
 
 

 

  

 
Abstract—In this paper, we propose the design of a robot with 

a snake-like body based on a test environment. We explore the 
abstraction of state-action spaces for reinforcement learning. 
Additionally, we discuss the versatility of the proposed 
mechanism by showing that different tasks can be completed by 
simply changing the reward of the reinforcement learning. 
Finally, we mention the importance of a body design based on an 
environment by considering the concept of ecological niches.  

I. INTRODUCTION 
ecently, robots that are able to adapt and operate in 
unknown environments have attracted a great deal of 

attention. The snake-like robot is one such robot, and there are 
expectations that it will eventually be deployed in real-world 
rescue operations and other similar tasks [1-8].  

To control snake-like robots autonomously, various 
approaches have been proposed. Reinforcement learning is one 
of the more effective candidates because it allows a high 
degree of autonomy and versatility [9-18]. Using this method, 
the robot can learn through trial and error without a supervisor. 
By applying reinforcement-learning methods for robot control, 
the robot can adapt to an unknown environment autonomously.  

Conventional reinforcement learning does have two serious 
drawbacks for practical use. The first drawback is the curse of 
dimensionality [7], and the second drawback is the inability to 
generalize between similar situations and actions. Because of 
the curse of dimensionality, the time required for learning is 
increased exponentially. It often becomes impossible to 
complete the learning process within a reasonable time limit. 
Moreover, if the learning process is completed on time, even 
trivial changes in the environment restart the learning process. 
This results from the inability to generalize acquired learning. 
In order to realize the necessary level of automation that the 
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snake-like robot would require to operate in the real world, we 
have to solve these two problems without losing autonomy or 
versatility.   

In our previous work, to solve these problems, we proposed 
the utilization of real-world properties for abstracting 
state-action spaces. For example, we designed the body of the 
snake-like robot by taking into account the dynamics of the 
real world. We showed the effectiveness of the proposed 
snake-like robot by demonstrating its ability to complete a task 
of going towards a light while avoiding obstacles [15]. 
Unfortunately, the previous experiment was limited to only 
one task, and the versatility of the proposed mechanism was 
not explored.  

In this paper, we discuss the versatility of the proposed 
mechanism by showing that different tasks can be completed 
by simply changing the reward value of the reinforcement 
learning. We also discuss the importance of the robot’s 
environment-based body design using the framework of an 
ecological niche. 

II. CONVENTIONAL WORKS 
In conventional works, various approaches employing the 

previous knowledge of tasks have been proposed in order to 
reduce the learning time. One of the most effective and 
well-known approaches has been to divide a given task into 
smaller tasks and then learn each of these tasks independently. 
This approach is very effective and applicable for practical use, 
only if the task is fixed beforehand. This approach has 
problems with regard to autonomy and versatility; prior 
knowledge of the task is required for dividing the task. Both 
autonomous learning and versatility are lost due to the 
necessity of prior knowledge. 

Our current study is focused on methods that require no 
prior knowledge and that allow a high degree of autonomy and 
versatility. Unfortunately, universal learning algorithms suffer 
from the curse of dimensionality; therefore, the robot’s 
learning process is very time consuming.  

Next, we consider approaches for generalization between 
similar situations and actions. In conventional works, various 
approaches for generalizing state-action spaces are proposed 
[12, 16-18]. Usually, the generalization process is carried out 
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by combining reinforcement learning with other techniques. 
Some of these techniques include the use of neural networks, 
Fuzzy logic, or a stochastic approach. By combining 
techniques, the size of state-action spaces is decreased, and the 
load of reinforcement learning is reduced; however, these 
approaches still have problems.  

On one hand, if we employ a learning algorithm, such as the 
addition of neural networks, greater time is required for 
generalization. As a result, the total learning time, including 
the time taken for reinforcement learning and generalization is 
still too long to be practical.  

On the other hand, if we employ techniques in which a 
designer creates a state-action space by using the prior 
knowledge of a given task, it implies that versatility and 
autonomy are lost for previously stated reasons. Therefore, it is 
difficult to achieve generalization in a reasonable amount of 
time without losing versatility and autonomy. 

III. PROPOSED FRAMEWORK 

A. Importance of design based on environment 
As mentioned in section II, it is difficult to solve the curse of 

dimensionality and the inability to generalize without losing 
versatility and autonomy. However, higher organisms in the 
real world can learn in real time in spite of the fact that they 
learn by trial and error, and acquired policies can be applied 
generally. Using a conventional framework, we cannot explain 
why these organisms can learn general policies within such a 
short time.   

We are forced to consider the fact that the conventional 
framework has two causes that cannot explain the behavior of 
organisms. One is the notion that the learning process can be 
expressed as an algorithm using mathematics. This would 
imply that almost all studies on reinforcement learning would 
belong to the information or software sciences. The other 
notion is that all prior knowledge results in a loss of versatility. 
Certainly, we can observe that employing the prior knowledge 
of tasks causes the loss of versatility; however, we also have to 
consider that employing the prior knowledge of an 
environment does not always cause a loss of versatility. 

Generally, organisms live in various places, and we tend to 
think that they have a universal mechanism for adapting to 
their environment. We tend to try to describe this universal 
learning mechanism independently from the real environment; 
however, if we focus on one species, the environment in which 
the species lives is restricted. The adaptive mechanism of each 
species is dependent on its environment—it is not universal. 
Each species has a body suited to its environment, and it 
adapts itself by utilizing the properties of that environment. In 
biology, this is called an ecological niche. 

Therefore, there is a possibility that higher organisms utilize 
the properties of their environment to improve their learning 

efficiency. Even if a body is dependent on its environment, its 
versatility and autonomy are not lost. This is because an 
organism lives in its environment and can always utilize 
properties of its environment.  

We must consider that the problems caused by the curse of 
dimensionality and the lack of generality could be solved not 
through the improvement of the universal learning algorithm 
but by the improvement of the body so that it can utilize the 
properties of the environment.  

Keeping this in mind, we designed the body of the 
snake-like robot by utilizing the prior knowledge of the 
environment it would be operating in. This will allow the robot 
to utilize the properties of the environment for abstracting 
state-action spaces. The objective of this experiment is to show 
that versatility for different tasks is maintained even if we 
design the robot by utilizing the prior knowledge of the 
environment. 

B. Environment 
Fig. 1 shows an example of the environment used. There is 

one light source that the robot must move towards, and many 
obstacles. The obstacles are wooden sticks, plastic pipes, and 
sponges. The obstacles are placed randomly, and the spaces 
between them are 1.5 times greater than the width of the robot. 
The robot may touch the obstacles, and it can use reactive 
force to move. Some obstacles are not sufficiently fixed in 
place; therefore, they can be moved when sufficient force is 
applied. The amount of force necessary to move these 
obstacles is unknown, and the robot does not have any 
information regarding the environment. The robot does not 
know the positions of the obstacles or which obstacles are 
fixed in place. In addition, the positions of the obstacles are 
changed after the robot has learned them.  

There are many obstacles in the experiment environment, 
and the snake-like robot has many degrees of freedom; 
therefore, the curse of dimensionality is a serious problem. All 
acquired learning should be generally applicable for adapting 
the robot to changes in the environment. 
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Fig. 1 Environment 
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C. Snake-like robot 

 
Fig. 2 Proposed snake-like robot 

 
Fig. 2 shows the snake-like robot we employed in this 

experiment. We have improved our previous robot [15]. This 
robot has the ability to turn in a small radius, and the range of 
the light sensor module is improved. With regard to the 
versatility of the proposed framework, the mechanism for 
abstracting state-action spaces is the same as that in our 
previous paper [15]. Details of the design are provided in the 
subsection below. 

D. Hardware design of body 
We employed the physical properties of the environment 

like a law of motion. Fig. 3 shows the passive mechanism of 
the proposed snake-like robot [15]. We did not use any 
actuators for joints; therefore, all the joints were passive. 
Additionally, we did not employ force sensors for the body or 
angle sensors for the joints. Two wires were embedded in the 
robot, and the length of these wires was controlled by a motor 
embedded into the rear end (Fig. 4). Rubbers that generate 
conservative force were embedded between all the links. The 
head of the robot is an acute-angled triangle, and it has a small 
free wheel attached to the tip to avoid reactive force from 
obstacle. 
 

obstacle

Reactive force

Fixed point Passive jointPassive joint Wire MotorRubber

Tension 

Pulley

Top view

Free wheel

 
Fig. 3 Passive mechanism 
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Fig. 4 Mechanism for pulling wires  

 
Fig. 5 shows that when the robot contacts obstacles, some 

free joints are moved by the reactive force. The affected links 
pull the wire on one side, and the wire pulls the other links to 
compensate for the change in direction of the robot. When the 
robot has avoided the obstacle, the rubber pulls the affected 
links, returning them to their initial straight shape. If more than 
one obstacle hits the body, the resultant force of the reactive 
forces determines which links are moved.  

As a result of the wire constraints and the dynamics of the 
rubbers, the robot moves as shown in Fig. 5. If the length of 
the wires on both sides is equal and the obstacles are set 
uniformly, the expected result is straight movement while 
avoiding the obstacles (Fig. 5 a)). If the length of the wire of 
the left side is shorter than the wire on the right side, the 
expected movement is a turn to the left (Fig. 5 b)).  

 

 
Fig. 5 Expected behavior  

 
The movement of each joint is realized passively in this 

mechanism. Which joint should be moved, and to what extent 
is determined by the dynamics of the real world. The reactive 
force from the obstacles is used directly to move the joints. 
The state of each joint has an effect on the balance of wire 
constraints; therefore, these states are used to control the robot. 
These states do not have to be measured; the necessary 
calculation is processed by the dynamics of the real world. 

The moving direction of the robot is determined by one 
equilibrium point. This point is the difference between the 
lengths of the wires. We can reduce the dimension of state of 
the body to only one by using the difference between the 
lengths of the wires as the state of the body. In this 
experiment, we used the angle of the tail motor, instead of the 
difference between the lengths of the wires as the state of the 
body; the result was the same. 

We can also reduce the dimensions of the action space to 
only one. We define the action as to move the tail motor for 
changing the lengths of the wires.  

 

E. Hardware design for sensing  
We employed many CdS cells, and we used an equilibrium 

point of the output of the CdS cells as the direction. CdS cells 
are electrical cells that convert light intensity to electrical 
resistance. They have directional characteristics, and the front 
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side of a CdS provides the best response. Fig. 6 shows a CdS 
cell, a module of CdS cells, and their layout in the robot. We 
developed one module using 6 CdS cells, as shown in Fig. 6 b), 
and we embedded the module into every link of the robot, as 
shown Fig. 6 c). 

We calculated Equation (1) in parallel using an analog 
electrical circuit, and we used the result as the direction. N is 
the number of links, and x is the direction (0 < x <5). When 
light is put at the front side of the robot, x is 2.5, and if x is 
smaller than 2.5, it implies that the light is on the right side of 
the robot. If x is greater than 1.5, it implies that the light is on 
the left side of the robot. 
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We used x to trigger the reward used in reinforcement 
learning. 
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Fig. 6 Sensing system using CdS cells 

IV. EXPERIMENT 

A. Task 
We created a task that uses a light source as a goal. We 

placed the light source at the center of the environment.  

B. Setting of Q-learning 
We used the example of typical Q-learning [10] for 

reinforcement. We did not modify the algorithm, because the 
aim of this experiment was not to improve learning algorithms, 
but to discuss the versatility of the proposed mechanism. 
Equation (2) shows Q-learning. 

 
)2()},(max),({),()1(),( asQasrasQasQ

a
′′++−←

′
γαα  

s: state, a: action, r: reward, : learning rate, : discount rate 
 
We set α  as 0.2 and γ  as 0.5. Action is selected using 

the ε -greedy method, and the probability of random selection 
is 0.1. The duration of one trial was 50 s, and calculations were 
performed using Equation (2) every 2.5 s. 

Table 1 shows the state of the light direction. The resulting 
values are the outputs of Equation (1). Table 2 shows the state 
of the body. These values represent the angle of the tail motor. 
As shown in Tables 1 and 2, the number of dimension of the 

state space is two, and the total number of states is 35.  
Table 3 lists the actions executed by the robot. The actions 

consisted of turning the tail motor, which pulled the wires. 
 

TABLE I 
STATE OF THE LIGHT DIRECTION S 

state direction

0 [0, 1.19]
1 (1.19, 1.45]
2 (1.45, 2.05]
3 (2.05, 2.95]
4 (2.95, 3.55]
5 (3.55, 3.80]
6 (3.80, 5]  

 
TABLE II 

SATE OF THE BODY 

state 0 1 2 3 4

angel [deg] -50 -25 0 25 50  
 

TABLE III 
ACTION 

action motion
0 turn tail motor -25 degree
1 hold tail motor
2 turn tail motor+25 degree  

 
When the state of the light direction was 1 and the state of 

the body was 1, r = 100 was given as a reward. When the state 
of the light direction was 3, 4, 5, 6, or the light went out of the 
observable range, r = –100 was given as a penalty. The trial 
was then be halted, and the next trial started from the initial 
position. 

C. Experiment 
We conducted 50 trials using the environment shown in Fig. 

7, and we applied acquired policies for the environment shown 
in Fig. 8. In Figs. 7 and 8, the broken line is an auxiliary line 
that expresses a circle; the robot cannot see the line. 

 
Fig. 7 Environment for learning 

 

 
Fig. 8 Environment with obstacles 
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Fig. 9 shows acquired behavior and Fig. 10 shows the 

realized behavior using the acquired policy.  
We found that the behavior of the robot revolving around 

the light was acquired in real time, and the learned behavior 
was generally applicable in a different environment. In 
particular, the results showed that the acquired policy from the 
simple environment was applicable to the complex 
environment, which is a very promising outcome.  
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Fig. 9 Acquired behavior 

 

t=0

t=20

t=40

t=80

t=60

t=100

t=120

t=134

t=0

t=20

t=40

t=80

t=60

t=100

t=120

t=134  
Fig. 10 Realized behavior using acquired policies 

V. DISCUSSION 
First, we confirmed that the curse of dimensionality has 

been solved for our purposes. In the proposed mechanism, the 
size of dimension of the state space is only two and that of the 
action space is only one, though the snake-like robot has 6 
links and there are many obstacles in the environment. We 
found that the size of the state-action space is significantly 
reduced, and the curse of dimensionality is overcome. The 
learning process of the experiment was conducted by a real 
robot, and it was completed in an acceptable time.  
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Fig. 11 State transition graph in an environment without obstacles 
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Fig. 12 State transition graph in an environment with obstacles 

 
Fig. 11 shows the state transition graph of Fig. 9, and Fig. 

12 shows state transition graph of Fig. 10. From these figures, 
we can observe that the state transition in both the graphs is 
very similar. This implies that a learning machine using 
Q-learning can adapt to different environments as if they were 
a similar environment, because of the functionality of the 
machine’s body. A learning machine can apply acquired 
knowledge to different environments. In other words, by using 
the universal properties of the environment, the body of the 
robot can generalize changes of that environment. Therefore, 
we can confirm that the inability to generally apply learned 
principles is solved by the proposed mechanism.  

Fig. 13 shows behavior going towards a light source that 
was acquired in our previous paper [15]. In that case, a reward 
was given when the light was on the front side of the robot. 
We found that by changing the reward, different behaviors 
were acquired. When designing the body of the proposed 
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mechanism, we utilized this prior knowledge. It is important to 
differentiate that the knowledge used was not knowledge of 
the task, but knowledge of the environment. This body can be 
applied to many different tasks, as long as the environment has 
similar properties to the one used in this experiment. That fact 
effectively demonstrates the versatility of the proposed robot. 

 

No.1

No. 2

No. 3

No. 4

No. 5

No. 6  
Fig. 13 Behavior going towards a light source 

 
We can conclude that by designing the body around the 

properties of an environment, we can abstract state-action 
spaces. As a result, the problems of the curse of dimensionality 
and the inability to generally apply learned knowledge can be 
solved without losing versatility. 

The important role of a designer must be considered when 
developing an autonomous robot controlled by reinforcement 
learning. The designer must assess what the universal and 
changeable properties of an environment are and understand 
how to implement these factors in the design of a mechanized 
body. These design considerations are what allow for the 
generalization between similar situations and actions.  

VI. CONCLUSION 
In this study, we explored the autonomous control of a 

snake-like robot that learns through reinforcement. We 
observed that the hardware design must take the environment 
into account. The universal properties of the environment 
allow the robot to generalize between similar actions and 
situations. 

To demonstrate the validity of the proposed framework, an 
experiment was conducted, and we confirmed that by 
designing the body for utilizing the properties of the 
environment, we can abstract state-action space. As a result, 
the problems of the curse of dimensionality and the inability to 

generalize between similar situations and actions can be solved 
without losing versatility. 

Our future efforts will focus on applying the proposed 
framework to more complex environments, such as a 
rubble-strewn rescue operation.  

REFERENCES 
[1] Masayuki Arai, Toshio Takayama, Shigeo Hirose, Development of 

Souryu-III :Connected Crawler Vehicle for Inspection inside Narrow and 
Winding Spaces, Proc. of Int. Conf. Intelligent Robots and Systems, pp. 
52-57, 2004 

[2] K. L. Paap, T. Christaller, and F. Kirchner, A robot snake to inspect 
broken buildings, in Proc. of Int. Conf. Intelligent Robots and Systems, 
pp. 2079-2082, 2000. 

[3] A. Wolf, H.B. Brown, R. Casciola, A. Costa, M. Schwerin, E. Shamas, 
H. Choset, A mobile hyper redundant mechanism for search and rescue 
tasks, in Proc. of Int. Conf. Intelligent Robots and Systems, pp. 
2889-2895, 2003 

[4] Tetsushi Kamegawa, Tatsuhiro Yamas, Hiroki Igarashit and Fumitoshi 
Matsuno, Development of The Snake-like Rescue Robot "KOHGA", 
Proc. of the 2004 IEEE International Conference on Robotlcs & 
Automation, pp. 5081-5086, 2004. 

[5] Hiroya Yamada, Makoto Mori and Shigeo Hirose, Stabilization of the 
head of an undulating snake-like robot, Proc. of the 2007 International 
Conference on Intelligent Robots and Systems, pp.3566-3571, 2007. 

[6] K. Ito and Y. Fukumori, Autonomous control of a snake-like robot 
utilizing passive mechanism, Proceedings of the 2006 IEEE International 
Conference on Robotics and Automation, pp. 381-386, 2006. 

[7] K. Ito, T. Kamegawa, F. Matsuno, Extended QDSEGA for Controlling 
Real Robots -Acquisition of Locomotion Patterns for Snake-like Robot-, 
Proc. of IEEE Int. Conf. on Robotics and Automation, pp 791-796, Sep. 
14-19, 2003 

[8] R. Murai, K. Ito, Fumitoshi Matsuno, An intuitive human-robot interface 
for rescue operation of a 3D snake robot, Proc. of 12th IASTED Int. 
Conf. on Robotics and Applications, pp. 138-143, 2006 

[9] R. S. Sutton. Reinforcement Learning: An Introduction. The MIT Press, 
1988. 

[10] C.J.H. Watkins and P. Dayan, Technical note Q-learning, Machine 
learning 8, pp.279-292, 1992. 

[11] K. Doya, H. Kimura, and M. Kawato. Neural mechanisms of learning 
and control. IEEE Control Systems Magazine, 21(4):42–44, 2001 

[12] H. Kimura, T. Yamashita, and S.Kobaysahi. Reinforcement learning of 
walking behavior for a four-legged robot. In Proc. of 40th IEEE 
Conference on Decision and Control, pp 411–416, 2001. 

[13] Eiji Uchibe, Minoru Asada, and Koh Hosoda, Behavior Coordination for 
a Mobile Robot Using Modular Reinforcement Learning, Proc. of 
IEEE/RSJ International Conference on Intelligent Robots and Systems, 
pp.1329-1336, 1996. 

[14] K. Ito, F. Matsuno, Reinforcement Learning for Redundant Robot 
-Solution of state explosion problem in real world-, Proc. of ROBIO'05 
Workshop on Biomimetic Robotics and Biomimetic Control, pp. 36-41, 
2005. 

[15] K. Ito, Y. Fukumori, A. Takayama, Autonomous control of real 
snake-like robot using reinforcement learning -abstraction of state-action 
space using properties of real world-, Proc. of the International 
Conference on Intelligent Sensors, Sensor Networks and Information 
Processing, pp.389-394, 2007. 

[16] D. Gu and H. Hu, Reinforcement learning of fuzzy logic controller for 
quadruped walking robots, Proceedings of 15th IFAC World Congress, 
Barcelona, Spain, July 21-26, 2002. 

[17] C. Anderson and Z. Hong. Reinforcement Learning with Modular Neural 
Networks for Control. Proceedings of NNACIP'94, the IEEE 
International Workshop on Neural Networks Applied to Control and 
Image Processing, 1994. 

[18] A. Likas, Reinforcement Learning Using the Stochastic Fuzzy Min-Max 
Neural Network, Neural Processing Letters 13, 213-220, 2001. 

2627


