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Abstract— Flapping-wing air vehicles can improve efficiency
by running at resonance to reduce inertial costs of accelerating
and decelerating the wings. For battery-powered, DC motor-
driven systems with gears and cranks, the drive torque and
velocity is a complicated function of battery voltage. Hence,
resonant behavior is not as well defined as for flapping-wing
systems with elastic actuators. In this paper, we analyze a
resonant drive to reduce average battery power consumption
for DC motor-driven flapping-wing robots. We derive a nondi-
mensionalized analysis of the generic class of a motor-driven
slider crank, considering motor and battery resistance. This
analysis is used to demonstrate the benefits of efficient resonant
drive on a 5.8g flapping-wing robot and experiments showed a
30% average power reduction by integrating a tuned compliant
element.

I. INTRODUCTION

Flapping-wing flight in nature has unparalleled maneuver-

ability, agility, and hovering capability. Over the last few

decades, engineers have made remarkable progress toward

the design of flapping-wing micro air-vehicles (MAVs) in-

spired by biological systems. However, a recurring issue

in the development of effective MAVs is that small-scale

flapping-wing robots require substantial amounts of power to

generate lift. MAVs use portable power sources with limited

energy capacity. This paper calculates the time average power

used by a flapping wing MAV with a constant voltage

drive, including battery and motor resistance. Previous work

in resonant drive of flapping wing MAVs has considered

minimizing input power assuming constant velocity [19].

However, for heavily loaded structures, motor velocity will

not be constant without a speed controller, which takes active

power for deceleration. Another related result considers mini-

mizing peak torque [12], [14], which improves motor sizing,

yet does not consider the effects of the battery resistance.

We show that under certain loading conditions, the battery

and motor resistance will influence the time average power

required.

Efficient power usage is fundamental to the development

of flapping-wing MAVs. One approach to this objective is

to use integrated compliant mechanisms driven at their res-

onant frequency. Goldfarb developed piezoelectric-actuated

flapping-wing MAVs excited at the resonant frequency [3],
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[6], [13]. Agrawal demonstrated a novel, motor-driven four-

bar crank-rocker mechanism that integrated a spring to

store energy during a flapping cycle [10], [11], [14], [15].

Resonant drives and compliant mechanisms have been im-

plemented in 100mg insect-scale wing flapping mechanisms

[1], [2], [5], [18], [23] as well as a 5.8 gram hummingbird-

inspired flapping mechanism (pictured in Fig. 1). Recently,

Wood [20]–[22] demonstrated lift-off from an insect-scale

60mg flapping-wing MAV, employing a 110Hz wing beat ex-

cited at the resonant frequency with a piezoelectric actuator.

Fig. 1. A 5.8 gram hummingbird-inspired flapping mechanism developed
at UC Berkeley.

At the smallest scales, compliant mechanisms, resonant

excitation, and piezoelectric actuation work well, due to high

speeds, low transmission losses, and high power density.

At larger scales, motor actuation is more suitable. Motor-

driven, flapping wing MAVs have been built, including the

‘Microbat’ [8], [16], [17], Kawamura’s 2.3 gram MAV [7],

the 12 gram Interactive Toys Vamp, and the ‘DelFly’ [4].

Interestingly, these mechanisms do not explicitly use a

resonant drive system. Potentially, resonant excitation can

offer increased lift output, with less battery power. However,

while analysis of resonant excitation is intrinsically simple

for systems driven by piezoelectric actuators (e.g. [5]),

it is not straightforward for motor actuated systems. The

generation of oscillatory kinematics necessary for flapping-

wing flight requires the integration of a crank-arm, which

has a fundamental geometric nonlinearity. The integration of

compliant mechanisms adds additional nonlinear complexity.

Some of the significant research on the integration of

resonant drive mechanisms in DC motor driven flapping wing

MAVs is summarized here. Khatait et al [12] demonstrated a

mechanism that minimized the maximum torque requirement

of the DC motor by optimizing the compliant elements of the

structure [12]. Tantanawat and Kota [19] proposed integrat-
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ing distributed compliance to reduce the peak input power

requirement of the DC motor on a flapping mechanism.

Madangopal et al. [15], using nonlinear optimization tools,

designed a flapping mechanism with springs attached to the

load to reduce the variation in motor torque.

Previous work, as cited above, uses peak input power as

a design metric. But for mobile battery-powered devices,

average input power takes precedence over peak power

since average power is directly related to battery capacity.

The previous work also assumes the motor is operating at

constant velocity, which is difficult to maintain with high

loads. Constant input voltage operation, such as from a

battery, is more representative of a practical system, rather

than assuming constant velocity operation. This is due to

the fact that a closed loop speed control requires additional

power and components and may require excess peak torques

to maintain constant velocity with large load variations.

Here we present a nondimensional analysis of a nonlinear

motor-driven crank-arm mechanism coupled to a mass-spring

system as a solution to general motor driven oscillators,

such as used in flapping flight. Using this analysis, we

demonstrate a link between the resonant frequency of a

compliant mechanism and the ideal motor input voltage to

achieve maximal power reduction. We also demonstrate the

effect of the geometric nonlinearity associated with the crank

arm and the effect of damping, both motor and aerodynamic.

Finally, we apply this analysis to a 5.8g flapping mechanism

shown in Fig. 1 and empirically identify the improvement to

the system’s power plant efficiency.

II. ANALYSIS
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Fig. 2. A load connected to a spring and a damper is driven by a DC
motor through a crank arm.

Compliant mechanisms driven by a DC motor such as the

flapping robot pictured in Fig. 1 can be modelled as depicted

in Fig. 2. The crank arm driven by a motor/gear is connected

to a load (slider) with a spring and a damper. The equation

of motion is expressed as:

η2Jmθ̈ + η2bmθ̇ +
r cos(φ − θ)

cos(φ)
(mẍ + bẋ2 + kx) = T (1)

where m is the mass of the load, k is the spring constant,

b is the aerodynamic damping coefficient where bẋ2 is the

aerodynamic drag force, φ and θ are the angular positions

of the connecting rod and the crank arm, respectively, l and

r are the lengths of the connecting rod and the crank arm,

respectively, Jm is the moment of inertia of the motor, bm

is the damping coefficient of the motor, η is the gear ratio,

and T is the torque applied to the crank arm.

The displacement of the slider, x, can be expressed as

x = r sin θ

Substituting x and its derivatives, ẋ and ẍ, into Eq. (1), we

obtain

θ̈(η2Jm + βmr2 cos θ) + θ̇η2bm

+ θ̇2(βbr3 cos2 θ − βmr2 sin θ) + βkr2 sin θ = T (2)

Here, β is defined as

β =
cos(φ − θ)

cos φ
= cos θ +

λ cos θ sin θ
√

1 − λ2 cos2 θ

where λ = r/l is the ratio of the crank arm length to the

connecting rod length. For the second equality, Law of Sines

is applied to remove φ

r cos θ = l sinφ. (3)

The defining equation of the DC motor is

Tm = Kti (4)

L
di

dt
+ iRm + Keω = Vs (5)

where Vs is the input voltage, Tm is the torque generated

by the DC motor and T = ηTm, L is the inductance of the

motor, i is the induced current, Rm is the resistance, Ke is

the back EMF coefficient, and Kt is the torque coefficient of

the motor. Since L is generally very small, we can safely set

L = 0 for the rest of the analysis in this paper. Substituting

Eq. (4) and Eq. (5) into Eq. (2), we can obtain the equation

of the overall dynamic system:

θ̈(η2Jm + βmr2 cos θ) + θ̇η2

(

bm +
KtKe

Rm

)

+ θ̇2(βbr3 cos2 θ − βmr2 sin θ) + βkr2 sin θ =
ηKt

Rm

Vs

(6)

To obtain a nondimensional equation of motion, define the

following variables:

ωn =
√

k/m τ = ωnt

Ω = dθ/dτ = θ̇/ωn Ω̇ = d2θ/dτ2 = θ̈/ω2

n

J = η2Jm/mr2 Bm = bm + KtKe/Rm

ζ = br/(2m) ζm = η2Bm/(2mr2ωn)

T̃ = T/(mr2ω2

n
)

Here, ωn is the undamped natural frequency of the mass-

spring system of the slider, τ is the nondimensional time, ζ
and ζm are the damping ratios of the slider and the damping

ratio of the motor, respectively, Ω and Ω̇ are, respectively, the

nondimensional angular velocity and angular acceleration of

the motor, J is the nondimensional moment of inertia, Bm

is the effective motor damping, and T̃ is the nondimensional

motor torque.
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We can now obtain a nondimensional equation of motion

for Eq. (6) as follows

(J + β cos θ)Ω̇ + 2ζmΩ

+ (2ζβ cos2 θ − β sin θ)Ω2 + β sin θ = u (7)

where u is the nondimensional input voltage defined as

u =
ηKt

mr2Rmω2
n

Vs

With Ω̇ = 0 for the case of constant motor speed, Eq. (7)

becomes

2ζmΩ + (2ζβ cos2 θ − β sin θ)Ω2 + β sin θ = u (8)

A. Case I: Constant Speed

It is rather easy to understand the behavior of the resonant

drive with a constant speed excitation due to the similarity to

linear mass-spring systems. The variation of torque required

to drive the system in one cycle is shown in Fig. 3 (top).

The peak value of the output torque becomes minimal close

to Ω = 1.0, where the system is excited at its resonant

frequency. This plot agrees with the results of the minimal

torque approach studied by Khatait et al. [12]. In their

study, they have demonstrated that there is a certain value

of torsional stiffness of flexural joints corresponding to the

driving frequency that minimizes the peak input torque.

Indeed, the corresponding driving frequency in their study

is fundamentally identical to the resonant frequency of the

compliant system discussed here. Additionally, the choice of

spring constant in the study of Tantanawat and Kota [19]

indeed provides their compliant system with the resonant

frequency matching with the desired flapping frequency so

that the peak input power is minimized.

It should also be noted that for the values of Ω away

from 1, negative torques are required to drive the system at

a constant speed, i.e., excessive kinetic energy of the inertial

load is transmitted back to the motor instead of converted

to strain energy in the spring. Tantanawat and Kota have

assumed in their study that this negative input power, which

is the energy absorbed by the motor from the load, is fully

recovered. However, this is not true when taking into account

motor and battery resistance - power is still dissipated with

negative current on the resistors. From a controls standpoint,

absorbing the energy for later use or supplying negative

current to decelerate the plant is undesirable.

In fact, the variation of input torque can also be reduced

tremendously by reducing the ratio of the crank arm length

to the connecting rod length, λ. As shown in Fig. 3 (bottom),

the peak input torque becomes smaller as λ decreases.

The torque variation also becomes more symmetrical, and

negative input torque is no longer required.1 However, an

excessively small value of λ (very long connecting rod)

results in undesirable bending modes of the connecting rod.

1Indeed, with λ ∼0, φ becomes 0 and the force applied to the mass
through the connecting rod becomes a pure sinusoidal input to the mass-
spring system.

λ ≥ 0.2 is also undesirable because it requires not only high

peak torques but also negative torques to keep the speed

constant.
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Fig. 3. Variation of nondimensional torque in one cycle for various constant
angular speed with λ = 0.1, ζm = 0.1, and ζ = 0.1 (top). Variation of
nondimensional torque in one cycle for various values of λ with Ω = 0.9,
ζm = 0.1, and ζ = 0.1 (bottom).

Nondimensionalized average power required to drive the

system in one cycle for various damping ratio is shown in

Fig 4. The average power is reduced at Ω∼1 when ζ ≤
0.2, i.e., at Ω∼1 we can achieve a local minimum of the

power to drive the crank.2 As the damping ratio increases,

an addition of a spring to the system makes a negative

contribution because the input power supplies not only the

energy dissipated in the damper but also the energy to be

stored in the spring.

B. Case II: Constant Input Voltage

When a constant voltage is applied to the DC motor, the

resonant drive behavior becomes more complicated since

the frequency of the applied force (or the motor speed)

to a load no longer remains constant. The motor speed

and torque, however, stay almost constant if the system is

driven at its resonant frequency and the damping ratio is

small (ζm = 0.02 and ζ = 0.01) as shown in Fig. 5. It is

apparent that the peak input power becomes minimal when

the nondimensional input voltage u is 0.25.3 As the input

2The global minimum occurs at Ω=0, but Ω∼0 is not an interesting
region.

3It should be noted that the induced motor current is directly proportional
to the motor torque as presented in Eq. (4). Hence, the electrical power for
the motor as well as the mechanical power from the motor have the minimal
peak-to-peak values.
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Fig. 4. Nondimensional average power required to drive the system at a
constant angular speed for various damping ratios with λ = 0.1, ζm = 0

voltage increases or decreases, the torque becomes more

oscillatory and eventually becomes negative, i.e., some of the

kinetic energy of the load is transmitted back to the battery

instead of stored in the spring.
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Fig. 5. Variation of nondimensional speed (top) and torque (bottom) for
various nondimensional input voltages (ζm = 0.02 and ζ = 0.01)

The effect of the aerodynamic damping ratio ζ is shown

in Fig. 6. As the damping ratio increases, the required

torque to drive the load clearly increases while the motor

speed decreases. Both torque and motor speed become more

oscillatory, which can be expected from the ζβ cos2 θ term

in Eq. (7). The effect of ζm is, however, independent of the

oscillating behaviors as expected from the 2ζmΩ term, and

the DC value of Ω monotonically decreases as ζm increases.

The effect of the parameter ζm is basically the same as a

damping ratio of a linear mass-spring-damper system. As

a side note, this model also provides an estimate of motor

velocity for a given battery voltage, for which no closed-form

solution is available.
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Fig. 6. Variation of nondimensional speed (top) and torque (bottom) for
various damping ratios, ζ, (ζm = 0.02 and u = 0.25).

The required average input power with respect to the mean

of nondimesional motor speed, E[Ω], is shown in Fig. 7.4

While the average power with no spring monotonically

increases with the speed, the average power with a spring

has a minimum. The best improvement of efficiency occurs

when E[Ω] is approximately 1. It is well known that the

magnitude response for a linear mass-spring system becomes

less than unity with an out-of-phase drive and therefore no

power benefits can be achieved when compared to a spring-

less system. However, power reduction can be achieved for

the motor driven compliant system studied here even though

the operating speed is significantly higher than the undamped

natural frequency of the load. The significant prediction is

that low damped mechanical systems with a spring driven

by a DC motor can be excited at a higher speed than the

system without a spring for the same amount of input power.

Hence, greater power can be obtained or a smaller motor can

be used.

III. EXPERIMENTS

The flapping mechanism shown in Fig. 1 consists of two

mirrored levers actuated by a single DC motor. The fulcrum

of each lever is cantilevered by a beam and hinge from a base

structure that also houses the DC motor coupled to a gearbox

and crank. Due to the kinematic constraints set by the

4Data is not available for E[Ω] < 0.5 because small values of constant
input voltage cannot overcome the initial spring force to complete a
revolution.
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Fig. 7. average power (top) and power reduction using a spring (bottom)
with respect to the mean of nondimensional motor speed E[Ω]. (ζm = 0.02
and ζ = 0.05)

equal lengths of both fulcrum beams, the system effectively

becomes a slider-crank mechanism. Motion normal to the

lever plane is restricted by the geometry of the fulcrum

beams, and an additional Sarrus linkage, positioned between

the driving block and the base structure and operating out

of plane, effectively constrains the motion of the driving

block along the intended linear path. The specifications of

the flapping mechanism are given in Table I.

TABLE I

SPECIFICATIONS OF THE FLAPPING MECHANISM

motor inertia 1.41gm-mm2

motor damping 8.26gm-mm2/s

gear ratio 1:8.57

wing inertia 142.9gm-mm2

air damping 0.05-0.11kg/m for θ̇=120-160s−1

spring constant 140N/m

crank arm 4 mm

connecting rod 17 mm

total mass 5.8 gm

The motor velocity and the measured current of the

flapping mechanism with and without a linear coiled spring

were measured as shown in Fig. 8. The additional 140N/m

spring was added between the slider crank and the ground.

The undamped natural frequency of the load was calculated

as ωn = 155rad/s (24.5Hz) with the effective wing mass of
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Fig. 8. Measurement of motor speed with constant input voltage (top) and
measurement of induced current with constant input voltage(bottom). (a) no
spring in vacuum at V = 1.45V (b) with spring in vacuum at V = 1.05V
(c) no spring in air at V = 1.70V (d) with spring in air at V = 1.55V.

5.83×10−3kg.5 Measurements were also taken in vacuum

in order to verify our analysis for the crank-arm model

with extremely low aerodynamic damping. With the mea-

surements in vacuum, we could examine the aerodynamic

damping versus internal damping of the mechanism. The

motor damping ratio and aerodynamic damping ratio are

calculated to be ζm = 0.13 and ζ = 0.03, respectively.6 For

the same mean motor speed of 24Hz, the speed variation as

well as current variation for the mechanism with a spring are

smaller than those without a spring both in air and in vacuum.

The RMS current (and torque) is also lower with a spring

than without a spring, which implies that lower mechanical

power is required with a spring to generate the same flapping

frequency.

The average power and power reduction for various flap-

ping frequencies are shown in Fig. 9. At high input voltages

where the average motor speeds were greater than 15Hz, the

average power for the system with spring became less than

the system without spring. With extremely low aerodynamic

damping in vacuum, we could achieve up to 60% power

reduction. We also achieved up to 30% power reduction when

flapping at 15-30Hz with a constant input voltage of 1-3V

DC. This can increase continuous flight time and decrease

5The effective mass of the wings were calculated as mw = 2Jw/d2,
where Jw is the moment inertia of a single wing and d is the distance
between the fulcrum and the pin joint coupling the connecting rod and the
lever arm.

6To calculate the aerodynamic damping, we measured motor velocity and
current for the flapping mechanism in vacuum as well as in air. Using these
measurements, we estimated the damping coefficient, b.
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Fig. 9. Measurement of average power (top) and power reduction using a
spring (bottom) for a flapping wing robot driven by constant input voltages

battery mass. The percent power reduction remained almost

constant as the flapping frequency increases.

We briefly examined the effect of an integrated spring

on the lift force generated by our flapping mechanism. Our

results showed a 20-30% increase in average lift force for the

spring-integrated system, relative to the spring-less system

operating at the same flapping frequency. The electrical input

power was also reduced, as predicted. Hi-speed video showed

a more symmetric upstroke and downstroke in the spring-

integrated system. The experiment indicates that the spring,

in addition to reducing input power at a given operating

frequency, is also beneficially altering the flapping wing

trajectory. This result essentially agrees with the study by

Khan et al [9] in that appropriate spring constant and

inertia can increase the lift force with less input power. In

their study, the spring constant and inertia were chosen by

numerical optimization.

We also modified an Interactive Toy’s VAMP RC or-

nithopter by adding a 980N/m spring as shown in Fig. 10

to briefly verify our crank-arm model analysis on another

system. The ornithopter flaps at 14-16Hz with a fully charged

40mAh lithium polymer battery. On-board electronics, bat-

tery, and styrofoam outfit were removed from the ornithopter,

and the motor was directly connected to a power supply.

The undamped natural frequency of the load was calculated

as ωn = 118.4rad/s (18.8Hz) with the effective wing mass

of 69.85×10−3kg. Measurements were also taken without a

spring to compare the power consumption.

Shown in Fig. 11 are the average power and power

reduction for various flapping speeds. When the average

Fig. 10. An Interactive Toy’s VAMP RC ornithopter with an added spring

motor speed was greater than 12Hz, the average power for

the system with spring became less than for the system

without spring. We have achieved up to 19% power reduction

at 16Hz. It would be possible to obtain a similar amount of

power reduction even at higher flapping frequencies if the

motor could operate at higher input voltages.
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Fig. 11. Measurement of average power (top) and power reduction using
a spring (bottom) for an Interactive Toy’s VAMP RC ornithopter

IV. CONCLUSION

In this paper, we have shown that battery and motor

resistance plays an important role in the efficiency of power

transmission to the environment for a resonant flapping-

wing mechanism. With a nondimensional analysis of a motor

driven compliant system, we have analytically developed a

methodology to guide the mechanical design and predict

optimal operating points based on power efficiency. We have
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also experimentally demonstrated that the average power

(as well as the peak torque) can be reduced by resonant

excitation with a constant voltage for motor-driven oscillating

systems. Moreover, simulations show that an average power

of 0.43W with 0.13W peak-to-peak is required to drive a

crank-arm system at the average speed of 150rad/sec (s.d.

= 7.7rad/sec) with a constant voltage of 2.65V, while an

average power of 0.48W with 0.22W peak-to-peak (not

including the power for speed controller) is required for the

constant speed of 150rad/sec.7 In addition to this specific

example, the generalized crank-arm model presented in this

paper can be easily applied to most motor-driven oscillating

systems by constructing an equivalent crank-arm model.
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