaping. Finally, the rising will end once escaping the local 

minimum, then gradually evolving towards another minimum. 

Note the similar mechanism can happen more than once until 

any feasible solution is acquired. 

This phenomenon can be observed from the simulation re-

sults. For example, in Fig. 7, the solution quality is improved 

in the first few generations. After that, the path-penalty value 

sticks before the generation 10, and then a rising of both 

avg(N) and avg(L) is exhibited, meaning the evolution is 

trying to escaping the local minimum. Finally, at generation 

11, a feasible path is found, and the local minimum has been 

escaped. Afterwards, the solution quality is gradually im-

proved, meaning the evolution is moving toward another 

minimum. 

B. Robustness 

The path planning in a map via variable-length genetic al-

gorithm should not vary too much despite the variety in initial 

setting of range of gene length. In order to test this robustness 

property for the proposed path planner, map II is chosen to be 

demonstrated with three different setting of range of initial 

gene length as follows: 

S1: 3~4 (small range) 

S2: 4~10 (mediate range) 

S3: 20~30 (wide range, not covering the convergent gene 

length). 

The range setting represents an initial estimate of the 

number of control points used for the initial population. The 
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convergence of average gene length of feasible paths

the evolution is shown in Fig. 10. At earlier generations, the 

gene length is large for exploring locally and globally.  As 

alternative feasible paths are found, they are more likely to be 

selected for crossover to generate another feasible path. Thus, 

the gene length of feasible paths will alternate within a very 

limited numbers. The average of gene length of feasible paths 

will converge to a value that is close to the number of wa

points that most feasible paths will have.  It can be observed 

that the range of initial gene length is not a critical parameter 

but affects diversity and convergent speed of the evolution 

process. The convergent gene length depends only on the map 

feature, thus revealing the robustness. 

By comparison, initialization is crucial for the iterative 

gradient descent method for path optimization task to co

verge to a better solution. This shows the advantage of ev

lutionary path planner. 

C. Crowd Measurement 

As an example, the evolution of crowded factor in Map I is 

shown in Fig. 11, where the effect of spatial fitnes

compared. Noticeably, both evolutions find feasible solutions 

around generation 30. In addition, this illustrates the i

creasing trend of crowded factor during the evolution process. 

As expected, the evolution curve without fitness sharing 

higher crowding factor, or worse diversity. 

 

Fig. 5 G3-continuous path planning and the shortest path

maze-like environment (Map II, 600x600)

length generated is 1273, the minimum one is 1240, and black 

line length is 993 (pixels). 

Fig. 4 G3-continuous path planning and the shortest path

or narrow corridor of varying width(Map I, 600x600).

maximum length generated is 939, the minimum one is 912, and 

black line length is 827 (pixels). 

convergence of average gene length of feasible paths during 
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around generation 30. In addition, this illustrates the in-
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As expected, the evolution curve without fitness sharing has a 

 

 

 

 

Fig. 9  Evolution of costs for Map III

Fig. 8  Evolution of costs for Map II

Fig. 7  Evolution of costs for Map I

Fig. 6 G3-continuous path planning and the shortest path

environment occupied with 24 mixed convex or concave o

stacles ( Map III, 1200x1200). The maximum length generated 

is 2247, the minimum one is 1744, and black line length is 1540 

(pixels). 

 
and the shortest path in a 

like environment (Map II, 600x600). The maximum 

length generated is 1273, the minimum one is 1240, and black 

 
and the shortest path in a channel 

or narrow corridor of varying width(Map I, 600x600). The 

maximum length generated is 939, the minimum one is 912, and 

 

 

 

 

 Evolution of costs for Map III 

Evolution of costs for Map II 

Evolution of costs for Map I 

 
and the shortest path in a cluttered 

environment occupied with 24 mixed convex or concave ob-

The maximum length generated 

is 2247, the minimum one is 1744, and black line length is 1540 
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V. CONCLUSION 

We propose a diversity-enhancing evolutionary path 

planner implementing island parallel genetic algorithm with 

variable-length initial chromosome and the spa-

tial-fitness-sharing technique. The planner could automati-

cally select near-optimal number and locations of interme-

diate nodes of composite η
3
-Spline via evolution to success-

fully generate multiple reasonably good G
3
-continuous colli-

sion-free shorter paths for wheeled mobile robots in a variety 

of potentially complex environments.  The self-adjusting of 

gene length via evolution renders our path planner robust to 

variations in manual setting of the range of initial number of 

waypoints, which is critical for iterative gradient descent 

method for path optimization task, to converge to multiple 

better solutions instead of being stuck at a local minimum.   
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Fig. 11 Crowd Measurement of Map I 
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Fig. 10 Convergence of gene length for Map II 

983


