
  

  

Abstract— This paper describes a basic passive vs. aggressive 
defense model, and analyzes it in terms of defense strategies 
against an intelligent enemy.  In response to varying 
combinations of passive and aggressive defense, we assume that 
the enemy can up- or down-regulate recruitment activity.   This 
leads to a differential game formulation of battle scenarios that 
we analyze for a warfare situation.  Specifically, we consider 
military counterterrorist activities in a civilian population.  
Simulation results, including uncertainty and sensitivity 
analyses, are provided to demonstrate the benefits and 
limitations of the proposed model in terms of understanding 
army defense plans. 

I. INTRODUCTION 
OR many different warfare scenarios, defense tactics may 
be classified into two general but distinct categories:  

passive strategies and aggressive strategies.  Given that both 
of these strategies can be used simultaneously, overall 
defense operations may be further characterized by the 
particular balance of passive and aggressive strategies 
employed.  This, of course, begs the question – ‘what is the 
optimal combination of passive vs. aggressive defense?’  
Clearly, the answer to this question depends on how effective 
and how costly aggressive strategies are relative to their 
passive counterparts.  Moreover, if the effectiveness or cost 
of a particular defense mode depends on actions taken by the 
opponent, the optimal combination of passive vs. aggressive 
defense will be inextricably linked with enemy operations as 
well.  In general, we expect that aggressive strategies will be 
costly because they are necessarily associated with damage 
and destruction, while passive strategies, though less 
injurious, will also be less effective. 

 In this paper, we consider a differential game 
formulation that frames the trade-off between passive and 
aggressive defense tactics in mathematical terms.  To the 
extent that our work is largely exploratory and aimed at 
defining general defense properties, we note that there are 
similarities between our approach and the model used in a 
recent paper by Caulkins and Grass [1].  In [1], the authors 
develop an optimal control formulation to consider the 
trade-off between ‘fire’ strategies (which eradicate insurgents 
in a comprehensive, nonselective manner) and ‘water’ 
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strategies (which eradicate insurgents in an intelligence based 
selective manner).  We focus on a different trade-off (passive 
strategies vs. aggressive strategies) that is applicable to a 
wider class of warfare scenarios including not only 
counterterrorism efforts, but also natural battlefield scenarios 
like immune defense.  In addition, by including a 
fundamental aspect of enemy behavior, in this case 
recruitment strategy, we extend the optimal control 
framework used in [1] to a differential game framework.  This 
allows us to consider optimal defense strategies in the face of 
an intelligent opponent.  Finally, in light of the difficulties 
associated with parameterizing social models, we use a Latin 
Hypercube Sampling (LHS) scheme to perform an 
uncertainty/sensitivity analysis, thereby assessing the 
strengths of our general trend predictions, and also 
determining the parameters most likely to influence them.   

 While there are many different warfare scenarios that we 
might consider for model application, in this paper, we focus 
on military strategies against insurgents. We suggest that 
detailed mathematical modeling may help inspire new 
strategies for military operations.   
 
 Military scenario.  In this paper, we consider defense against 
terrorist insurgent activity in a civilian population.  Violent 
raids on the civilian population lie in direct opposition to 
military efforts aimed at maintaining the integrity of a 
country.  As a result, counterterrorist activities must rely not 
only on aggressive eradication of enemy operatives, but also, 
on passive strategies which suppress growth of the 
insurgence movement.  Passive strategies may include, but 
are not limited to, diplomacy efforts, open dialogue, 
infrastructure development, and negotiation.  In other words, 
a passive strategy is any effort aimed at swaying civilian 
allegiance away from insurgent alignment and ideology 
without the use of violence or aggression.  The 
time-dependent interplay between passive and aggressive 
tactics in military defense is paramount to the success or 
failure of any counterinsurgency military operation.    

II. DYNAMICS MODELING 
Our model assumes that the military has two broad 

categories of defense:  passive strategies and aggressive 
strategies.  Therefore we choose the effort devoted to passive 
strategies, denoted up, as the first military control variable and 
the effort devoted to aggressive strategies, denoted ua, as the 
second.  So far as the enemy is concerned, we assume that the 

Passive vs. Aggressive Strategies:  A Game Theoretic Analysis of 
Military Defense  

Sharon Bewick, Mingjun Zhang Member, IEEE,  William Hamel, Fellow, IEEE, and Ruoting Yang 
Member, IEEE 

F 

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1873



  

insurgence movement attempts to counter military defense by 
regulating recruitment activities.  Therefore the effort 
devoted to insurgence growth, denoted ue, is the first and only 
enemy control variable in our differential game formulation.  
In order to define an objective function for our game, we 
assume that the military suffers a cost associated with the size 
of the enemy population, a cost associated with the effort 
devoted to passive tactics (risk, resources, etc.), a cost 
associated with the effort devoted to aggressive tactics 
(bystander damage, resources, etc.), and a benefit associated 
with forcing the enemy to increase growth efforts.  We then 
assume that the game is zero-sum, thus the insurgency 
objective function takes on a benefit associated with 
insurgent population size, a benefit associated with increased 
military efforts (both passive and aggressive), and a cost 
associated with increased recruitment activities.   

In terms of dynamics, we assume that the enemy grows at a 
per insurgent baseline rate r0, and that this growth rate 
increases linearly with the enemy effort devoted to 
recruitment.  The proportionality constant for the linear 
increase in growth rate with growth effort is denoted kr.  We 
additionally assume that military effort devoted to passive 
defense tactics causes a linear reduction in the insurgency 
growth rate.  The proportionality constant for the decrease in 
growth rate with passive strategy effort is denoted kp, and can 
be taken as reflective of the efficiency of passive defense.  
Finally, we assume that the military effort devoted to 
aggressive defense tactics causes a reduction in the enemy 
population that is proportional to both the military effort 
committed to aggression and the insurgent population size 
itself.  The rate constant for insurgent reduction by aggressive 
means is denoted ka, and can be taken as reflective of the 
efficiency of aggressive defense.  Since the efficiency of 
violent attacks should improve significantly with increased 
intelligence, and since military intelligence is expected to 
depend on the level of insurgent recruitment[2, 3], we also 
assume that ka is a linearly increasing function of enemy 
growth efforts, thus ka = ka0 + kiue, where ka0 is the rate of 
enemy eradication due to aggressive assault in the absence of 
military intelligence, while ki is the increase in this rate per 
unit enemy effort devoted to growth.  The above assumptions 
lead to the following model: 
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where Cp is a weighting parameter which reflects the cost of 
passive defense strategies, Ca is a weighting parameter which 
reflects the cost of aggressive defense strategies and Ce is a 

weighting parameter which reflects the benefit (that is benefit 
to the military, but cost to the insurgency) of growth.  All of 
these costs are taken relative the cost of an increased 
insurgent population, x.  In equation (1), time dependence is 
suppressed for notational simplicity, however we point out 
that all of the control variables, up, ua and ue, as well as the 
state variable, x, are time-dependent.  

 In the above set of equations, (1.a) is the objective 
function for our game theoretic formulation, (1.b) defines the 
dynamics of the insurgent population from its initial value x0 
to its final value xend, and (1.c) states additional social 
constraints on the effort devoted to passive or aggressive 
defense and the effort devoted to recruitment.  In general, we 
will choose xend such that the insurgent population is so low 
that it is unsustainable.  We use this end point for our game 
since the dynamic equation (1.b) governing insurgent growth 
is such that x(t) → 0 only as t → ∞.  Realistically, however, a 
insurgent population below a certain critical level will not be 
self-sustaining as a result of social factors not included in the 
model.  Finally, we note that the problem, as formulated in 
equation (1), has a finite time horizon, thus the game ends at 
time t = tf.  For military applications, finite-time horizon 
models are appropriate since the military would, ideally, like 
to plan a defense strategy which guarantees effective pull-out 
on a particular, pre-determined date.   

Before we continue, we must be more specific with respect 
to what is meant by a ‘unit of passive effort’, a ‘unit of 
aggressive effort’, and ‘a unit of growth effort’.  Let us begin 
by defining a unit of passive effort as the amount of effort 
which, if 100% effective, will reduce the per capita enemy 
growth rate by one enemy per military occupation period.  
Similarly, let us define a unit of aggressive effort as the 
amount of effort which, if 100% effective, will increase the 
per capita enemy death rate by one enemy per military 
occupation period.  Finally, let us define a unit of growth 
effort as the amount of effort which, if 100% effective, will 
increase the enemy growth rate by one enemy per military 
occupation period. 

 To simplify the analysis of the game theoretic problem 
proposed in (1), we note that the various weighting 
parameters can be rescaled from costs per unit effort to costs 
per unit change in enemy growth, suppression or killing. To 
do this, we use the following substitutions 
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The new differential game formulation is as follows 
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 0(0) , ( )f endx x x t x= =           (3.b) 

    ,max ,max0 , 0a a p pu u u u≥ ≥ ≥ ≥   

,max0 , , , , 0e e p a eu u C C C x≥ ≥ >     (3.c) 
 

We now have only two model parameters, r0 and k′, 
although there are still three weighting parameters, ,p aC C  

and eC . 
At this point, it is worthwhile to point out that our model 

predictions depend not only on the parameters r0, k′, ,p aC C  

and eC , but also on the upper bounds that we choose in 
equation (3.c).  In general, these bounds can be either fixed 
values, or else functions of the other control and/or state 
variables.  For the current paper, we consider a scenario 
applicable to military contexts.   

,max ,max ,max, ,
100a e p e
Mu u u u= ∞ = ∞ =          (4) 

 
In other words, there is no extraneously imposed upper 

limit on aggressive military efforts or insurgent recruitment, 
however passive defense can, at most, slow recruitment 
activities by M%.  For M < 100, the upper bound on ,maxpu  
means that recruitment cannot be stopped entirely by passive 
tactics, nor can it be used to ‘un-recruit’ terrorists who have 
already committed to the insurgence movement.  We believe 
that these assumptions are reflective of most counterterrorist 
operations.    

 It is impossible to solve the military differential game 
explicitly because of the highly nonlinear nature of equation 
(3.b).  Therefore we resort to numerical methods.  The basic 
technique used to predict the optimal military strategies ua 
and up, the optimal insurgency strategy, ue, and the insurgent 
population dynamics, x, is outlined in Section III. 

Given that there are five unknown parameters in equations 
(3) and (4), and given that the exact characterization of these 
parameters is difficult as a result of limited social data and the 
approximate nature of our passive/aggressive strategy 
classification system, we analyze our model by considering 
its behavior over a wide region of the socially plausible 
parameter space.  To do this, we use a stratified Monte Carlo 
sampling technique known as Latin Hypercube Sampling 
(LHS).  In LHS, probability distributions are assigned to each 
of the parameters.  The range of each parameter is then 
divided into N non-overalapping, equiprobable intervals, and 
a particular value from within each interval is chosen at 
random according to the probability distribution within that 
interval.  The N randomly sampled values for the first 
parameter are then randomly paired with the N randomly 
sampled values for the second parameter.  The N sampled 
pairs are then randomly paired with the N values for the third 
parameter, and so on, until an LHS table has been generated.  
An LHS table is an N*K matrix, where K is the number of 

parameters.  The details of the technique are described 
elsewhere[4].  Suffice it to say that the LHS scheme has 
proven to be an effective means by which to sample large 
parameter spaces efficiently [5, 6]. 

 In addition to providing an uncertainty analysis, the LHS 
method can be used to calculate partial rank correlation 
coefficients (PRCC) for the different model parameters.  This 
makes it possible to ascertain the potentially time-dependent 
impact of a particular parameter on a particular output 
measurement which, in this case, would be one of the various 
control variables, up, ua and ue or the state variable, x.  Further 
discussion of LHS and PRCC calculation can be found in[5]. 

 

III. CONTROL STRATEGIES 
We solve the optimal control problems in equations (3) and 
(4) using the Pontryagin Maximum Principal.  We begin by 
setting up a Hamiltonian using equation (3) 
 

( )

2 2 2 2
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= + + −

+ + − − +
                (5) 

 
where λ is the costate variable and is time dependent, 
although again, this has been suppressed for notational 
convenience.  The condition that the various control 
variables maximize(minimize) the payoff function in (3.a) 
can be stated from the Hamiltonian as follows 
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Minimization of the military control variables is 
guaranteed by 2 2 2 2/ , / 0p pH u H u∂ ∂ ∂ ∂ > , while 
maximization of the insurgent control variable is 
guaranteed by 2 2/ 0eH u∂ ∂ < , and all of these conditions 

hold for , , 0p a eC C C > .  Solving equation (6) for the three 
control variables, we find 
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In addition, the adjoint equation can be found from (5) as 
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( )( )02 1e p e a
d H x r u u k u u
dt x
λ λ∂ ′= − = − − + − − −

∂
  (8) 

 
Substituting equation (7) into equations (3.b) and (8), it is 

possible to define the dynamics of the system purely in 
terms of x and λ.  A forward-backward sweep algorithm can 
then be used to iterate x(t) forward from x(0) and λ(t) 
backwards from λ(tf) = θ, where θ is chosen in an iterative 
fashion in order to satisfy the condition ( )f endx t x= . 

  

IV. SIMULATION RESULTS 
The proposed dynamics model and optimal control 
formulation have been implemented using Fortran code.  In 
addition, we discuss uncertainty and sensitivity analyses of 
the passive-aggressive defense model.  Simulation 
parameters and LHS parameter ranges are summarized in 
Tables 1.  Figure 1 shows a sample simulation of the military 
model (equations (3) and (4)), for the parameter values listed 
in column 2 of Table 1. 
 
 

Table 1 Parameters/parameter ranges used for the military model 
Parameter Value Range Description 

0r  0   n/a Baseline recruitment rate 

'k  0.3  0.1 0.4 −  Increase in aggressive killing per unit 
increase in intelligence (OP/insurgent) 

pC  5  5 50−  cost of passive defense 
(impact·OP/insurgent) 

aC  200  100 300−  cost of aggressive defense 
(impact·OP/insurgent) 

eC  150  150 200−
 

cost of replication (impact·OP/insurgent)

x(0) 100   n/a initial insurgent population 
xend 10   n/a final insurgent population 

              *OP = occupation period 
 
 
The values in Table 1 are chosen for illustration purposes, and 
application of the military model to a specific military 
scenario would require some additional effort in terms of 
quantifying the approximate ranges for the different 
weighting and model parameters.  In general, we have 
assumed a low relative cost associated with passive defense, 

pC , a significantly higher relative cost associated with 

aggressive defense, aC , and an intermediate relative cost (to 
the insurgents) associated with recruitment activities.  In 
addition, we have assumed that military intelligence can 
improve the efficiency of aggressive assaults significantly (an 
improvement of between  ~10-40%).  Certainly, many of 
these parameters can be estimated from resource costs, the 
risk of propaganda efforts, the rate of civilian casualty during 
offensive military strikes and estimates of the degree to which 
useful intelligence can be gleaned from terrorist recruiting 
activities. 

  

 
Fig. 1 Predicted control and state variables for the military model  
 

 From Figure 1 we see that the insurgent population is 
actually best to ‘lie low’ during the early stages of 
occupation, and should only start to recruit after the military 
has significantly decreased its aggressive efforts.  In contrast, 
the military is best to attack aggressively at first, and ease off, 
supplementing aggressive defense with passive tactics, as 
time progresses through to the end of the occupation.  In order 
to determine the degree to which these trends/strategy 
predictions are independent of model parameters, we perform 
an LHS uncertainty and sensitivity analysis. 

Figure 2 a.-d. shows an LHS uncertainty analysis of the 
military model given the parameter ranges suggested in Table 
1.  In the absence of any additional information, we assume 
uniform probability distributions over all of our parameter 
ranges.  Maximum and minimum predicted values for the 
state and control variables are shown as dotted lines, while 
the average values are shown as solid lines. 

From Figure 2 it is clear that the predictions for the military 
model are strongly dependent on model and weighting 
parameters.  Most significant, so far as the development of 
military strategy is concerned, is the wide variation in passive 
defense and insurgent recruitment strategies (Figure 2 b. and 
d.) during the early stages of the military occupation period.  
Optimal passive defense may, for instance, involve an 
initially strong response followed by a gradual decrease in 
passive efforts through time.  It may instead, however, 
involve no initial response at all, with passive defense efforts 
rising to a relatively constant level only during the latter half 
of the occupation period.  A similar trend follows for 
insurgent recruiting activities.  In contrast, aggressive defense 
(Figure 2 c), does not show this same variation.  In general an 
early aggressive defense operation is suggested over the 
entire range of parameters used to analyze our simple military 
model.  In part to understand the different strategy variations 
that are apparent in Figure 2, we conducted a sensitivity 
analysis of the model in equations (3) and (4) for the 
parameter ranges listed in Table 1. By calculating PRCC 
values for the various state and control variables with respect 
to the various weighting and model parameters, it is possible 
to estimate the relative importance of the different parameters 
in terms of overall passive defense/recruitment schemes.  
Figure 3 a.-d. shows the PRCC values for x, up, ua, and ue 
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respectively.   
 

 
 
Fig. 2  Maximum (upper dotted line), minimum (lower dotted line) and 
average (solid line) predicted control and state variables (military model). 
 

 
Fig. 3 PRCC analysis showing the dependence of the predicted control and 
state variables on the various model and weighting parameters 
 

From Figure 3 b. and d., it is clear that both passive defense 
and insurgent recruitment are positively correlated with k′ and 
negatively correlated with aC  and eC .  Contrary to 
expectations, however, passive defense strategies exhibit 
only minimal dependence on pC .  In other words, the costs of 
aggressive defense and insurgent recruitment are far more 
significant in determining the passive defense strategy than is 
the cost of passive defense itself.    In general, high values for 

aC  and eC  are associated with limited passive defense and 
insurgent recruitment, while high values for k′ are associated 
with increased passive defense.  These trends are somewhat 
intuitive, although the actual, time-dependent strategies 
predicted by the model are impossible to deduce without the 
use of a mathematical model.  Several other interesting 

dependencies on the various model and weighting parameters 
are apparent in Figure 3, however these are beyond the scope 
of the current paper. 
 While Figure 3 illustrates the time-dependencies of the 
PRCC values for the control and state variables, unlike Figure 
2, it is difficult to interpret Figure 3 in terms of overall 
strategy shape and, specifically, how the various parameters 
contribute to whether or not passive defense and recruitment 
strategies involve an initial suppression period.  To answer 
this question, we calculated PRCC values for tp,onset and te,onset 
- the initial detection times associated with passive defense 
and recruitment respectively.  These values are summarized 
in Table 2. 

Table 2 PRCC values for onset of passive defense and recruitment 
Parameter PRCC for tp,onset PRCC for te,onset 

'k  -0.40 0.16 

pC  0.15 -0.04 

aC  0.49 0.14 

eC  0.29 -0.04 

 
Interestingly, high costs associated with aggressive defense 
and a weaker ability to capitalize on intelligence gleaned from 
terrorist recruitment activities both lead to optimal defense 
strategies with delays in the onset of passive defense 
schemes.  The same is true, though to a lesser extent, of high 
costs associated with passive defense and high costs 
associated with recruitment.  In contrast to tp,onset, however, 
te,onset appears to exhibit very limited correlation with any of 
the model or weighting parameters, suggesting that insurgent 
behavior will be relatively difficult to predict, even based on 
evidence of insurgent behavior and resource potential. 

V. CONCLUSIONS AND DISCUSSIONS 
In this paper, we consider a very general model which 

interprets, mathematically, the trade-off between passive and 
aggressive defense in the face of a growing enemy 
population.  Using this model, we attempt to predict optimal 
combinations of passive and aggressive defense for insurgent 
combat scenarios.    Given the generality of the model, and the 
exploratory nature of the work, we analyse our predicted 
strategies in terms of LHS uncertainty and sensitivity 
analyses.  This allows us to determine the degree to which 
strategies vary depending on model and weighting 
parameters, and also the parameters most likely to influence 
strategy decisions during the course of a military occupation.  
In general, we focus on scenarios where aggressive defense is 
significantly more costly than passive defense.  This is in 
keeping with both military scenarios.  Interestingly, it is also 
true of many other defense scenarios.  Immune defense 
against hepatitis B virus, for instance, involves both cytolytic 
killing of infected cells (aggressive) and cytokine suppression 
of viral replication (passive), and thus could be modelled with 
a similar approach to the one used here.  Overall, optimal 
aggressive strategies appear to follow a trend wherein there is 
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significant aggression during the initial phase of the 
occupation period, but this aggression eases as time 
progresses.  Optimal passive strategies are more varied.  In 
the military model early suppression of passive strategy 
appears to be strongly dependent on high aC  values and low k′ 
values.   

The model that we present in this paper is intentionally 
broad and general.  As such, it can be applied, albeit with 
slight variation, to a wide range of different biological and 
social combat scenarios.  We suggest that by analyzing a 
range of different warfare contexts using models that are, 
essentially, an extension of the basic model presented here, it 
may be possible to generalize basic features of defense 
strategy.  This may, in turn, allow us to compare different 
forms of warfare on the same mathematical ground, helping 
both with tactical strategy development on the military front, 
and with other tangentially related forms of warfare like 
defense against disease both from the standpoint of medical 
intervention and epidemiology. 
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