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Abstract— This paper presents a novel method for shape
control of a swarm of robots based on region control concept.
Multiplicative potential energy function is used to form the
overall desired shape of the entire swarm. The shape formed
using this method is a union of all the regions defined by
corresponding inequality functions. This proposed method is
a complement to our previous method where the additive
potential energy is used to form the desired shape. By combining
the multiplicative and additive potential energies, a variety of
complicated shapes can be formed. Lyapunov-like function is
presented for convergence analysis of the multi-robot systems.
Simulation results are presented to illustrate the performance
of the proposed method.

I. INTRODUCTION

Cooperative control of multi-robot systems has been the

subject of extensive research in recent decades. One impor-

tant research problem in cooperative control of multi-robot

systems is to maintain a desired formation during move-

ments. In behavior-based formation control [1]-[5], a desired

set of behaviors is implemented onto individual robots. By

defining the relative importance of all the behaviors, the

overall behavior of the robot is formed. In leader-following

control strategy [6]-[10], the leaders are identified and the

follower are defined to follow their respective leaders. In

virtual structure method [11]-[14], the entire formation is

considered as a single entity and desired motion is assigned

to the structure.

In general, behavior-based is suitable for controlling a

swarm of robots. However, it is difficult to analyze the overall

system mathematically and show that the system converges

to the desired formation. Both leader-following and virtual

structure methods are easier to analyze but not suitable for

controlling a large group of robots because the constraint

relationships among robots become more complicated as the

number of robots in the group increases. To alleviate the

problem, Belta and Kumar [15] proposed a control method

for a large group of robots to move along a specified path.

However, this proposed control strategy has no control over

the desired shape since the shape of the whole group is

dependent on the number of the robots in the group. For

large number of robots, the shape is fixed as an elliptical

shape whereas for a small number of robots the shape is

fixed as a rectangular shape. Some shape control methods

for a group of robots are studied in [16]-[17]. Pimenta et al.

[16] study the problem of controlling a large group of robots

in 2D generation task. This approach is based on an analogy

with fluids in electrostatic fields. In [17], interpolated implicit
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functions are used to control a swarm of robots to generate

2D patterns. This control method enables the robots to form

various 2D shapes but it requires a lot of constraint points to

specify the shape. The above mentioned methods are used

only for static shape generation and the desired shape is only

limited to a boundary. Cheah et al. [18] proposed a region-

based shape control method for a large group of robots to

form a certain shape. Robots are required to spread out inside

the region specified by the desired shape which is moving

along a specified path. The dynamics of the robots are also

considered in the stability analysis of the system. However,

only limited shapes are feasible since the desired shape is

defined as the intersection of various regions specified by

corresponding inequality functions.

In this paper, we propose a new shape control method for

a swarm of robots. A novel way of defining the desired shape

is presented with the aid of multiplicative potential energy

function. The desired shape in this case is the union of all the

regions defined by corresponding inequality functions. This

proposed method is a complement of our previous method

[18] and by combining these two approaches, a variety of

shapes which is not feasible in our previous method, can be

formed. In the proposed shape control method, each robot

moves together in the desired shape as a group and at the

same time maintains a minimum distance from each other.

The robots in the group only need to communicate with

their neighbors and not the entire community. The robots

do not have specific identities or roles within the group.

Therefore, the proposed method does not require specific

orders or positions of the robots inside the region and hence

different shapes can be formed even for a swarm of robots.

Lyapunov theory is used to show the stability of the multi-

robot systems. Simulation results are presented to illustrate

the performance of the proposed controller.

II. ROBOT DYNAMICS

We consider a group of N fully actuated mobile robots

whose dynamics of the ith robot with n degrees of freedom

can be described as [20], [21]:

Mi(xi)ẍi + Ci(xi, ẋi)ẋi + Di(xi)ẋi + gi(xi) = ui (1)

where xi ∈ Rn is a generalized coordinate, Mi(xi) ∈ Rn×n

is an inertia matrix, Ci(xi, ẋi) ∈ Rn×n is a matrix of

Coriolis and centripetal terms, Di(xi) ∈ Rn×n represents

the damping force, gi(xi) ∈ Rn denotes a gravitational force

vector, and ui ∈ Rn denotes the control inputs.

Several important properties of the dynamic equation de-

scribed by (1) are given as follows [20], [21]:

Property 1: The inertia matrix Mi(xi) is symmetric and
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positive definite for all xi ∈ Rn.

Property 2: The Coriolis and centripetal matrix C(x, ẋ)
is characterized by the following property sT [Ṁi(xi) −
2Ci(xi, ẋi)]s = 0 for all s ∈ Rn, xi ∈ Rn.

Property 3: The damping matrix Di(xi) is positive definite

for all xi ∈ Rn.

Property 4: The dynamic model described by (1) is linear

in a set of unknown parameters θi ∈ Rp as

Mi(xi)ẍi + Ci(xi, ẋi)ẋi + Di(xi)ẋi + gi(xi)

= Yi(xi, ẋi, ẋi, ẍi)θi (2)

where Yi(xi, ẋi, ẋi, ẍi) ∈ Rn×p is a known regressor matrix.

III. SHAPE CONTROL OF MULTI-ROBOT SYSTEM

In this section, we present a shape control method for

a swarm of robots using multiplicative potential energy

function. First, an overall desired region of specific shape is

defined for all the robots to stay inside. This overall desired

region can be formed by many different regions. Second, a

minimum distance is specified between each robot and its

neighboring robots. Thus, the group of robots will be able to

form a desired shape while maintaining a minimum distance

among each other.

Let us define several regions by the following inequality

functions:

R1 : h1(∆xio1m) = [f11(∆xio11), ..., f1M1
(∆xio1M1

)]
T
≤ 0

R2 : h2(∆xio2m) = [f21(∆xio21), ..., f2M2
(∆xio2M2

)]T ≤ 0

...

RL: hL(∆xioLm)=[fL1(∆xioL1), ..., fLML
(∆xioLML

)]T≤ 0

(3)

where, ∆xiolm = xi−xolm, l = 1, 2, ..., L, m = 1, 2, ..,Ml,

xolm is a point inside flm, Rl is the closed region defined by

hl, Ml is the number of functions to form the region Rl and

L is the number of desired regions. flm(∆xiolm) are chosen

to be continuous and twice partially differentiable that satisfy

|flm(∆xiolm)| → ∞ as ||∆xiolm|| → ∞. flm(∆xiolm) is

chosen in such a way that the boundedness of flm(∆xiolm)

ensures the boundedness of
∂flm(∆xiolm)

∂∆xiolm

,
∂2flm(∆xiolm)

∂∆x2

iolm

. The

final desired region R is formed by taking the union of all

the L regions i.e.

R = R1 ∪ R2 ∪ ... ∪ RL (4)

Each region shall move at the same speed that is, ẋo11 =
... = ẋo1M = ẋo21 = ... = ẋo2M = ... = ẋoL1 = ... =
ẋoLM , so that R can maintain its original shape during the

course of movement. This implies that the points xolm of

all the regions are just offsets from one another i.e. xo11 =
xo+c11, ...xo1M = xo+c1M , ..., xoL1 = xo+cL1, ...xoLM =
xo + cLM where xo is a point inside the region R, clm are

some constants. For simplicity of presentation, the index of

xolm is dropped and we will denote ∆xiolm by ∆xi where

∆xi = xi − xo. By combining different desired regions,

various shape can be formed. For example, a star shape can

be formed by choosing the objective functions as follows:

R1:h1(∆xi)=f11(∆xi)=
(xi1

−xo111
)2

a2

1

+
(xi2

−xo112
)2

b2
1

− 1≤0

R2:h2(∆xi)=f12(∆xi)=
(xi1

−xo111
)2

a2

2

+
(xi2

−xo112
)2

b2
2

− 1≤0

(5)

where xi = [xi1 , xi2 ]
T , a1, b1 and a2, b2 are the semimajor

and semiminor axes of the two ellipses, (xo111
(t), xo112

(t))
represents the common center of the two ellipses. In this case,

only one inequality function is used to formed one region.

To form a letter N we can define the following functions:

R1: h1(∆xi)=

{

f11(∆xi) = (xi1 − xo111
)2 − w2 ≤ 0

f12(∆xi) = (xi2 − xo112
)2 − d2 ≤ 0

R2: h2(∆xi)=







f21(∆xi) = (xi1 + xi2 − xo211
− xo212

)2

−w2 ≤ 0
f22(∆xi) = (xi2 − xo212

)2 − d2 ≤ 0

R3: h3(∆xi)=

{

f31(∆xi) = (xi1 − xo311
)2 − w2 ≤ 0

f32(∆xi) = (xi2 − xo312
)2 − d2 ≤ 0

where (xo111
, xo112

), (xo211
, xo212

) and (xo311
, xo312

) are

the centers of the 3 regions, w and d are half of the width

and height of the rectangles as illustrated in Fig. 1. In this

case each region is formed by two inequality functions and

the final overall region is the union of all the 3 rectangles.

Fig. 1. Examples of desired regions. Grey regions are the desired regions.

Let Pl be the potential energy function associated with Rl,

l = 1, 2, .., L, where:

Pl(∆xi) =

Ml
∑

m=1

1

2
klm [max (0, flm (∆xi))]

2
(6)

where klm are positive constants.

In our previous approach [18], we define the potential energy

P of the desired region as a summation of the potential

energy associated with each region i.e. P = P1+P2+...+PL.

The desired region R resulted from this summation of the

potential energy is the intersection of all the regions Rl that

is R = R1 ∩ R2 ∩ ... ∩ RL. For example a desired region

R which is an intersection of two ellipses specified in (5)

can be formed by defining the potential energy P associated
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with R as P = P1+P2. An illustration of this desired region

is shown in Fig. 2.

Fig. 2. Example of desired regions as an intersection of two ellipses. Grey
region is the desired region.

Using this idea of summation of potential energy, various

shapes can be formed. However, there are some limitations

on this method. For example, it is not possible to form the

star shape, which is the union of two ellipses, or the alphabet

N , which is the union of three rectangles as shown in Fig.

1.

This paper presents a new method using multiplicative po-

tential energy function. The proposed method in a way is a

complement to our previous method and by combining this

two approaches, a wide range of shapes can be formed. Let

PT be the potential energy associated with the desired region

R and is defined by:

PT = P1 × P2 × .. × PL (7)

where Pl is defined in (6). It should be noted that Pl has a

minimum of zero at the desired region where all the functions

flm ≤ 0. Therefore, PT has a minimum value of zero when

xi is within any of the desired regions. That is, the overall

desired region R is the union of all the regions R1, R2,...,RL

as defined in (3).

Using equations (6) and (7), the potential energy function of

the final desired region R can be written as:

PTi(∆xi) =

L
∏

l=1

Ml
∑

m=1

1

2
klm [max (0, flm (∆xi))]

2
(8)

From (8) we can see that the potential energy is at the min-

imum value (zero) at the final desired region. This potential

function will ensure that robots move toward the overall

region formed by union of all the regions R1, R2, ..., RL.

An illustration of potential energy of a star shape defined in

(5) is shown in Fig. 3. We can see that the potential energy

is positive outside the overall desired region and zero within

the desired region.

Elevation view Top view

Fig. 3. Illustration of star-shape potential energy function. White region
is the overall desired region.

Partial differentiating the potential energy function described

by (8) with respect to ∆xi, we have:

∂PTi(∆xi)

∂∆xi

=

M1
∑

m=1

k1mmax(0, f1m(∆xi))

(

∂f1m(∆xi)

∂∆xi

)T L
∏

l 6=1

Pl

+

M2
∑

m=1

k2mmax(0, f2m(∆xi))

(

∂f2m(∆xi)

∂∆xi

)T L
∏

l 6=2

Pl

...

+

ML
∑

m=1

kLmmax(0, fLm(∆xi))

(

∂fLm(∆xi)

∂∆xi

)T L
∏

l 6=L

Pl

△
= ∆ζi (9)

Note that when the robot i is outside the desired region, the

control force ∆ζi described by (9) is activated to attract the

robot toward the desired region. When the robot is inside the

desired region, then ∆ζi = 0.

Next, we define a minimum distance between robots by the

following inequality:

gij(∆xij) = r2 − ||∆xij ||
2 ≤ 0 (10)

where ∆xij = xi − xj is the distance between robot i
and robot j and r is a minimum distance between the two

robots. For simplicity, the minimum distance between robots

is chosen to be the same for all the robots. Note from the

above inequality that the function gij(∆xij) is twice partially

differentiable. From (10), it is clear that

gij(∆xij) = gji(∆xji) (11)

and
∂gij(∆xij)

∂∆xij

= −
∂gji(∆xji)

∂∆xji

(12)

A potential energy for the local objective function (10) is

defined as:

Qij(∆xij) =
∑

j∈Ni

kij

2
[max(0, gij(∆xij))]

2 (13)
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where kij are positive constants and Ni is a set of neighbors

around robots i. Any robot that is at a distance smaller than

rN from robot i is called neighbor of robot i. rN is a positive

number satisfy the condition rN > r.

Partial differentiating (13) with respect to ∆xij , we get

∂Qij(∆xij)

∂∆xij

=
∑

j∈Ni

kijmax(0, gij(∆xij))

(

∂gij(∆xij)

∂∆xij

)T

△
= ∆ρij (14)

Note that ∆ρij is a resultant control force acting on robot

i by its neighboring robots. Similarly, when robot i main-

tains minimum distance r from its neighboring robots, then

∆ρij = 0. The control force ∆ρij is activated only when the

distance between robot i and any of its neighboring robots

is smaller than the minimum distance r. We consider a bidi-

rectional interactive force between each pair of neighbors.

That is, if robot i keeps a distance from robot j then robot

j also keeps a distance from robot i.
Next, we define a vector ẋri as

ẋri = ẋo − αi∆ζi − γ∆ρij (15)

where ∆ζi is defined in (9), ∆ρij is defined in (14), αi and

γ are positive constants. Let

∆ǫi = αi∆ζi + γ∆ρij , (16)

we have

ẋri = ẋo − ∆ǫi (17)

When the robot i keeps a minimum distance from all its

neighboring robots inside the desired region (as illustrated

in figure 4), then ∆ǫi = 0.

Fig. 4. Desired region seen by robot i

Differentiating (15) with respect to time we get

ẍri = ẍo − ∆ǫ̇i (18)

A sliding vector for robot i is then defined as:

si = ẋi − ẋri = ∆ẋi + ∆ǫi (19)

where ∆ẋi = ẋi − ẋo. Differentiating (19) with respect to

time yields

ṡi = ẍi − ẍri = ∆ẍi + ∆ǫ̇i (20)

where ∆ẍi = ẍi − ẍo. Substituting equations (19) and (20)

into (1), and using property 4 we have

Mi(xi)ṡi + Ci(xi, ẋi)si + Di(xi)si

+Yi(xi, ẋi, ẋri, ẍri)θi = ui (21)

where Yi(xi, ẋi, ẋri, ẍri)θi = Mi(xi)ẍri + Ci(xi, ẋi)ẋri +
Di(xi)ẋri + gi(xi). The controller for multi-robot systems

is proposed as

ui = −Ksisi − Kp∆ǫi + Yi(xi, ẋi, ẋri, ẍri)θ̂i (22)

where Ksi are positive definite matrices, Kp = kpI , kp is a

positive constant and I is an identity matrix. The estimated

parameters θ̂i are updated by

˙̂
θi = −LiY

T
i (xi, ẋi, ẋri, ẍri)si (23)

where Li are positive definite matrices.

The closed-loop dynamic equation is obtained by substituting

(22) into (21):

Mi(xi)ṡi + Ci(xi, ẋi)si + Di(xi)si + Ksisi

+Yi(x, ẋ, ẋri, ẍri)∆θi + Kp∆ǫi = 0 (24)

where ∆θi = θi− θ̂i. Let us define a Lyapunov-like function

for multi-robot systems as

V =
N

∑

i=1

1

2
sT

i Mi(xi)si +
N

∑

i=1

1

2
∆θT

i L−1
i ∆θi

+

N
∑

i=1

1

2
αikp

L
∏

l=1

Ml
∑

m=1

klm[max(0, flm(∆xi)]
2

+
1

2

N
∑

i=1

1

2
γkp

∑

j∈Ni

kij [max(0, gij(∆xij))]
2 (25)

Differentiating (25) with respect to time and substituting (23)

and (24) into it, we can show that

V̇ = −

N
∑

i=1

sT
i Ksisi −

N
∑

i=1

sT
i Di(xi)si

−

N
∑

i=1

kp∆ǫT
i ∆ǫi (26)

We are ready to state the following theorem:

Theorem: Consider a group of N robots with dynamic

described by (1), the adaptive control law (22) and the

parameter update laws (23) give rise to the convergence of

∆ǫi → 0 and si → 0 for all i = 1, 2, ..., N , as t → ∞.

Proof: From (26), we can conclude that si and ∆ǫi ∈ L2

and ∆θi is bounded. Differentiating equations (9) and (14),

it can be shown that ∆ζ̇i and ∆ρ̇ij are bounded and hence

∆ǫ̇i is bounded. From (18), ẍri is bounded if ẍo is bounded.

From the closed-loop equation (24), we can conclude that

ṡi is bounded. Applying Barbalat’s lemma [21], we have

∆ǫi → 0 and si → 0 as t → ∞. From (19), ∆ẋi → 0.

Since, ∆ǫi = αi∆ζi + γ∆ρij = 0, reasonable weightages
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for ∆ζi and ∆ρij can be obtained by adjusting αi and γ.

Remark: The proposed controller can be extended to

the case of dynamic region with rotation and scaling. In

this case, the global objective functions can be defined as

follows:

fG(∆xRi)= [fG1(∆xRi), fG2(∆xRi), ..., fGM (∆xRi)]
T

≤ 0 (27)

where ∆xRi = xRi − xo = RS∆xi, R(t) is a time-varying

rotation matrix and S(t) is a time-varying scaling matrix.

The details can be found in [19].

IV. SIMULATION

This section presents some simulation results to illustrate

the performance of the proposed controller. In the simulation,

100 robots are used to form different shapes while moving

along a path specified by xo1
= t, xo2

= 2 sin(t). The mass

of each robot is set to 1 kg. The control gains are set as

Ksi = diag{20, 20}, kp = 4, kij = 250, klm = 0.01, γ = 1
and αi = 1 for all the simulations.

A. Desired Region as a Union of two Triangles

In this section, the group of robots forms a star shape

specified by the union of two triangles. All the 100 robots

are initially spread out as shown in Fig. 5. All the robots

then move toward the desired shape and spread out inside

the desired shape so as to maintain minimum distance among

themselves. The movement of the entire group at various

time instances is shown in Fig. 5.
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Fig. 5. A group of 100 robots forms a star shape as a union of two triangles

B. Desired Region as a Union of two Ellipses

The group of robots, in this case, forms a cross shape

defined by the union of two ellipses. The simulation results

showing the movement of the robots at various time instances

are shown in Fig. 6.
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Fig. 6. A group of 100 robots forms a cross shape as a union of two
ellipses

C. Rotation of a star shape

In this section, the simulation on rotation of desired region

is presented. The group of robots forms a star shape defined

by union of two triangles and move along a straight line

while rotating at the same time. The swarm of robots rotates

counter clockwise about its centroid at the speed of 45◦/s.

Simulation results are presented in Fig. 7 and a square marker

is added at one of the vertices of the star shape to mark the

movement of the rotation.
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Fig. 7. A group of 100 robots forms a star shape and rotates counter
clockwise

D. Static Region with Obstacles Avoidance

The group of robots moves along a corridor towards the

desired region while avoiding obstacles along the pathway.

The grey area represents the boundaries enclosing the obsta-

cles and the walls. When the robot goes into the boundary

area, it will try to move out to avoid hitting the obstacles

or the walls. Positions of all the robots at different time

instances are shown in Fig. 8.
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Fig. 8. A group of 100 robots moves pass the obstacles to form a star
shape

V. CONCLUSION

In this paper, we have proposed a novel method of shape

control based on region control method. Both multiplicative

and additive potential energy functions have been introduced

for shape control of a swarm of robots. The additive potential

energy term is used to form desired region which is the

intersection of different regions whereas the multiplicative

term is used to form desired region as the union of various

regions. With these two approaches, various complicated

shapes can now be formed easily. It has been shown that

all the robots are able to move as a group inside the desired

shape while maintaining minimum distance from each other.

Lyapunov-like function has been proposed for the stability

analysis of the multi-robot systems. Simulation results have

been presented to illustrate the performance of the proposed

controller.
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