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Abstract— The goal of this paper is to serve as a reference
for researchers in robotics and control that are interested
in realistic modeling, theoretical analysis and simulation of
wireless links. To realize the full potentials of networked robotic
systems, an integration of communication issues with motion
planning/control is necessary. While considerable progress has
been made in the area of networked robotic systems, com-
munication channels are typically considered ideal or ideal
within a certain radius of the transmitter, both considerable
oversimplifications of wireless channels. It is the goal of this
paper to provide a comprehensive overview of the key charac-
teristics of wireless channels, as relevant to networked robotic
operations. In particular, we provide a probabilistic framework
for characterization of the underlying multi-scale dynamics of
a wireless link: small-scale fading, large-scale fading and path
loss. We furthermore confirm these mathematical models with
channel measurements made in our building. We also discuss

channel characterization based on the knowledge available on
the geometry and dielectric properties of the environment.

I. MOTIVATION

The unprecedented growth of sensing, communication and

computation in the past few years has the potential of

fundamentally changing the way we understand and process

information. The sensor network revolution has created the

possibility of exploring and controlling the environment in

ways not possible before. The vision of a multi-agent robotic

network cooperatively learning and adapting in harsh un-

known environments to achieve a common goal is closer than

ever. In order to realize this vision, however, an integrative

approach to communication and control issues is essential.

In the robotics and control community, considerable

progress has been made in the area of networked robotic and

control systems. Similarly, in the communications systems

community, rich literature was developed, over the past

decades, for the characterization and modeling of wireless

channels. However, the knowledge available on wireless

link characterization has rarely been used in networked

robotic/control literature, i.e. ideal or over-simplified models

have mainly been used so far. It is therefore the goal of

this paper to provide a reference for the characterization

and modeling of wireless channels for networked robotic

operations.

In a realistic communication setting, such as an urban area

or indoor environment, Line-Of-Sight (LOS) communication

may not be possible due to the existence of several objects

This work was supported in part by ARO CTA MAST grant # W911NF-
08-2-0004 and in part by NSF award # 0812338.

that can attenuate, reflect, diffract or block the transmit-

ted signal. The received signal power typically experiences

considerable variations and can change drastically in even

a small distance. As an example, consider Fig. 1, where

channel measurements in the Electrical and Computer En-

gineering (ECE) building at UNM are shown. It can be seen

that channel can change drastically with a small movement

of the robot. Communication between robotic units can

be degraded due to factors such as shadowing, fading or

distance-dependent path loss [1]. While these factors can

degrade the overall performance of the robotic network

considerably, multi-agent robotic and navigation literature

typically consider ideal links or links that are ideal within a

certain radius of the node.

In this paper, we provide a framework for understanding,

abstraction, modeling and simulation of wireless channels for

networked robotic and control applications, by tapping into

the relevant knowledge available in wireless communication

literature. Our experimental results furthermore assert these

mathematical models. We start by probabilistic characteriza-

tion of wireless channels and their underlying dynamics in

Section II. Our mathematical framework is based on well-

known references in wireless communication literature such

as [1]–[3]. We then discuss different ways of characterizing

a wireless channel based on the knowledge available on the

environment in Section III. We conclude in Section IV.

II. A MULTI-SCALE CHARACTERIZATION OF WIRELESS

CHANNELS

Wireless channels can be categorized into two main groups

of narrowband and wideband [3], depending on the length of

channel delay spread as compared to the transmission data

rate. For narrowband channels, channel frequency response

can be considered flat in the transmission bandwidth. This,

however, is not the case for wideband channels. For most

current robotic applications, the transmission rates are low

enough to consider the channel to be narrowband. There-

fore, in this paper we focus on narrowband channels. The

framework of this paper can be easily extended to wideband

channels by considering channel delay spread. Readers are

referred to Chapter 3 of [3] for more details.

In general, exact mathematical characterization of a wire-

less channel is extremely challenging due to its time-varying

and unpredictable nature. Blocking, reflection, scattering and
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Fig. 1. Channel measurement (top) along a hallway in the basement of ECE
building and (bottom) in the Cooperative Network Lab at the University of
New Mexico.

diffraction are a few examples of phenomena that a trans-

mitted wave experiences. One can possibly solve Maxwell’s

equations with proper boundary conditions that reflect all

physical constraints of the environment. However, such cal-

culation is difficult and requires the knowledge of several

geometric and dielectric properties of the environment, which

is not easily available. In wireless communication systems, it

is therefore common to model the channel probabilistically

with the goal of capturing its underlying dynamics. The

utilized probabilistic models are the results of analyzing

several empirical data over the years. In general, a com-

munication channel between two robotic platforms can be

modeled as a multi-scale dynamical system with three major

dynamics: small-scale fading, large-scale fading and path

loss. We first show an example of these three dynamics

through an experiment. Fig. 2 shows the blueprint of a

portion of the basement of the Electrical and Computer

Engineering building at UNM. We used a Pioneer-AT robot

to make several measurements along more than 70 routes in

the basement, in order to map the received signal strength

(each route is a straight line). The robot is equipped with

an 802.11g wireless card with transmission at 2.4 GHz. The

figure also shows a colormap of our measured received signal

power for the transmitter at location#1. In this paper, we use

this data for analysis and mathematical characterization.

Fig. 3 shows the received signal power across route 1,

as marked in Fig. 2, for the transmitter at location#1 and

Fig. 2. (right) Blueprint of the portion of the basement of the ECE
bldg. at UNM where channel measurements are collected – a colormap
of the measured received signal power is superimposed on the map for the
transmitter at location#1. (left) A magnified inset of the blueprint.

as a function of the distance to the transmitter. The three

main dynamics of the received signal power are marked on

the figure. As can be seen, the received power can have

rapid spatial variations that are referred to as small-scale

fading. By spatially averaging the received signal locally

and over distances that channel can still be considered

stationary, a slower dynamic emerges, which is called large-

scale fading. Finally, by averaging over the variations of the

large-scale fading, a distance-dependent trend is seen, which

is referred to as path loss. In the next sections, we provide an

understanding and modeling of these underlying dynamics.
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Fig. 3. Underlying dynamics of the received signal Power across route
1 of Fig. 2 and for transmitter location#1. The solid blue curve is the
measured received power which exhibits small-scale fading. By averaging
locally over small-scale variations, the underlying large-scale variations can
be seen (light gray curve). The average of the large-scale variations then
follows the distance-dependent path loss curve (dashed line).

A. Small-Scale Fading (Multipath Fading)

Due to the range of the carrier frequencies used for wire-

less transmissions, a wireless transmitted signal is considered

a bandpass signal (See Appendix A of [3]). For the ease

of mathematical derivations, however, it is common to work
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with the baseband equivalent of the signal.1 When a wireless

transmission occurs, replicas of the transmitted signal will

arrive at the receiver due to phenomena such as reflection and

scattering. Each of these replicas is referred to as a path. Let

u(t) and s(t) represent the baseband equivalent transmitted

and received signals respectively. We have the following for

the case of a mobile transmitter or receiver, by considering

all the paths that arrive to the receiver:

s(t) =

N(t)
∑

n=1

αn(t)u(t − τn(t))ejφn(t)−j2πfcτn(t)

︸ ︷︷ ︸

r(t)

+w(t),

(1)
where N(t) represents the total number of paths that arrive

at the receiver at time t, fc is the carrier frequency, and

αn, τn and φn are the attenuation, delay and Doppler phase

shift of the nth path respectively. w(t) denotes sample of

the receiver thermal noise at time t and r(t) represents the

noiseless part of the received signal. If both transmitter and

receiver are moving, the phase term can be easily extended

to account for double mobility [4]. Let τmax(t) = max
n

τn(t)

and τmin(t) = min
n

τn(t). For narrowband channels, we have

u
(
t − τmax(t)

)
≈ u

(
t − τmin(t)

)
, resulting in r(t) = u

(
t −

τmin(t)
)
h(t), where

h(t) =

N(t)
∑

n=1

αn(t)ejφn(t)−j2πfcτn(t) (2)

represents the baseband equivalent channel. As can be seen,

different paths can be added constructively or destructively

depending on the phase terms of individual paths. As a

result, with a small movement, the phase terms can change

drastically, resulting in the rapid variations of the channel.

Such rapid variations are referred to as small-scale fading

(multipath fading) and can be seen from Fig. 3. The higher

the number of reflectors and scatterers in the environment,

the more severe small-scale variations could be.
1) Parameters of Importance: Let PT represent the power

of the transmitted signal. Then, Pr(t) = E[ |r(t)|2 | h(t)] =
PT |h(t)|2 represents the power of the noiseless part of the

received signal. Received Signal to Noise Ratio, SNR(t),
an important parameter in characterizing the quality of a

wireless link, is defined as the ratio of the received sig-

nal power divided by the receiver thermal noise power:

SNR(t) = Pr(t)
Pw

, where Pw is the power of w(t). Received

signal power and SNR are key factors in determining whether

a received packet will be kept and used in the receiving

robot or not. Since both are functions of |h(t)| (PT and

Pw are time-invariant), we next focus on characterizing the

underlying dynamics of |h(t)|.
2) Distribution of Small-Scale Fading: In the wireless

communications literature, several efforts have been made in

order to mathematically characterize the behavior of small-

scale fading. As can be seen from Fig. 3, the small-scale

1Let ξbb represent the baseband equivalent of the bandpass signal ξ. We
have ξ = Re{ξbbe

j2πfct}, where fc is the carrier frequency. Everything
derived for the baseband equivalent can be equivalently extended to the
original bandpass signal.

fading curve is non-stationary over large distances as its

average is changing. Therefore, it is common to characterize

the behavior of it over small enough distances where channel

(or equivalently Pr and SNR) can be considered station-

ary. Then, the behavior of the average of the small-scale

variations is characterized in order to address the behavior

over larger distances, as we shall see in the next part. Over

small enough distances where channel (or equivalently the

receiver signal power) can be considered stationary, it can be

mathematically shown that Rayleigh distribution is a good

match for the distribution of |h(t)| if there is no Line Of

Sight (LOS) path while Rician provides a better match if an

LOS exists. These distributions also match several empirical

data. A more general distribution that was shown to match

empirical data is Nakagami distribution [3], which has the

following pdf for z(t) where z(t) = |h(t)|:

p(z) =
2mmz2m−1

Γ(m)P
m

z

exp

[−mz2

P z

]

, (3)

for m ≥ 0.5, where m is the fading parameter, P z =
E[|h(t)|2] and Γ(.) is the Gamma function. If m = 1, this

distribution becomes Rayleigh whereas for m = (m
′

+1)2

2m′+1
,

it is reduced to a Rician distribution with parameter m
′

.

Similarly, distributions of the power of the channel (|h|2),

Pr and SNR can be derived by a change of variables. Such

distributions can be very helpful in generating realistic com-

munication links for the purpose of mathematical analysis as

well as simulation in robotic networks.

3) Justification of the Distribution for Small-Scale Fading:

While the aforementioned distributions matched several em-

pirical data, as reported in wireless communications litera-

ture, mathematical justifications also exist. For instance, from

Eq. 2, it can be seen that both the in-phase and quadrature

components of h(t) consist of a number of terms (as long as

there are enough reflectors or scatterers). For the case of no

LOS path, it can be shown that the in-phase and quadrature

components are zero mean. Therefore, by evoking Central

Limit Theorem, the in-phase and quadrature components will

have a zero-mean normal distribution, resulting in a Rayleigh

distribution for |h(t)| and an exponential distribution for Pr

and SNR.

Fig. 4 shows the probability density function (pdf) and

cumulative distribution function (cdf) of a part of the small-

scale variations2 of the data of Fig. 3. It can be seen that the

distribution of the gathered data matches power distribution

for Nakagami fading with parameter m = 1.9 well. Note that

since the distribution of the power of the received signal, Pr,

is plotted, the figure does not show a Nakagami distribution

directly. It shows the power distribution of Nakagami fading,

i.e. the distribution of a non-negative variable whose square

root has a Nakagami distribution.

B. Large-Scale Fading (Shadowing)

As discussed in the previous part, the received wireless

signal is non-stationary over large distances. While small-

2The part is chosen such that the data can be considered stationary.
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Fig. 4. Nakagami match for small-scale fading for gathered data in route
1 of Fig. 3 with transmitter at location#1 – (top) pdf and (bottom) cdf.

scale fading characterizes the behavior of the channel over

a small distance, it does not suffice for characterizing the

channel over larger distances. Small-scale variations are the

result of a number of paths arriving at the receiver at

approximately the same time but being added constructively

or destructively depending on their phase terms, resulting

in rapid variations. Once we average over small-scale varia-

tions, another dynamic can be observed which changes at a

slower rate. Let P z = E[|h(t)|2] represent average power of

the channel (averaged over small-scale fading), as defined for

Eq. 3. This signal (and similarly P r = P zPT ) varies over

larger distances and is referred to as large-scale fading or

shadowing. Large-scale fading is the result of the transmitted

signal being possibly blocked by a number of obstacles

before reaching the receiver. Empirical data has shown P z

to have a lognormal distribution. Let P z,dB = 10 log10(P z).
We have the following for the distribution of P z,dB:

p(P z,dB) =
1√

2πσdB

e
−

(P z,dB−µdB)2

2σ2
dB , (4)

where µdB = KdB − 10γ log d and σdB is the standard

deviation of P z,dB. Consider the distance-dependent path

loss, µ = K/dγ , where d represents the distance between

the transmitting and receiving robots and γ denotes the

power fall-off rate. Then, it can be seen from Eq. 4 that

µdB = 10 logµ = KdB − 10γ log d represents the average of

the large-scale variations. Note that P r = E[Pr] and SNR

will also have lognormal distributions.

1) Justification of Lognormal Distribution for Large-Scale

Fading: While several empirical data confirmed lognormal

distribution to be a good fit for characterizing large-scale

fading, there is also a mathematical justification for this

distribution. Consider the nth path from the transmitter to

the receiver (as in one of the terms of Eq. 2). Each obstacle

on the way of this path attenuates the transmitted signal. Let

ln,j represent the distance the nth path travels inside the jth

obstacle on its way. Let βn,j denote the decay rate of the

wireless signal in the jth obstacle. Then, we have

αn,j,obs = e−βn,jln,j , (5)

where αn,j,obs represents the attenuation caused by the jth

obstacle on the nth path. This results in the following

attenuation on the nth path by all the obstacles:

αn,obs = e−
∑

j
βn,jln,j . (6)

By evoking the Central Limit Theorem, log of αn,obs will

have a normal distribution, resulting in a lognormal distribu-

tion for large-scale fading.

Fig. 5 shows the pdf and cdf of large-scale fading for

all the collected data in the basement of ECE building, as

shown in Fig. 2, and for the transmitter at location#1. In

order to access the large-scale variations, the gathered data

of each route (such as the small-scale variations shown in

Fig. 3) is averaged locally over small-scale fading. It should

be noted that the large-scale variation is still non-stationary

as its average changes with distance. The distance-dependent

path loss component for each route can be easily estimated

by finding the best linear fit that relates the log of the

received power of the collected data to log d (see Fig. 3

for an example). We then remove the distance-dependent

average from large-scale variations before characterizing the

distribution of the collected data. As a result, the distribution

of the gathered data should match a zero-mean log-normal

distribution. It can be seen, from Fig. 5, that the distribution

of the log of the large-scale variations (after removing the

distance-dependent average) matches a zero-mean normal

distribution very well. The standard deviation for this match

is σdB = 2.8.

C. Distance-dependent Path Loss

It can be seen from Eq. 4 that the distance-dependent

path loss, characterized as KdB − 10γ log d, is the average

of the large-scale variations. This completes the relationship

between the three underlying dynamics: small-scale fading,

large-scale fading and path loss. As mentioned earlier, the

distance-dependent path loss component can be found by

finding the best linear fit that relates the log of the received

signal power to the log d. For instance, for the data of Fig.

3, path loss component can be characterized as −12.89 −
33 log d. It should be noted that the parameters of path loss

curve, such as exponent γ, vary from route to route.

In current robotics and control literature, it is common to

use disc models to model wireless channels. It is noteworthy

that this over-simplified model only considers path loss. It

furthermore assumes the same parameters for the path loss
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Fig. 5. (top) pdf and (bottom) cdf of the log of large-scale fading (after
removing the distance-dependent path loss) for all the data gathered in the
basement of ECE Bldg., and its normal distribution match.

of all routes in the environment. Therefore it is only a very

crude representation after considerable averaging is done.

III. MODELING AND SIMULATION OF WIRELESS

CHANNELS FOR NETWORKED ROBOTICS AND CONTROL

In this section, we briefly discuss different possibili-

ties for modeling of wireless channels for the purpose of

mathematical analysis or simulation in robotic networks. In

general, what we know about the environment, in terms of

locations and properties of objects, can play a key role in

characterizing wireless channels.

A. Probabilistic Characterization

The probabilistic framework of the previous section is

a powerful tool for both mathematical analysis involving

wireless channels and developing simulation environments.

Such probabilistic approaches have been extensively used in

wireless systems literature since they generate channels that

have similar behavior to real wireless channels. In particular,

they are useful when little knowledge is available on the

geometry and/or dielectric properties of the environment.

In order to generate a realistic wireless environment for

both theoretical analysis as well as simulation environments,

channel can be modeled as a non-stationary random process

(small-scale fading) with a Rayleigh, Rician or Nakagami

distribution. Then the average of the power of this process

will have a lognormal distribution with a mean that follows

the distance-dependent path loss. The parameters of the three

dynamics can be varied to meet the level of fading that the

specific scenario requires. For a theoretical framework, this

allows for a probabilistic analysis of the overall cooperative

robotic performance.

Example 1: Consider the case where the goal of a robotic

network is cooperative target tracking in a given area and in a

limited time. The overall MSE of target trajectory estimation

will then be a function of all link qualities. If the exact

spatial map of the channel between any two nodes is not

available (which is typically the case), then probabilistic

analysis should be performed. In the area of interest, channels

can be modeled probabilistically, based on the framework

of the previous section. The final MSE becomes a random

variable through its dependency on the channels. Then one

can characterize the average of MSE (averaged over channel

variables) or the probability distribution of it.

Example 2: In packet-dropping receivers, those packets

with quality below a certain level are dropped. This translates

to channel SNR being below a given threshold (SNRth).

Then the probability that a wireless link exists, between two

nodes, can be easily calculated using the distributions of

the previous section. For instance, for a Rayleigh-distributed

small-scale fading, the probability that the link quality is

above a certain threshold can be characterized as follows:

Prob(link exists) = Prob(SNR > SNRth) = e−SNRth/SNR,

where SNR represents the average of SNR over small-scale

fading. However, we know from the analysis of the previous

section that SNR is non-stationary unless the considered

distances are small enough. As a result, SNR will be a

random variable itself:

log SNR ∼ normal R.V. with mean following path loss.

This means that the probability that a link exists should

be modeled as a random process whose distribution can

be derived using the distribution of large-scale fading and

distance-dependent path loss.

1) Which Scale to Use?: As was seen in the previous

section, there are three underlying scales associated with a

wireless channel. Depending on the scenario, all or some

of these scales should be considered. For instance, if the

area of interest is small enough, only considering stationary

small-scale variations could be enough. For most robotic

applications, however, the distances travelled could be large

enough that large-scale variations and path loss should also

be considered. If the distance between consecutive channel

usages is large enough, large-scale variations and path loss

could also become dominant factors.

2) Channel Spatial Correlation: Thus far we discussed

characterizing the distribution of a wireless channel at a

single position (or equivalently at a time instant). What is

left is a characterization of channel spatial correlation, i.e.

how fast the small-scale and large-scale fading components

are changing spatially. Depending on the speed of the robots

and how often they are communicating, channel could be

assumed spatially uncorrelated. In general though, a wireless

channel is spatially correlated. Spatial correlation of small-

scale fading depends on the speed of the robots, frequency
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of operation and antenna beamwidth/gain, among several

other factors. The least correlation is typically observed when

there exists a rich scatterer/reflector environment that results

in a uniform angle of arrival of the paths. In such cases,

the Fourier transform of the auto-correlation function of

small-scale fading will have a form that is referred to as

Jakes spectrum [1] and channel uncorrelates on the order

of 0.4 times the wavelength (5 cm for 2.4 GHz WLAN

transmission). If this is not the case, spatial correlation

function of small-scale fading can be mathematically derived

for a general case [1]. Double mobility (the case where

both transmitting and receiving nodes are moving) has an

interesting effect on small-scale fading as it is shown to

increase its spatial correlation [4]. For large-scale fading,

there is less mathematical characterization of spatial cor-

relation. Gudmundson [5] characterizes an exponentially-

decaying spatial correlation function for large-scale fading,

based on outdoor empirical data, which is widely used.

B. Case of Known Environment

If all the information about object positions, geometry

and dielectric properties is available, ray tracing methods

could be used to find a spatial map of the received signal

strength in the area of interest. A ray tracer [6] follows all

or some of the reflected, diffracted or scattered multipaths

in the environment. There are several developed software,

such as Wireless InSite [7] and Motorola’s Wireless LAN

Planner and Site Scanner, that are aimed at generating a

map of the received signal strength based on ray tracing.

While it is possible to use such software for evaluating the

performance of a robotic network in a certain environment,

assessing the exact coefficients associated with the dielectric

properties of the objects could be challenging. Furthermore,

unlike probabilistic characterizations of the previous section,

ray tracing approaches are not suitable for mathematical

analysis since they simply generate a received signal map

for a specific environment.

C. Case of Partially Known Environment

While it may not be possible to know all the specifica-

tions of the environment of interest, partial knowledge on

the objects may be available. In robotic applications, the

positions and geometry of some of the objects are learned for

navigation purposes. Such knowledge can be used to generate

an approximated map of the received signal strength. For

instance, the received signal power in dB, Pr,dB, at position
−→x , can be approximated as follows by following the LOS

path and considering only large-scale fading and path loss:

Pr,dB(−→x ) ≈ PT,dB
︸ ︷︷ ︸

TX power

+ KdB − 10γ log d
︸ ︷︷ ︸

path loss (≤0)

−ζ
∑

j

β̂los,j llos,j

︸ ︷︷ ︸

large-scale fading

, (7)

where ζ = 10/ ln(10), path loss parameters are as defined

earlier and β̂los,j and llos,j denote the approximated decay

rate of the LOS path and its travelled distance in the jth

obstacle on its path respectively. Other terms can be added

to account for reflections, scattering or diffraction. However,

predicting the exact received signal strength map, based

on partial knowledge, is considerably challenging and can

mount to non-negligible errors. For simulation purposes, one

can also combine partial environment-specific knowledge

with probabilistic components in order to generate a more

realistic channel. For instance, a small-scale fading variable

can be added to the received power generated from Eq. 7.

Fig. 6 shows simulated binary maps of the received signal

power where black areas indicate regions with the received

signal strength below an acceptable threshold while white

areas denote otherwise. The left figure shows an example of

a channel generated based on knowing the positions of the

obstacles and considering only large-scale fading and path

loss, as indicated by Eq. 7, and for the transmitter location as

indicated. The right figure shows the same map after adding

a Rician-distributed small-scale fading to it, which shows a

more realistic case.

Fig. 6. Examples of a binary channel (white areas indicate that
channel quality is above a threshold) – (left) channel generated
based on knowing the positions of the obstacles and considering
only large-scale fading and path loss and (right) the same channel
after adding Rician-distributed fading.

IV. CONCLUSIONS

The goal of this paper was to provide a reference for

researchers in robotics and control that are interested in

realistic characterization of wireless links. By utilizing the

knowledge available in wireless communication literature,

we provided a comprehensive overview of the key char-

acteristics of wireless channels: small-scale fading, large-

scale fading and path loss, for networked robotic and control

operations. We furthermore confirmed these mathematical

models with channel measurements made in our building.

Finally, we discussed channel characterization based on the

knowledge available on the environment.
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