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Abstract— This paper presents an approach to time-optimal
kinodynamic motion planning for a mobile robot. A global
path planner is used to generate collision-free straight-line
paths from the robot’s position to a given goal location.
With waypoints of this path, an initial trajectory is generated
which defines the planned position of the robot over time. A
velocity profile is computed that accounts for constraints on
the velocity and acceleration of the robot. The trajectory is
refined to minimize the time needed for traversal by an any-time
optimization algorithm. An error-feedback controller generates
motor commands to execute the planned trajectory. Quintic
Bézier splines are used to allow for curvature-continuous joins
of trajectory segments, which enables the system to replan tra-
jectories in order to react to unmapped obstacles. Experiments
on real robots are presented that show our system’s capabilities
of smooth, precise, and predictive motion.

I. INTRODUCTION

Motion planning is a fundamental task for wheeled mobile

robots. It consists of planning a path from the robot’s

position to a given goal location using a representation of the

environment, and computing motion commands that make

the robot platform follow this path [1]. Most traditional

motion planning systems use a global path planner like A*

or its descendants, e.g., [2], [3], [4], which find the shortest

path on a 2D grid or graph that represents the traversable

space. These paths typically contain sharp corners and can

only be accurately followed by stopping and turning on the

spot, which significantly increases the time of travel.

The generation of actual motor commands is therefore

often carried out by reactive systems [5], [6], [7]. These

consider the vector to the next one or two waypoints in

the planned path and the distance to obstacles perceived by

the robot’s sensors. The Dynamic Window [8] additionally

considers the platform’s kinodynamic constraints. All of

these approaches have in common that the robot deliberately

deviates from the planned path to drive smooth curves, which

leads to faster progress towards the goal location.

The downside of this solution is, that (a) optimality prop-

erties of the straight line path do not apply to the resulting

continuous trajectory and no time of travel optimality is

achieved, (b) the shape of the path, e.g., how much corners

are cut, depends on parameter settings rather than optimiza-

tion or search, (c) velocities and accelerations are not planned

in advance but subject to reactive behavior, which prevents

accurate motion prediction and makes satisfaction of hard

constraints difficult, and (d) no guarantees can be made for

the control stability or convergence behavior of the system.
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Fig. 1. Trajectory before (left) and after (right) optimization, generated
with sparse waypoints taken from a straight-line path (dashed). Tangents at
inner waypoints are depicted by red lines. Trajectories are shown in blue
on the distance map, where darker values are closer to obstacles.
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Fig. 2. System overview. A global path planner generates sparse waypoints,
from which an initial trajectory is created. The optimization reduces the time
needed for traversal. It checks the trajectories for collisions using a map and
self-localization. An error-feedback controller executes the final trajectory.
It uses odometry data to assess its deviation from the path.

Robots like autonomous cars, wheelchairs, autonomous

transport vehicles, and other service robots can carry heavy

or sensitive payload, necessitate precise motion, or might be

required to show predictive behavior and therefore demand

solutions to the above-mentioned problems.
This paper presents an approach to time-optimal kinody-

namic motion planning. It generates a parametric curve from

sparse waypoints that is augmented with a velocity profile

to control the robot’s position in space over time. This curve

is optimized to yield a smooth and time-optimal trajectory

that complies with kinodynamic constraints of the robot, as

shown in Fig. 1. An error-feedback controller is used to steer

the robot along the trajectory. In this way, our approach

addresses all the problems mentioned above. A schematic

overview of the system is given in Fig. 2.
The remainder of the paper is organized as follows. After

a discussion of related work, Sect. III introduces quintic

Bézier splines and the employed velocity profiles. Then,

Sect. IV describes the generation and optimization of the

initial trajectory. In Sect. VI we present experimental results,

and finally conclude the paper in Sect. VII.

II. RELATED WORK

The problem of time-optimal kinodynamic motion plan-
ning was first posed by Donald et al. as to determine the
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motor commands that guide a robot from start to goal

on a collision-free path in minimal time while respecting

kinodynamic constraints [9]. Stachniss and Burgard included

discretized translational and rotational velocities into a five-

dimensional A* search, which returns a series of velocity

commands to be issued in discrete time intervals [10].

Deviations from the trajectory are handled by frequently

executing the global path planner, which generates a new

trajectory for the current position.

Planned trajectories can be precisely tracked using an

error-feedback controller, which runs in a control loop that

does not alter the trajectory. As input, a trajectory representa-

tion is desired that continuously defines position, velocities,

and accelerations over time. To this end, some authors have

used cubic Bézier splines [11], [12]. Howard and Kelly pro-

posed spline interpolation of velocity commands to generate

such trajectories [13]. Likhachev and Ferguson perform a

search on a discrete set of these action primitives to obtain a

smooth trajectory for an autonomous car [14]. So far, all of

these approaches have in common that the generated curves

represent continuous position changes, but are not continuous

in curvature, which induces abrupt rotational accelerations.

In [14] this problem is acknowledged and alleviated by

limiting the car’s velocity to 2 m/s at high curvatures.

Gulati and Kuipers emphasize the need for smooth and

comfortable motion when transporting people, and propose

the use of cubic B-Splines [15], as also done by Shiller and

Gwo [16]. While cubic B-splines can indeed be curvature

continuous from start to end, local changes affect the shape

of up to six neighboring segments, and therefore it is not

practically feasible to attach or replace a segment of an

existing trajectory with curvature continuity at an arbitrary

point of the spline. To achieve this, we propose to use

quintic Bézier splines, which are curvature continuous and

additionally allow for attaching segments without curvature

discontinuities. In this way, trajectories can be changed on

the fly in order to react to sudden changes, for example in

the presence of dynamic obstacles.

In contrast to approaches that perform a search on a dis-

cretized action set like [14], [17], [18], Connors and Elkaim

propose to perform optimization of parameterized trajectories

[19]. Their system starts with straight-line segments and

iteratively moves control points, aiming for a smooth and

collision-free trajectory, which is however not guaranteed

to be achievable. Our approach also employs optimization

to obtain fast and smooth motion, but starts from an initial

straight-line path that is collision-free. Thus, it has any-time

characteristics, i.e., it can be interrupted at any point in time

to retrieve a collision-free solution.

Most of the existing approaches determine just the shape

of the planned trajectory by search or optimization, but rely

on local heuristics to set the translational velocities [12],

[14], [15], [18], [19]. However, in order to determine truly

time-optimal trajectories, the admissible velocities governed

by constraints on velocities and accelerations have to be

considered. In the work by Macek et al. [17] and Stachniss

and Burgard [10], the velocity is part of the search, but the

systems are limited to a discretized action space. Shiller

and Gwo [16] consider a curve that defines the shape of

the trajectory, and generate a corresponding velocity profile

that considers constraints on the translational velocity and

acceleration for an Ackermann drive.

Our system is similar to this approach, but adds the

capability of curvature continuous replanning. During op-

timization, it considers constraints on translational and ro-

tational velocities and accelerations. Furthermore, the maxi-

mum allowed centripetal acceleration and a speed limit in the

vicinity of obstacles are considered. In this way it generates

space-time trajectories that are time-optimal and traversable.

III. REPRESENTATION OF TRAJECTORIES

We consider the trajectory 〈x, y〉 = Q̂(t) of a robot as

its position on the ground in world coordinates over time.

Similar to previous approaches [13], [16], we represent the

shape and the planned translational velocity of the robot

independently. The shape of the trajectory is defined by a

parametric curve Q(u). Its non-linear internal parameter u is

mapped to the metric distance s along the path via numerical

arc-length parameterization, s = fs(u). The translational

velocity of the robot as a function of s is represented by a

velocity profile v(s). Integrating the velocity profile creates a

mapping from distance s to time, t = ft(s) =
∫ s

0
1/v(S)dS.

Chaining and inverting these mappings finally yields the

trajectory, Q̂(t) = Q(f−1
s (f−1

t (t))).

A. Quintic Bézier splines as parametric curves

The curve Q(u) defines the 2D shape of the trajectory. It

consists of NQ joined segments Qi(ui), i∈ [0, NQ−1]. While

ui ∈ [0, 1] parameterizes the i-th segment from its start to

end, the variable u ∈ [0, NQ] is the internal parameter of

the whole curve and results from chaining the ui. Thus, the

trajectory can be denoted by Q(u) = Q�u�(u− �u�), where

�u� is the truncation of u to the next smaller integer.

To achieve smooth motion, the curvature c(u) of the curve

Q(u) is required to be continuous. It is given by

c(u) =
(
Q′

x(u)Q′′
y(u) − Q′

y(u)Q′′
x(u)

)
/‖Q′(u)‖3 . (1)

We obtain continuous curvature over the entire curve by

joining the segments with C2 continuity, i.e., the curve

itself, its first derivative Q′(u) and second derivative Q′′(u)
are continuous. To this end, the starting waypoint Wi+1 of

segment Qi+1 is also the end point of the previous segment

i, thus Wi+1 = Qi+1(0) = Qi(1). The same holds for the

starting tangent (first derivative) Ti+1 = Q′
i+1(0) = Q′

i(1),
and the second derivative Ai+1 = Q′′

i+1(0) = Q′′
i (1), for

i∈{0, . . . , NQ − 1}. The widely used cubic B-splines fulfill

the property of (a) C2 continuity and (b) locality, i.e., moving

a control point only affects a few neighboring segments.

However, they do not have another property required for

effective motion planning at the same time, namely (c)
control point interpolation, i.e., the curve passes through the

start and end control point of a segment. This constraint is

met by cubic Bézier curves and Catmull-Rom splines, but

they cannot be C2 continuous and local at the same time.
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Fig. 3. Left: Two splines, one is composed of two cubic Bézier spline
segments (red) that are joined with C1 continuity at Wi, and the other
of two quintic Bézier spline segments (black), that are joined with C2

continuity at Wi using a heuristic for the second derivatives (see text). The
tangent Ti (blue) is orthogonal to the bisector of angle α (dashed blue) in
both cases. Right: Curvature c of the curves shown left. The cubic spline
(red) has discontinuous curvature, while the quintic spline (black) does not.

To smoothly join two curve segments, e.g., when modi-

fying an existing trajectory to react to sudden changes, we

furthermore require (d) the possibility of locally choosing the

second derivative at the ends of a curve. With polynomials,

all of the properties (a)–(d) can be fulfilled simultaneously

only for degree five and higher. Non-polynomial curve types,

like Clothoid splines, are much more complicated to position

in space, and to our knowledge no solution exists to smoothly

join two Clothoid splines at arbitrary points of the curve.

Therefore, we choose quintic Bézier splines as means of

curve representation, which are derived from fifth-degree

Bernstein polynomials:

Qi(ui)=(1−ui)5Pi,0+5(1−ui)4uiPi,1+10(1−ui)3u2
i Pi,2

+ 10(1−ui)2u3
i Pi,3 + 5(1−ui)u4

i Pi,4 + u5
i Pi,5,

where Pi,0 to Pi,5 are the six points that control the curve’s

shape. By computing Q(ui), Q′
i(ui) and Q′′

i (ui) at the start

(ui =0) and end (ui =1) of a segment one can see that Pi,0

and Pi,5 are the start/end points of the i-th segment, and thus

Pi,0 := Wi, and Pi,5 := Wi+1. Furthermore, Pi,1 and Pi,4

are determined by the tangents Ti and Ti+1 at the start and

end of the segment, and equivalently, Pi,2 and Pi,3 are set

using the second derivatives Ai and Ai+1:

Pi,1 := Wi + 1
5Ti, Pi,4 := Wi+1 − 1

5Ti+1,

Pi,2 := 1
20Ai+2Pi,1−Wi, Pi,3 := 1

20Ai+1+2Pi,4−Wi+1

The orientation of T0, the start tangent of the trajectory, is

equal to the orientation θ of the robot at the start position W0.

The other tangents depend on the straight lines connecting

the waypoints Wi. The tangent at the end of the curve points

in the direction of the last line segment. The orientation

of the tangents at the inner waypoints is determined using

a heuristic commonly used for cubic Bézier curves [20],

which sets the angle of the tangent Ti at a waypoint Wi

perpendicular to the angular bisector of the neighboring line

segments, as shown in Fig. 3 (left). The magnitude ‖Ti‖ of

the tangent is set to half the Euclidean distance to the closest

neighboring waypoint, multiplied with a scalar elongation

factor ei, which will be varied during optimization, see

Sect. IV-B.

We aim to set the second derivatives Ai at a waypoint

Wi to values that generate smooth curves. Cubic splines

minimize the integral of the second derivative’s absolute

value [21], which in general corresponds to small changes in

curvature. This motivates our heuristic, which tries to mimic

the behavior of cubic splines while meeting the additional

requirements mentioned above. Given the waypoints and

tangents, cubic Bézier splines are readily defined for both

neighboring segments, and we use a weighted mean of their

second derivatives at the join point as the second derivatives

of the quintic Bézier spline. The weight is anti-proportional

to the normalized length of the joining line segments. Thus,

the shape of the joined quintic Bézier spline is similar to the

joined cubic Bézier spline, but does not have the curvature

discontinuity at the join point Wi.

During optimization, the position of the waypoints Wi and

the elongation ei of the tangents are adjusted. The tangents’

orientation and the second derivatives are determined by the

above heuristics.

B. Velocity profile with piecewise constant accelerations

The velocity profile v(s) is a piecewise linear function,

which relates to piecewise constant translational accelera-

tions. Its support points ŝk are closely spaced at distances

<1 cm. Each vk =v(ŝk) is set to the maximum velocity that

is both allowed and feasible, given a curve Q(u), and a set

of kinodynamic constraints. As shown in Fig. 4, the profile

is computed in three phases to respect these constraints.
1) Isolated constraints: In the first phase (Fig. 4 left),

the maximum admissible velocity vk is computed for each

support ŝk independently from the other vj , j �= k. It

is determined as the maximum velocity that satisfies all

imposed constraints described in the following. Without

loss of generality, we assume the robot to perform forward

motion, i.e., vk ≥ 0. Let vmax be the (constant) maximum
translational velocity of the robot, then vk≤vmax is required.

If the maximum rotational velocity ωmax is limited, then

vk ≤ ωmax/|ck| has to hold, with ck being the trajectory’s

curvature at point ŝk. Note that for robots equipped with a

differential drive or Mecanum wheels, the limit can also be

set as a function of curvature and maximum wheel velocity.

To ensure safe motion in the presence of obstacles, the sum

of braking distance and traveled distance during the reaction

time treact of the system has to be smaller than the distance
dobst to the closest obstacle, which leads to the constraint

vk ≤ −abraketreact +
√

a2
braket

2
react + 2abrakedobst , (2)

where abrake is the maximum deceleration when braking.

Note that this is conservative, a more complex formulation

could account for the robot’s direction of motion with

respect to the obstacle. Furthermore, to avoid skidding of the

vehicle or load damage in curves, the maximum centripetal
acceleration acent can be limited with vk≤

√
acent/|ck|.

2) Acceleration constraints: In addition to the isolated

constraints described above, vk is also limited by the con-

straints on vk−1 and vk+1 in connection with the maximum
translational acceleration atrans and the maximum rotational
acceleration arot of the robot. Furthermore, the start velocity

v0 is given and fixed, e.g., v0 =0 if the trajectory is planned

for the initially standing robot, and possibly the terminal
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Fig. 4. Velocity profile generation in three phases. Black points denote the admissible velocities v at the supports points. Bigger gray dots mark values
inherited from the previous phase. Left: The maximum translational velocity v that meets all isolated constraints is computed independently for each
support. Middle: In the second phase, the profile is made consistent for increasing s, given a start velocity and acceleration constraints (red arrows). Right:
The third phase adds consistency for decreasing s for a given end velocity and deceleration constraints (blue arrows), and yields the final profile (dashed).

velocity as well. In the second phase with increasing k and

the third phase with decreasing k (middle and right in Fig. 4),

the velocity vk is set to the maximum value that fulfills the

constraints imposed by atrans and arot,

vk−1 − atransΔt ≤ vk ≤ vk−1 + atransΔt, (3)

vk−1ck−1 − arotΔt ≤ vkck ≤ vk−1ck−1 + arotΔt, (4)

where Δt is the travel time needed for the distance between

the supports ŝk−1 and ŝk. If the acceleration and deceleration

constraints are not the same, different values have to be used

for atrans in these two phases, aaccel and abrake, respectively.

Only for synchro-drive robots, atrans and arot are totally

independent. However, since the mass m of platform and

payload governs these limits via translational inertia and

rotational moment of inertia, it is reasonable to assume atrans

and arot to be independent for other platforms as well.

The upper bound for the vk that satisfy both of the above

constraints can be determined in closed form. However, the

mathematical derivations are quite elaborate since it is a

complex function of velocity, acceleration, curvature and

curvature change. For the sake of brevity we would like to

refer the reader to the work by Sprunk [22] for details.

After the third phase, the velocity profile realizes piece-

wise constant accelerations, meets all described velocity

and acceleration constraints, and is therefore traversable by

the robot. With monotonous curvature changes between the

closely spaced support points, the constraints hold at the

support points and in the intervals between them as well.

If the velocity profile was defined over time instead of

distances, changing velocities would imply changes of the

support points, which clearly complicates the process.

IV. MOTION PLANNING AND OPTIMIZATION

This section describes the generation and optimization

of a trajectory. In short, an initial trajectory is generated

from sparse waypoints given by a global path planner. The

trajectory is refined to minimize the traveling time until a)

the optimum is reached or b) planning time is up.

A. Global planning and trajectory generation

We use a global path planner [2] that operates on a high-

resolution 2D grid map. To account for unmapped obstacles,

the map is regularly updated with data acquired with a laser

range finder. The planner returns the shortest traversable

path from the robot’s position to a given goal location as

a straight-line trajectory, where each segment connects two

neighboring grid cells in the grid map. This trajectory is

collision-free, but contains sharp discontinuous corners. It

is pruned to contain only sparse waypoints by replacing

0
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Fig. 5. Velocity profiles for the trajectories in Fig. 1 before (left) and
after (right) optimization. The translational velocity v(s) is a function of
distance s along the trajectory. It is limited by several isolated constraints:
a general speed limit (vmax), the maximum rotational velocity (green),
closeness to obstacles (red), and a limited centripetal acceleration (similar
to the green curve, omitted for readability). The constraints on translational
and rotational acceleration control the slopes in the resulting profile.

two adjacent line segments with a direct straight line, if

the resulting line trajectory is still free of collisions and the

resulting segment is shorter than a maximum length.

Because of the sparsity of the waypoints after pruning, the

line trajectory segments after the first four waypoints (includ-

ing the start) are usually out of the robot’s field of view in

most cases, cf. Fig. 1. In order not to spend computational

time on motion planning for areas where unmapped obstacles

cannot be perceived and correctly accounted for, we only use

the first four waypoints for trajectory generation.

Between each pair of consecutive waypoints, a quintic

Bézier spline is created. The initial tangents and the second

derivatives are determined by heuristics (see Sect. III-A). To

mimic the straight-line trajectory given by the waypoints, a

small tangent elongation factor e=0.5 is used (see Sect. III-

A), which causes sharp turns at the waypoints. The result is

an initial trajectory consisting of three continuously joined

spline segments, that can only be traversed at very low

speeds, but is collision-free on the other hand, as shown in

Fig. 1 (left). This trajectory is refined during the optimization

process to minimize the estimated time of travel.

B. Trajectory refinement by optimization

The optimization system takes an initial trajectory (gener-

ated as described above) and a distance-transformed map as

input. The map contains obstacles that are known a-priori,

as well as previously unmapped obstacles that are detected

by the robot’s sensors.

The optimization changes the shape of the trajectory to

reduce a given cost measure by adjusting a set P of tunable

parameters. In our experiments, we use the overall time of

travel as the only cost measure, but other costs like the

estimated energy consumption could be considered as well.

The parameter set consists of the tangent elongation factor e
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Algorithm 1 Trajectory optimization based on RPROP.

Q̂best ← initial trajectory

P ← parameters of initial trajectory

repeat
Δterm ← 0
for all p ∈ P do

Q̂curr ← Q̂best

dp ← d0
p

repeat
Q̂mod ← MOD(Q̂curr, p ← p+dp)
if cost(Q̂mod) < cost(Q̂best) then

Δterm←max(Δterm, cost(Q̂best)−cost(Q̂mod))
Q̂best ← Q̂mod

break

end if

dp ←
{

dp · 1.2 cost(Q̂mod) < cost(Q̂curr),
−dp · 0.5 else.

Δcost ← |cost(Q̂mod) − cost(Q̂curr)|
Q̂curr ← Q̂mod

until Δcost < εp OR time is up

end for
until Δterm < εterm OR time is up

return Q̂best

for the first and each of the inner waypoints, as well as the

position Wi of the inner waypoints (start and end are fixed).

Fig. 5 depicts the velocity profiles for the trajectories

shown in Fig. 1. Optimization alters the shape of the trajec-

tory in a way that alleviates the influence of the constraints

on the admissible velocity: the optimized trajectory is faster

due to less sharp curves and larger distances from the wall

(elongated tangents), and shorter as well (moved waypoints).

The cost function, i.e., the total time of travel, depends on

the trajectory shape together with the velocity profile, which

depends on several constraints and the obstacle distance map.

This complex function is not differentiable, therefore we

use an optimization scheme inspired by the derivative-free

RPROP algorithm by Riedmiller and Braun [23].

The optimization algorithm, shown in Algorithm 1, refines

a trajectory as follows: in every iteration, as long as planning

time is left and the optimization of any of the parameters in

the last iteration has brought an improvement bigger than a

threshold εterm, the parameters are optimized successively:

for a chosen parameter p ∈ P a new spline is computed by

adding an initial offset dp :=d0
p to that parameter.

Now a velocity profile is generated for the modified spline,

as described in Sect. III-B. The spline and the velocity

profile together form the modified trajectory Q̂mod. From

this, the cost, i.e., the time needed to traverse the trajectory

is determined. If the trajectory is not collision-free according

to the obstacle map, its cost is set to infinity.

If this cost is lower than the cost of the current best

trajectory Q̂best, the changed parameter p :=p+dp is kept, and

the next parameter is optimized. Otherwise, the parameter p
is further optimized with adaptive step sizes as in RPROP:

the offset dp is increased to 1.2dp if the cost is reduced, and

inverted/reduced to −0.5dp if increased. The optimization

for that parameter terminates if a modified trajectory is better

than the best one, the resulting changes in cost are smaller

than a threshold εp or planning time is up.

The trajectories generated by our approach are time-

optimal in the mentioned search space, i.e., parameterized

smooth trajectories that are derived from the pruned shortest

2D path. To also consider trajectories that follow a different

route, the algorithm can be run in parallel with different

straight-line path inputs, e.g., the n-best paths that are

topologically different with respect to obstacles.

V. PLAN EXECUTION AND REPLANNING

Assume a planned trajectory Q̂(t), which defines the

targeted robot position at time step t. We use the dynamic
feedback linearization controller developed by Oriolo et
al. [24] to steer the robot along the trajectory. The second

derivative Q̂′′(t) of the trajectory is the targeted vector of

accelerations in Cartesian coordinates, which the controller

uses as feedforward control signal. The deviation of the

robot’s actual position and velocity from the targeted position

Q̂(t) and velocity Q̂′(t) are used as error-feedback signals.

The controller combines these signals, and computes the

appropriate translational and rotational velocities v and ω
that are sent to the robot platform. The reaction time of the

platform can be compensated for by adding an offset to t
when determining the feedforward input.

As mentioned in Sect. IV-A, the trajectory Q̂(t) only

accounts for the first four waypoints and needs to be extended

regularly. Periodic replanning is also required to prevent

accumulation of odometry errors and to react to changes

in the environment. Therefore, the following procedure is

executed repeatedly: waypoints of the straight-line path from

the predicted robot position Q̂(t+tplan) to the goal location

are computed by the global planner, where tplan is the

scheduled time span for planning and optimization. A new

initial trajectory is generated from these waypoints, that

continuously joins Q̂ at t+ tplan, i.e., the splines join with

continuous curvature, and the velocity profiles are continuous

as well. This trajectory is optimized until t+tplan is reached,

then the controller switches seamlessly to the new trajectory.

VI. EXPERIMENTS

To test the precision and predictability of motion tra-

jectories planned by our system, we conduct several ex-

periments using a real robot. Additional properties, namely

the appropriateness of the optimization parameter set, the

resulting shape of the optimization manifold, and the reaction

to localization errors are tested using a simulator.

A. Analyzing the optimization manifold

Just as RPROP, our optimization algorithm is able to deal

with local minima to some extent. However, an ill-natured

optimization manifold could cause suboptimal results. To

assess this problem, we have created seven artificially com-

plex environments, and compared trajectories optimized by

our system with the best trajectories found by exhaustive
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Fig. 6. Trajectory of a Pioneer P3-DX robot overlayed on a grid map for
the obstacle courses “clover” (left) and “zigzag” (right). The crosses mark
intermediate goal locations. The robot drove 10 rounds in the clover course,
and 5 rounds in the zigzag course. The frames cover an area of 14m x 10m.
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Fig. 7. Left: Average Euclidean distance between the planned and actual
values for position and translational velocity of the robot in the obstacle
courses shown in Fig. 6. The errorbars show the standard deviation. Right:
Average Euclidean distance between the predicted and the actual position
of the robot, as a function of the temporal lookahead added to the planning
delay tplan. In the dashed parts, less than 20 values contributed to the mean.

search in a finely discretized version of the parameter space.

In all cases, the parameters of the trajectory generated by

our optimization approach fall into the discretization bin of

the parameters determined by the exhaustive search, and the

trajectories yield the same time of travel.

In analysis, all pairs of parameters showed smooth and

convex optimization manifolds, which supports the assump-

tion that the parameters may be optimized independently.

Usually, the optimization achieves the major improve-

ments in the first 50 iterations, and 300 iterations are suffi-

cient to reach the optimum. We choose tplan =0.4 s for our

experiments, which roughly corresponds to 400 iterations.

On average, the optimization reduces the estimated traveling

time by 31% compared to the initial trajectory.

B. Motion planning in obstacle courses

This experiment tests the precision and predictiveness of

our motion planning system. We use a Pioneer P3-DX robot

equipped with a subnotebook (Intel Core 2 Duo, 1.6 GHz)

for all computations and a laser range finder for localization

and obstacle detection. The robot drives with a velocity limit

of 0.5 m/s. The error-feedback controller, the laser scanner

and the odometry are all running at 35 Hz. We have set up

two obstacle courses and marked a sequence of goals for the

global path planner in the map. The path planner switches to

the next goal whenever the robot has come closer than 1 m.

The trajectories of the robot are shown in Fig. 6. While

the goal locations for the global path planner are fixed,

replanning is executed periodically and the locations used

for trajectory planning are not spatially aligned. Thus, the

positions of pruned waypoints, which are input to the tra-

(1)

(2)(3)

(3)

Fig. 8. Sample trajectory of our tour-guide robot “Albert” at a trade show.
One person was blocking the robot’s path on purpose for a longer period
(1). However, the motion planning system plans smooth trajectories around
unmapped obstacles if seen in advance (2), but can also execute sharp turns
if required, i.e., if an obstacle suddenly occurs in front of the robot (3). The
frame covers an area of 33m x 15m.

jectory planner, vary between the rounds. Nevertheless, the

trajectories from the different rounds are very similar, which

indicates that a) the parameter set for the optimization, which

contains tangent elongation and movement of waypoints, is

appropriate to find a global optimum, and b) the optimization

generates reproducible trajectories that are not critically

dependent on the input waypoints.

The average positional tracking error, i.e., how far the

robot deviates from the planned path according to odometry,

is around 1 cm for both obstacle courses, and the average

deviation in velocity is below 2 cm/s, as shown in Fig. 7

(left). Both errors are a little higher in the zigzag course

which has tighter curves.

The planned trajectories can be used to predict the robot’s

position over time in global coordinates. The corresponding

error is shown in Fig. 7 (right) as a function of a lookahead

time added to tplan. Thus, a lookahead of 0 s corresponds to

predictions over tplan, which are needed for replanning.

Without replanning, the prediction error would reduce to

the tracking error plus the accumulated error in the odometry

readings. With replanning, as in the experiments, the predict-

ing trajectory is seamlessly replaced after one second at most.

Still, the mean prediction error is small, e.g., only around

15 cm for a lookahead of 6 s. This shows that replanning

does not cause abrupt changes in the planned trajectory.

Human observers can actually not recognize when switching

of replanned trajectories takes place. Naturally, changes of

the global goal location falsify these values and are filtered

out, which causes a low number of values contributing to the

averages for lookahead times greater than 8 s in the figure.

C. Navigation in populated environments

To evaluate the performance of our motion planning

system in an application with dynamic obstacles, we tested

the system on our tour-guide robot “Albert” during a three-

day trade show in Freiburg. Motion planning was executed

on the same subnotebook, with the odometry and the error-

feedback controller running at 10 Hz. An example trajectory

is shown in Fig. 8: the system is able to evade obstacles

with smooth trajectories, but if necessary, sharp turns can be

generated as well. The performance in presence of a person

who deliberately blocks the robot’s path could be improved

by adding an additional strategic planner to avoid oscillation
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Fig. 9. Experimental result with misplaced self-localization. All course
corrections are made by attaching new trajectory pieces to the existing one
without violating the requirements on smoothness and curvature continuity.

of plans generated by the global path planner when the

person moves from one side to the other.

D. Recovery from localization errors

The optimization process moves waypoints of trajectories,

considering the location of both mapped and unmapped

obstacles. In this way, our motion planning system can

compensate for errors in localization to a certain degree. If

however the localization was significantly misplaced, e.g.,

such that the anticipated and true position of free passages

between obstacles do not overlap (as in Fig. 9), the system

would naturally have problems to find its way. Since local-

ization errors can be of temporary nature, we require our

system to recover gracefully, i.e., with smooth trajectories,

after the localization has been corrected. This is achieved by

periodic replanning of the trajectories. The reaction of our

system to such a localization failure is shown in Fig. 9.

In the run with correct localization, marked green in the

figure, the robot passes the obstacles on a straight path.

In the other run, marked red, the localization is artificially

misplaced by 1.8 m shortly after the start. The robot adapts

its trajectory in the next replanning step and heads for the

supposed opening between the wrongly anticipated obstacles.

After the localization recovers, the robot corrects its trajec-

tory in the subsequent replanning step and drives to the goal.

VII. CONCLUSION

In this paper, we presented an approach to kinodynamic

motion planning that determines time-optimal motion trajec-

tories via optimization, starting from a given straight-line

path. These trajectories are represented as joined quintic

Bézier spline segments to achieve curvature continuity, in

the middle of the segments as well as at the join points.

Existing trajectories can be extended or replaced with newly

generated pieces in order to account for unmapped obstacles.

This replanning aspect also allows for graceful recovery in

the case of localization discontinuities, and prevents accu-

mulation of odometry errors.

The approach has been implemented and tested on real

robots in complex and populated environments. Our exper-

iments show that our system plans motion trajectories that

can be executed precisely, i.e., with very low deviations from

planned positions and velocities. Additionally, it can effec-

tively replan if the robot encounters unexpected obstacles, for

example in populated environments. Finally, as the motions

are planned over time, the robot can predict its own motion

with high precision.
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