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Abstract— Neurobiology studies showed that the role of the
Anterior Cingulate Cortex of the brain is primarily responsible
for avoiding repeated mistakes. According to vigilance thresh-
old, which denotes the tolerance to risks, we can differentiate
between a learning mechanism that takes risks, and one that
averts risks. The tolerance to risk plays an important role in
such learning mechanism. Results have shown the differences in
learning capacity between risk-taking and risk avert behaviors.
In this paper, we propose a learning mechanism that is able to
learn from negative and positive feedback. It is composed of two
phases, evaluation and decision-making phase. In the evaluation
phase, we use a Kohonen Self Organizing Map technique to
represent success and failure. Decision-making is based on an
early warning mechanism that enables to avoid repeating past
mistakes. Our approach is presented with an implementation
on a simulated planar biped robot, controlled by a reflexive low-
level neural controller. The learning system adapts the dynamics
and range of a hip sensor neuron of the controller in order for
the robot to walk on flat or sloped terrain. Results show that
success and failure maps can learn better with a threshold that

is more tolerant to risk. This gives rise to robustness to the
controller even in the presence of slope variations.

I. INTRODUCTION

Some cognitive studies have identified an early warning

system in the human brain that can avoid to make past

mistakes again. They have shown how the brain remembers

details about past dangers [1]. An activity was found in

the Anterior Cingulate Cortex (ACC) after making mistakes

[2]. This cortex area works as an early warning system

that adjusts the behavior to avoid dangerous situations. It

responds not only to the sources of errors (external error

feedback), but also to the earliest sources of error information

available (internal error detection) [3]. It becomes active in

proportion to the occurrence likelihood of an error [4][5][6].

Therefore, it can learn to identify situations where humans

may make mistakes, and then help to avoid such situations

to occur [2]. It learns to predict error likelihood even for

situations where no error occurs previously [7]. Through

the observation of particular areas located in cerebral cortex

in the brain responsible for cognitive control, neuropsycho-

logical studies demonstrated a switching in human learning

strategies around the age of twelve years. This switch from

learning with positive feedback to learning with negative

feedback probably comes from the combination of brain

maturing and experience [8].
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Our work aims to produce an early warning mechanism

that can help to avoid repeating past errors in the generation

of walking patterns for humanoid robots. It is necessary for

such mechanism to have an experience in mistakes and other

experience in success, in order to evaluate new situations

before taking any decision and carrying out the test on the

robot. This mechanism of selection allows to determine the

state space of parameters in the zone of success and also

in the zone of conflict. It is used to adapt the dynamics and

range of a hip sensory neuron in a neural reflexive controller,

proposed by Wörgötter [9], for simulated planar biped robot

in order to avoid falls when the slope of terrain varies.

This paper is structured as follows. The second section

presents the principles of our learning mechanism, and

introduces the concept of vigilance. The third section de-

scribes the neural reflexive controller based on sensory motor

neurons [9]. In the fourth section we use this mechanism to

detect the domain of viability of the controller for walking

on flat terrain and then on sloped terrain, where the effect

of vigilance threshold on learning was investigated. Finally,

we conclude this paper with some research perspectives.

II. LEARNING MECHANISM

The objectives of this learning mechanism is to adapt

parameters of a low level controller and detecting its domain

of viability, which brings more adaptation to external and

internal perturbations. We designate by V the state space of

those parameters. The mechanism must be able to learn from

negative feedback (failure) and positive feedback (success).

Therefore, it must have experience with success and other

with failure in the state space V . As each vector −→v from

V leads to either success or failure, the mechanism will

evaluate whether this vector belongs to the success domain

or to the failure domain. The decision mechanism (“go”,

“nogo”), described in [10], works as an early warning system

similar to that in the Anterior Cingulate Cortex [2][7]. The

learning architecture is then based on these two mechanisms

and works as shown in Fig. 1.

A. Success-failure evaluation

To represent the knowledge in success and in failure, we

define two independent neural networks that are well-known

Self Organizing Maps, proposed by Kohonen [11]. Success

map learns in case of success trials, and failure map learns

in case of failure trials. During the learning, the two maps

will be self-organized in the state space that will be therefore

divided into three zones: a zone of success represented by

success map, a zone of failure represented by failure map,
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Fig. 1. Learning mechanism with evaluation and decision phases.

and a zone of conflict that corresponds to the interference

between the two maps. The evaluation of any vector −→v from

space V belonging to success or failure is defined by the

distance between −→v and each map. The distance of a vector

with a map is the distance between this vector and the neuron

that is closest to it in the state space (the neuron winner).

For each −→v we have therefore two distances: one to success

map called ds, and another to failure map called df .

B. Decision mechanism

For a vector −→v , the comparison between the distance with

success map ds and the distance with failure map df leads to

an expected result in the case where the vector is applied on

the low level controller (trial). According to expected result,

if it may lead to failure, then an Early Warning Signal EWS
becomes active to avoid the passing into the lower level, and

the decision will be “nogo”. When EWS is inactive the

decision is “go”. The decision mechanism is affected by the

threshold of vigilance svig , which will be detailed later.

C. Learning algorithm

Success and failure maps represent the knowledge in

success and in failure inside the state space. First maps will

be initialized in the state space V . Then, we take one vector
−→v randomly from this space. In the phase of evaluation, we

calculate the distance between this vector and all the neurons

of both maps, as in (1), where
−→
d

i

s is the distance between −→v
and the ith neuron in success map, −→w i

s is the weight vector of

this neuron,
−→
d

i

s is the distance between −→v and the ith neuron

in failure map and −→w i
f is the weight vector of this neuron.

For each map, the neuron winner corresponds to the smallest

distance to the vector. This distance represents therefore the

distance between −→v and the map, see (2), where ds is the

distance between −→v and success map while df is the distance

with the failure map. In the phase of decision, we compare

ds with df , by taking into account the threshold of vigilance

svig which represents the tolerance to risks. If the threshold is

higher than the difference between the distance to failure map

and the distance to success map, the early warning signal

becomes active, otherwise, this signal is inactive, see (3).

The activation of EWS indicates that −→v will lead to failure

if it is applied on the lower level. In the learning phase, it

is possible that vector −→v can activate EWS at a time and

inactivate it at another time because the distances with the

neurons change. A decision of “nogo” corresponds to active

EWS and a decision of “go” corresponds to inactive EWS.

In the case where decision is “nogo”, we take another vector
−→v randomly from V , then we look for expected results by

evaluation and decision phases as detailed before. In case

where decision is “go” (−→v may lead to success), the vector

will be applied on the low level controller to run a trial.

After each trial there is a reward, either negative (failure) or

positive (success). Only one map learns −→v . If the reward is

negative the failure map will learn, and if it is positive the

success map will learn. Next, we take other vectors randomly

from V and execute the same steps until the stabilization of

maps. The algorithm is as follows:

1) ∪ ( success− map, failure − map ) ∈ V .

2) ∪ −→v ∈ V

a) Evaluation :
the distances to the neurons of the two maps:

{ −→
d

i

s = −−→w i
s + −→v

−→
d

i

f = −−→w i
f + −→v

(1)

the distances to the neurons winners of the two

maps:
{

ds = min ‖ −→
d

i

s ‖
df = min ‖ −→

d
i

f ‖
(2)

b) Decision :

EWS =

{

0 (go) if(df − ds) > svig

1 (nogo) otherwise.
(3)

3) if (nogo) go to 2.

else if (go) test −→v , and get a reward R.

if (R : positive) learn success− map,

else if (R : negative) learn failure − map,

go to 2.

D. Concept of Vigilance

Some psychological research suggest that some people are

more tolerant to risk than others who are more cautious,

[12][13][14]. The vigilance is related to human learning

approaches and decision making [15]. In the standard psy-

chological assessment of risk taking, people are classed as

risk seeking or risk aversion [16]. In our study the vigilance

is represented by a threshold svig that is used to adjust

the early warning signal in the decision mechanism. This

threshold describes the tolerance of risk, see Fig. 1. By

definition, the threshold of vigilance is the allowed margin

of the difference between the distances of state space vector
−→v with failure map and with success map, for which the

decision mechanism still responds with “go”, as in (3). The

threshold has a limited value according to the dimensions

of the state space. In a two dimension state space svig ∈
[−

√
2, +

√
2]. Toward positive values of the threshold, the

decision mechanism becomes more alert to risk (cautious).

In the opposite it has a tendency to take risks (courageous),

see Fig. 2, D is the diameter of the space. For instance, if

svig = 0.1 the early warning system stays inactive for vectors
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closer to success map than to failure map by 0.1. In such

case, if ds = 0.3 and df = 0.35, then EWS becomes active,

while it is inactive if svig = 0.04. The change in the value

of svig from 0.1 to 0.04 allows the agent to be more tolerant

to risks.

Fig. 2. Threshold of vigilance and tolerance of risk .

In this paper, we have fixed the threshold during learning,

but we present the result for different values of the threshold.

III. BIOLOGICAL INSPIRED NEURAL CONTROLLERS FOR

WALKING

Biological inspired locomotion controllers are based on the

simple circuit that is built from sensory neurons, motor neu-

rons, and inter-neurons [9][17][18][19]. Neurophysiological

studies associate the rhythmic movement with the oscillation

activity of a type of neurons, called neurons oscillators

[20][21]. These oscillators can produce rhythmic activity

without sensory input even without central input. But the

sensory information is indispensable for walking because it

allows to shape the rhythmic patterns in order to interact

with the environment [22]. However, sensory information are

mainly used to adapt the controller in front of changes and

perturbations. Neurophysiologists have proved that biological

controllers like Central Pattern Generators (CPG) have an

adaptation mechanism that belongs to plasticity properties

[20][23]. To realize the learning approach, we are interested

in having the low level controller interact with the environ-

ment, like the neural reflexive controller, proposed by [9] and

tested on a real robot. This low level controller is based on

the sensory motor approach. Our learning mechanism will

regulate certain parameters in this controller to walk and

to explore the domain of viability, that give the ability of

walking adaptation to the environment.

A. Neural model for Sensory-Motor

In the neural model for sensory-motor there are direct

connections between sensory neurons and motor neurons,

see Fig. 3. A static model of sensory neuron has proposed

by Ekberg, [18], it is described in (4), ρi is the activity of

sensory neuron, α is a positive constant that denotes the

dynamics of the neuron, θ is the amplitude and φ is the input

on the neuron. φ can be an angular position, or a contact force

[9]. In the other side, there is a model of motor neuron. Beer

[24] has proposed a dynamic model that is described in (5),

yj is the mean membrane potential of the jth motor neuron,

τ is a time constant, ρi is the activity of the ith sensory

neuron, wij is the synaptic weight between the ith sensory

neuron and the jth motor neuron, uj is the activity of this

motor neuron, θm is the bias.

ρi = (1 + eα(θ−φ))−1 (4)

Fig. 3. A neural model of sensory motor controller.







τ.
dyj

dt
= −yj +

∑

i wij .ρi

uj = (1 + eα(θm−yj))−1

(5)

B. neural reflexive controller

The neural architecture proposed by Wörgötter to control

a simulated biped [9] is based on a sensory motor approach

where sensory neurons are connected to extension and flex-

ion motor neurons. Fig. 4 shows the principles of this con-

troller. A is a stretch receptor sensory neuron, G is a ground

contact sensory neuron, FM is a flexion motor neuron, EM
is an extension motor neuron. Lines with an arrow extremity

indicate excitatory connections, and lines terminated by a

solid circle indicate inhibitory connections. Fig. 4(a) shows

the interaction between the ground contact sensory neuron of

the stance leg and the flexion and extension motor neurons

in this leg. Ground contact sensory neuron (G) in a leg

excites the extension motor neuron (EM ) in the knee and the

flexion motor neuron (FM ) in the hip of the same leg. Fig.

4(b) shows the interaction between ground contact sensory

neuron and the flexion and extension motor neuron in the

other leg. It excites the flexion motor neuron in the knee and

the extension motor neuron in the hip. Fig. 4(c) shows the

role of extension and flexion sensory neurons, E and F , to

inhibit the corresponding motor neuron. This is the same for

all joints. This behavior is referred as the articular reflex. Fig.

4(d) shows the role of the stretch receptor sensory neuron to

excite the extension motor neuron in the knee of the same

leg. This behavior is referred as the extension reflex.

Fig. 4. Principles of the neural reflexive controller proposed by Wörgötter.
(a) Interaction with the stance leg. (b) Interaction with the swing leg. (c)
Articular reflex. (d) Extension reflex.

In this study, we concentrate on two parameters of this

low level controller. The first αhip denotes the dynamics of

rhythmic movement in the hip joint (dynamics of extensor

sensory neuron), while the second θhip−max represents the

amplitude of this movement (amplitude in the activity of

extensor sensory neuron). The biped can walk and face

environment changes, such as variations in the slope of

terrain , by controlling these two parameters.
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C. Determination of viability domain of the neural controller

We have explored the domain of viability of the controller

by varying the dynamics and the amplitude of the hip exten-

sor sensory neuron (αhip and θhip−max) on a flat terrain.

Inside a defined space for the two parameters, variations

have been carried out with defined steps. For each couple

(αhip,θhip−max) the walking has been tested. According to

definitions for success and failure we can know which couple

leads to success or to failure. The biped has 10 seconds to

walk, so if this time was passed and it was still staying,

then it is a success. Otherwise, if it falls down before the

time, it is a failure. In the simulation, we consider that

the robot falls down when the gravity center of the trunk

comes below the one of the two shanks. In such case the

simulation will stop the trial. For all trials the robot has the

same initial position in which one leg is in the stance phase

and the other one is in the swing phase because we are not

interested here in the initial phase of walking. Fig. 5 shows

the results of this analytical studies related to walk on flat

terrain. The failure trials are represented by the surrounding

area, while the another area represent the success trials. αhip

varies in [ 0 : 0.5 : 20 ], while θhip−max varies in [ 90◦ : 1
: 150◦ ]. Walking velocity is limited in our case between

0.33[m/s] and 0.66[m/s]. In the simulation, the walking

velocity corresponds to the averaged velocity measured for

the trunk.

Fig. 5. Domain of viability of the low level controller in space of αhip

and θhip−max.

IV. LEARN WALKING AND ADAPTION APPROACH

First, the biped will learn to walk on a flat terrain. The

goal is to allow maps to explore the domain of viability

in the state space. We will present the results for several

values of vigilance threshold and discuss them. Second, we

will present the results for a more complicated architecture

devoted to learn how to walk on sloped terrain through an

example that explains such adaptation approach.

A. Learn walking on flat terrain

We present how our learning approach makes success

and failure maps to explore the space of parameters in

order to find the domain of viability of the controller. The

simulation is run for different values of vigilance threshold

svig . Fig. 6 shows the control diagram in case of learning

on flat terrain. There are two loops of control, a loop of

low level control represented by the interaction between the

biped and the controller neuronal sensory motor, the other

loop concerns the high level controller where the learning

mechanism controls the low level controller and receives the

result for each trial (success, failure).

Fig. 6. Walking control diagram, composed of two control levels: neural
senrory-motor controller (low level) and learning mechanism (high level).

In the learning algorithm, we initialize success map and

failure map in the space of αhip and θhip−max. The same

space has been studied previously for the domain of via-

bility. The number of trials and the vigilance threshold are

determined. For a random vector −→v (αhip, θhip−max) from

this space there are two processing phases, the evaluation

phase and the decision phase. If the early warning signal

stays inactive for −→v , then it may lead to success according

to the past experience of this system represented by success

map and failure map and also according to the risk tendency

represented by vigilance threshold svig . Each vector that will

lead to success has been passed to the controller sensory-

motor to run a trial on the biped. According to the result

of each trial one map will learn. Then, we look for another

vector −→v (αhip, θhip−max) from the space, and so on. After

learning, all the vectors that had led to success have been

incorporated into success map and all the vectors had led

to failure have been incorporated into failure map. Fig. 7

and Fig. 8 show success map and failure map after learning

for 500 trials with two different threshold of vigilance. The

state space is normalized between 0 and 1. Each map is

composed of 100 neurons. Weights of neuron (w1,w2) denote

a configuration of the low level controller (w1 = α, w2 =
θhip−max). We have therefore 100 different configurations

in each map that match 100 walking gaits stored in success

map.

After learning with 500 trials, if svig = 0.05, we obtain

98% of succeeded trials, while 2% of failure. With another

threshold svig = 0 we obtain 96% of succeeded trials, and

45% of success with svig = −0.1 and 28% of success with

svig = −0.2. In the last case, as there are 72% failure, the

failure map was learned better than in the other cases.

In Fig. 7 and Fig. 8 all neurons in the success map lead to

success (walk), but in the second case the domain of viability

presented by the zone occupied by success map is bigger than

befor, which allows to have more stability and more walking

gaits. So we can distinguish between two different behaviors

for the system, risk taking and risk aversion.

Thanks to the two behaviors the system can gain expe-

rience in walking, but in case of risky behavior the system

learns better. Fig. 9 presents the rate of success in function

2619



(a) Success map. (b) Failure map.

Fig. 7. Success and failure maps after learning on flat terrain with vigilance
threshold svig = 0.05.

(a) Success map. (b) Failure map.

Fig. 8. Success and failure maps after learning on flat terrain with vigilance
threshold svig = −0.2.

of vigilance threshold, it was obtined after learning with

different thresholds.

Fig. 9. Rate of succeeded trials as a function of vigilance threshold.

It could be divided into three zones. The first zone

corresponds to svig > 0.05 where there is no decision, no

trials, then no learning. The second zone corresponds to

0.05 < svig < −0.4, the system is more risky, and for a

more negative threshold the decision will be “go” for all

vectors. The middle zone is the most important because it is

a zone of switching between two different behaviors. In our

studies we fixed the vigilance threshold during the learning

phase, but changing this variable from a trial to another may

be worth investigating.

B. Learning on sloped terrain

The objective from the previous study is to represent the

zone of success in the state space by success map to justify

the analytical study of the domain of viability. Our objective

now is to generalize the controller on sloped terrains. The

modification in the maps’ structures consists of adding a

third dimension to describe the terrain slope γ to learn in

space of αhip, θhip−max and γ. In our study the slope is

limited between +10◦ and −10◦. In the learning phase the

biped learns to walk on terrains with different slopes that had

been chosen randomly. After learning, the two SOM must

be organized in the three dimension state space to represent

success and failure experience. Fig. 10 and Fig. 11 show

success and failure maps after learning for different values

of vigilance threshold.

(a) Success map. (b) Failure map.

Fig. 10. Success and failure maps after learning on different terrain slopes
with vigilance threshold svig = 0.0.

(a) Success map. (b) Failure map.

Fig. 11. Success and failure maps after learning on different terrain slopes
with vigilance threshold svig = −0.2.

Each map is composed of 125 neurons where each neuron

has three weights (w1,w2,w3) that denote a configuration of

the low level controller (w1 = αhip, w2 = θhip−max) for

walking on determined terrain slope (w3 = γ). When svig =
0 there is a success in 86% of trials and a failure in 14%.

Success and failure maps are shown in Fig. 10(a) and Fig.

10(b) respectively. For the other value of vigilance, svig =
−0.2, there is a success only in 15% of trials and a failure

in 85%, as shown in Fig. 11(a) and Fig. 11(b). The space

occupied by success map in the second case is bigger than in

the first case. This difference is referred to as the difference in

the behavior according to vigilance threshold. As the failure

rate in the second case is higher than in the first case, the

failure map will learn better in the second case.

After learning, each neuron in the success map corre-

sponds to a walking on a particular slope, including gait

and speed. To walk on a terrain with a particular slope γ,

a competition occurs between all neurons to find the winner

without taking the (w1, w2) values for neurons into account.

The winner is the neuron whose w3 is the closest to γ, while

other weights of the neuron winner are used to configure

the parameters (αhip, θhip−max) of the low level controller.

Changing the terrain slope during walking causes switching

into another neuron in the map, which corresponds to the

new slope. This switch can be direct between the neurons or

indirect by use of intermediary neurons. Fig. 12 shows how
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the biped can walk with different slopes.

(a)

(b)

(c)

Fig. 12. Switching between the neurons of success map during walking
on irregular terrain. (a) represent the terrain slope, which is an input to the
learning mechanism. (b) and (c) are the amplitude and the dynamics of the
extensor sensory neuron, the outputs of the learning mechanism.

For any slope γ in the domain of viability (success map)

there is a corresponding couple (αhip, θhip−max) that can

be applied to the lower level of control to perform the

walking. in Fig. 12, the variation in the slope γ will cause a

competition between the neurons of success map to find the

more adaptive neuron with the new slope, this neuron will

be able to configure the sensory-motor controller to adapt

with that slope, by his weights which present the amplitude

and the dynamic of the extensor sensory neuron.

V. CONCLUSION

In this paper we presented a neurobiological inspired

learning algorithm. The objectives of the mechanism were

to learn from mistakes and to avoid making them again.

This was done by building on experience of past mistakes

and successes. We showed how these two experiences could

build themselves through the stages of evaluation, decision

and then trials. It can be said that the negative reward

has an importance as the positive. This mechanism was

implemented on a planar biped and allowed the biped to

learn to walk without supervision. It added the property

of adaptation even to changes of terrain slope. Our future

work shall address adaptation to further changes in the

environment, as well as changes in the physical parameters of

the biped, as an important factor to allow our mechanism to

apply to a real robot. An analytical study that will investigate

how much benefit the system is able to get from previous

experience will also be considered.
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