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Abstract— Although there have been much research on robot
walking, the energy efficiency of central pattern generator
(CPG)-based walking has not received much attention. This
study proposes a novel method for acquiring energy-efficient
CPG-based bipedal walking for a robot with knees and feet. In
this method, we introduce a torque-free period for swing leg
control into the swing leg control cycle. During this period, no
torque is applied to the hip joint controller, and therefore no
energy is consumed. When and for how long the torque-free
period is inserted into the swing leg control cycle is adaptively
acquired by reinforcement learning. Simulation experiments
demonstrate the feasibility of our method. The energy consumed
in acquiring walking is reduced by 40% compared with simple
CPG-based walking without the torque-free period in the
practical learning speed. Walking stability is maintained with
respect to external disturbances on a level floor. Although the
method is more unstable on slopes with the torque-free period,
the torque-free-period can be adaptively eliminated to achieve
stable walking on the slopes.

I. INTRODUCTION

Bipedal walking is one of the major research topics in
current humanoid robotics, and researchers have developed
various controllers such as the quasi-passive dynamic (QPD)
controllers [1], [2], [3], [4], [5], controllers based on the zero-
moment point (ZMP) [6], and controllers based on central
pattern generators (CPG) [7], [8], [9].

ZMP-based control usually consumes a large amount of
energy to maintain the desired trajectory [10]. In contrast,
QPD control is based on passive dynamic walking (PDW)
control [11], which enables completely unactuated walking
on a gentle decline. Because it is widely known that PDW is
generally sensitive to the robot’s initial posture, speed, and
disturbances incurred when a foot touches the ground, QPD
controllers have been proposed, in which some actuators are
activated in a supplementary role to handle disturbances. Al-
though the parameters in a QPD controller are less sensitive
than those in PDW control, adjustments are still required,
and this requirement becomes stricter when operating in
non-stationary and/or unknown environments. Studies exist
that have applied reinforcement learning to the autonomous
adjustment of parameters [4], [12]. ZMP-based control and
PDW control seem to be on opposite ends of the spectrum
with respect to the trade-off between energy efficiency and
walking stability.

Neurobiological studies have revealed that rhythmic motor
patterns are produced by neural oscillators called CPGs [13].
It has also been suggested that sensory feedback signals

TABLE I
PHYSICAL PARAMETERS OF ROBOT

Body Thigh Shank Foot
Length [m] 0.312 0.280 0.317 0.180
Weight [kg] 6.646 0.673 0.707 0.398

play an important role in stabilizing rhythmic movements
by coordinating the physical system with the CPGs. Based
on these observations, Taga et al. devised a model of the
lower half of a human body (a biped robot) and a CPG
controller, and applied these in simulations of human-like
biped walking [7]. To achieve this biped walking, however,
it was necessary to determine CPG parameters which is
dependent on the target physical system (robot) and the
environment. Various studies have applied reinforcement
learning to the autonomous adjustment of parameters [9],
[8]. The energy efficiency of CPG-based walking, however,
has not received much attention.

This study proposes a novel method to enable a robot with
knees and feet to acquire energy-efficient CPG-based bipedal
walking. For energy efficiency, we introduce a torque-free
period in the swing leg control during which no torque is
applied to the hip joint controller. When and how long the
torque-free period is inserted into the swing leg control cycle
is acquired by reinforcement learning adaptable to changes
in the environment.

This paper is organized as follows. In Section II, we
describe the robot model, control system, and learning al-
gorithm. Simulation settings and results are given in Section
III. Finally, in Section IV we present our conclusions and
future works.

II. LEARNING CPG-BASED
ENERGY-EFFICIENT CONTROL

A. Robot Model

Fig. 1 and Table I specify the robot model and physical
parameters used in this study. The robot model has seven
links and six joints. The model consists of links called Body,
Thigh, Shank and Foot, and joints called Hip, Knee and
Ankle. The feet are flat. The range of the Hip joint is from
-51 [deg] to 51 [deg] and that of the Ankle joint from -
26 [deg] to 26 [deg]. We used the open dynamics engine
(ODE) [14] for simulation.
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Fig. 1. Robot Model

B. Criteria for energy efficiency

To compare energy efficiency between humans and robots
of different sizes, Collins et al. proposed the specific ener-
getic cost of transport Cet, and the specific mechanical cost
of transport Cmt [15]. Whereas Cet uses the total energy
consumed by the system, Cmt considers only the positive
mechanical work of the actuators. Throughout this paper,
we refer to Cmt, which is defined as

Cmt =
Energy consumed by motors[J]

Robot′s weight[kg] × Walking distance[m]
. (1)

C. CPG Controller

In general, bipedal walking comprises an initiation phase
and a maintenance phase. This study focuses on control of
the maintenance phase. In the initiation phase, the robot starts
walking with the predetermined initial joint angle of the Hip
and with the initial horizontal velocity of the Body. The
walking distance is measured as the horizontal displacement
of the robot’s center of mass during an episode.

In the maintenance phase, CPG control is applied at the
Hip. The Knees and Ankles are controlled in accordance with
the state of the CPG. We employed a CPG controller adapted
from Cohen’s models [16] because the parameterization
thereof is designed for cyclic motion such as walking. Our
CPG controller is designed as

γ̇ = ur + κθ̇StanceAnkle, (2)
ζ = uA sin(γ), (3)

where ζ is the output of the CPG controller and is used as
the desired Hip angular velocity. This desired joint angular
velocity was realized by the internal PID controller of
the ODE. κ is the Ankle feedback gain, ur specifies a
constant angular velocity, and uA is the amplitude of the
CPG controller. For both Knees and Ankles, we designed
two different controllers for the swing leg and stance leg,
respectively. A bang-bang controller is used for the knee of
the swing leg to prevent it from hitting the ground and to
extend it. The Ankles are controlled to keep the feet parallel
to the ground. The Knee of the stance leg is kept extended by
constant torque. The stance and the swing leg are changed

Fig. 2. Overview of CPG-output trajectory

Fig. 3. Hip torque pattern without torque-free period (upper) and with
torque-free period (lower)

by ζ, cf. Fig. 2. Tn indicates the time when both feet touch
on the ground at the nth walking step.

For energy efficiency, we introduced torque-free periods
as illustrated in Fig. 3. The controller does not generate any
torque input to the Hip joint during the torque-free period
which starts at time t1 and ends at t2. Because t1 and t2
are meant to be dependent on the walking environment,
reinforcement learning was applied to acquire a t1 and t2
suited to the environment in an online fashion.

D. Reinforcement Learning

In this study, the robot searches for low-energy consump-
tion walking to adjust the torque-free start and end times. We
applied reinforcement learning because it enables the robot
to learn adapt to variations in the environment including its
body parameters without having a clear model of the robot
and environment.
We applied the GARB algorithm [17]. With this algorithm,
the robot selects the torque-free start time ti1 and end time
ti2 for the ith episode by policy π, which is parameterized
as vector Ti. While walking, the robot is in state S, which
contains the joint angle and angular velocity and the walking
distance. After walking a certain distance, the robot is given
a reward, ri. The aim of the robot is to maximize the
average reward by updating the policy, parameterized by Ti

as π
(
Ti|Ti

)
. After the ith episode, the parameter vector for

the next step Ti+1 is updated using reward ri+1, baseline
Bi+1, and eligibility trace Zi+1.

Ti+1 = Ti + αp∇Ti (4)

ei+1 =
∂

∂Ti

ln
(
π

(
ti|Ti

))
(5)

Zi+1 = ei + βZi (6)
Bi+1 = Bi + (ri − Bi) /i (7)
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TABLE II
LEARNING RATE αp

Episode 1～100 101～200 201～300 301～400 401～
αp 0.1 0.05 0.01 0.005 0.001

TABLE III
CPG PARAMETERS

α ua uη ur κ

1.0 2.0 0.0 2.1 1.8

∇Ti = αp (ri+1 − Bi+1)Zi+1, (8)

where αp is the learning rate.

E. Learning of the torque-free period

The torque-free period start time ti1 and end time ti2 are
generated by a stochastic policy π, which is a 2-dimensional
Gaussian function with mean Ti and covariance matrix Σ.
More specifically, the policy function is defined as

π
(
Ti|Ti

)
=

1
(2π)Σ(1/2)

exp
{
−1

2
(
Ti − Ti

)T
Σ−1

(
Ti − Ti

)}
, (9)

Ti =

[
t
i
1

t
i
2

]
, (10)

where Σ = diag(σ2
1 , σ2

2), andσ2
1 and σ2

2 were both set to
0.04. The eligibility e is defined as

ei
′ =

 ti
1−ti

1
σ2
1

ti
2−ti

2
σ2
2

 . (11)

Because the update value of the policy is proportional to σ2
1

and σ2
2 , the eligibility vector is

ei =

[
ti1 − ti1
ti2 − ti2

]
. (12)

The reward function was defined as the inverse of Cmt.

ri = 1/Cmt

=
Robot′s weight[kg] × Walking distance[m]

Energy consumed by motors[J]
(13)

This reward function is suitable for our purpose because
the reward increases in value as the robot walks further
and consumes less energy. Thus, after learning, the robot
should be able to walk a longer distance while consuming
less energy.

III. EXPERIMENTS

In this section, we investigate the feasibility of our method
through simulation experiments.

TABLE IV
SCOPE OF THE GRID SEARCH

α ua uη ur κ

-2.0∼2.0 0.0∼3.0 -1.0∼1.0 0.0 ∼ 3.0 0.0 ∼ 2.0

A. Settings

We first applied our method to a robot on level ground.
One learning episode was defined in which the robot com-
pleted 10 [m] of walking or falling down. Policy π was
updated as each episode terminated. The learning rate αp

was changed in a simulated-annealing fashion to stabilize
learning, cf. Table II. Discount factor β for the eligibility
trace was set to 0.80. Initial parameters t1 and t2 were both
set to 0.5 [s], which represents half of the walking cycle.
Walking started with θHip = 7.6[deg], v = 0.175[m/s].
The other parameters for the CPG controller are given
in Table III. The CPG parameters and initial conditions
(position and angular velocity of center of gravity) were
determined so as to enable the robot to walk the longest
distance on the flat surface. The ranges of the parameters
used in the grid search are shown in Table IV. Having
observed the duration of all the walking, we finally applied
the CPG parameters and initial conditions under which the
robot had walked the furthest.

Next, we investigated the robustness of the acquired walk-
ing against disturbances. Disturbances (20 [N] forward and
backward horizontally) were applied to the robot’s body
for 0.1 [s] after 0.4 [s] of each trial. All other parameters
remained the same as in the previous learning experiment.

Finally, we investigated the online adaptability of the
controller, with the torque-free period, to an environmental
change. The environment initially consisted of level ground
for 2 [m], but then changed to an ascending slope of
0.02 [rad] (1.2 [deg]). We made sure that the robot was
unable to climb up this slope with the torque-free period
determined by the first experiment. Because we also made
sure that the robot was able to climb up the slope without the
torque-free period, the torque-free period was expected to be
eliminated by learning. The learning algorithm and parameter
αp were not changed. The initial values were set to W =[

0.3602 0.6714
]T

e =
[
−0.01286 −0.0001908

]T

,

and B =
[

0.05392 −0.005343
]T

, as obtained in the first
experiment.

B. Return map analysis

To quantify the stability of our nonlinear, stochastic,
periodic trajectory, we measure the eigenvalues of the return
map [18]. For each step we estimated the difference between
xn, the state value of the nth step, and the equilibrium of
the return map x∗

(xn+1 − x∗) = A(xn − x∗), (14)

where x represents the state value of the robot on a Poincaré
section, the Hip’s angle and the angular velocity of the nth
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Fig. 4. Average reward

Fig. 5. Movement in Cmt (Moving Average over 100 episodes)

step,
xn =

[
θHip

n θ̇Hip
n

]
. (15)

In this study, we assume that x∗ is the average of the Hip’s
angle and angular velocity without any disturbances during
the episodes. A is solved by

A = YXT
(
XXT

)−1
, (16)

where,

X =
[

x1 − x∗ x2 − x∗ · · ·xi − x∗
]
, (17)

Y =
[

x2 − x∗ x3 − x∗ · · ·xn+1 − x∗
]
. (18)

If the eigenvalue of A exists within a unit circle, it means
that the robot walking is stable.

C. Results

1) Learning of the torque-free period: Fig. 4 shows the
average of the rewards for five trials. Error bars denote the
standard deviation over 100 episodes for all the trials. Fig. 4
shows the average of Cmt over five trials. These figures
indicate successful learning.

Fig. 6 shows the average of the torque-free start time t1
and end time t2. The torque-free time increases with each
episode, suggesting that the energy-saving walking control
is being acquired. Table V compares the energy efficiency

TABLE V
COMPARISON OF Cmt

ASIMO CPG without CPG with Human
torque-free torque-free

Cmt 1.60 0.58 0.29 0.05
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Fig. 6. Movement in Torque-free start time t1 and end time t2 (moving
average over 100 episodes)

of our method with that of other methods. According to this
table, Cmt for our method, without torque-free times, is half
that of CPG-based walking.

2) Stability analysis against disturbances: Table VI gives
the eigenvalue for each disturbance pattern , shows that the
CPG control with torque-free periods needs more steps to
return to stable walking than that without the torque-free
periods than that without the torque-free periods. Although
CPG-based walking is relatively stable to our method when
there are no disturbances. Our method enables more stable
walking against disturbances.
Fig. 7 presents return maps. Colors are assigned correspond-
ing to the number of steps from the time when distur-
bance was given. These figures depict the torque-free period
contributes to the return to stable walking. The spread of
plots from our method is clearly smaller than that under
the forward disturbance condition. For the against condition,
although both spreads appear to be the same, there is a
difference. The red and green plots for the method without
torque-free time spread haphazardly, whereas the same color
plots for our method have similar features. Most green plots
exist in the upper diagonal, and all orange plots exist under it.
These results imply that torque-free time works as a stabilizer
against disturbance.

3) Online adaptation to circumstances: Fig. 8 shows an
example development of the torque-free period on a slope of
1.2 [deg], moving-averaged over 20 episodes, while Fig. 9
presents the corresponding development of walking distance
through learning. These figures indicate that the walking
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TABLE VI
EIGENVALUE OF RETURN MAP A. ( · ): ABSOLUTE VALUE

without forward against
disturbance disturbance disturbance

without 0.064±0.101i 0.318, -0.234 0.378, -0.109
torque-free ( 0.120 )

with -0.200, 0.129 0.140±0.164i 0.326, 0.0345
torque-free ( 0.216 )

Fig. 7. Return map for a lateral disturbance: (upper) without torque-free
time, and (lower) with torque-free time. Red: just after disturbance. Green:
1 step after disturbance. Purple: after 2 steps. Blue: after 3 steps. Black:
after 4 steps.

distance was gradually improved, while the energy-efficiency
was dramatically improved.

We additionally confirmed that the robot was able to climb
up a steeper slope. These figures again indicate successful
learning. Figs. 10 and 11 show the results obtained in the
case of a slope of 2.0 [deg].

IV. CONCLUSION

In this paper, we proposed a method to improve the energy
efficiency of a bipedal walking robot, control of which is
based on CPG with reinforcement learning. We compared
energy efficiency with the ZMP-based controller and conven-
tional CPG-based controller, and showed that a conventional
CPG-based walking resides between ZMP-based walking
and human walking with respect to energy efficiency. We

Fig. 8. Development of torque-free period (moving average over 20
episodes) on a slope
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Fig. 9. Transition of walking distance (moving average over 20 episodes)
on the slope

TABLE VII
CPG PARAMETERS FOR STEEPER SLOPE

α ua uη ur κ

1.0 2.74 0.0 2.63 2.72
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Fig. 10. Torque-free period on a slope of 2.0 [deg], moving-averaged over
20 episodes.
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Fig. 11. Walking distance on a slope of 2.0 [deg], moving-averaged over
20 episodes.

showed that CPG-based control resides between ZMP-based
control and QPD control with respect to energy efficiency.
The key to our method is two-fold: (1) a torque-free period
is introduced to the cycle of swing leg control, and (2) the
inverse of the specific mechanical cost of transport Cmt

is employed as the reward for reinforcement learning. We
discussed its effect on energy-saving for physical reasons
and demonstrated the performance of our method through
simulation experiments with reinforcement learning. After
learning on level ground, the value of Cmt was half that
of the conventional CPG-based walking controller, and this
is relatively close to that of a typical quasi-passive dynamic
walking controller [19]. We also showed that our method did
not alter the robustness against disturbance on level ground
much. We further demonstrated that our method improved
the ability to climb up slopes by decreasing the torque-
free period, which decreased energy-efficiency but increased
walking stability.
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