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Abstract— Many sensing applications require monitoring
phenomena with complex spatio-temporal dynamics spread
over large spatial domains. Efficient monitoring of such phe-
nomena would require an impractically large number of static
sensors; therefore, actuated sensing - mobile robots carrying
sensors - is required. Path planning for these robots, i.e.,
deciding on a subset of locations to observe, is critical for high
fidelity monitoring of expansive areas with complex dynamics.
We propose MUST - a MUltiscale approach with STochastic
modeling. MUST is a hierarchical approach that models the
phenomena as a stochastic Gaussian Process that is exploited
to select a near-optimal subset of observation locations. We
discuss in detail our proposed algorithm for the application of
monitoring light intensity in a forest understory. We performed
extensive empirical evaluations both in simulation using field
data and on an actual cabled robotic system to validate the
effectiveness of our proposed algorithm.

I. INTRODUCTION

Many diverse environmental monitoring applications

involve observing phenomena that exhibit both spatial and

temporal dynamics spread over large spatial domains. Solar

light radiation, carbon dioxide flux, algal blooms, and nitrate

concentration in a watershed are a few examples of such

phenomena [1], [2]. Consider the significant role that tropical

forests and the plants growing in their understory play in

carbon dioxide flux. A detailed understanding of plant

growth and photosynthesis in this environment is needed to

model how deforestation and forest degradation affect carbon

emissions (degradation estimates range anywhere from 7-

30% [3]). Accurate monitoring of solar radiation distribution

in forests will lead to a better understanding of plant growth

and the role forest degradation plays in carbon dioxide flux.

Measuring complex space and time dynamics, such as

solar radiation, with high fidelity in large environments, such

as forests, with only static sensors would require an imprac-

tically large number of sensors to be distributed across the

complete spatial extent of the observed environment. There-

fore, actuated sensing - mobile robots carrying the required

sensors - is needed to accurately measure complex spatio-

temporal dynamics over large spatial domains. Monitoring

the complete environment with a limited number of actuated

sensors will, however, increase the sensing delay, which

may result in lower sensing fidelity. Planning robot paths,

i.e., adaptively selecting only a small subset of locations to

observe while still efficiently predicting at the unobserved

locations, is critical to reduce latency and still provide high

fidelity sampling. Several path planning algorithms have been

proposed in the literature [4]–[7] that reduce the number

of locations to observe while still achieving high fidelity.

For example, Rahimi et al. [4] proposed a multi-step

approach that varies observation densities at each step. In

the first step, a mobile robot performs a coarse scan of the

complete environment to extract regions of high phenomenon

variability. Then the selected regions are observed with a

higher density to improve the overall sampling fidelity. Such

adaptive sampling algorithms are known to perform well in

cases where the observed phenomena are not highly dynamic

in both space and time. However, the large latency involved

in extracting these regions of interest makes such algorithms

unsuited for observing rapidly changing phenomena. This

large latency is mainly a result of the initial coarse scan that

is performed over the entire environment. If the phenomena

is only spatially dynamic, this latency is not prohibitive.

However, as the latency increases with the size of the

environment, adaptive sampling does not scale well for

temporally dynamic phenomena. Singh et al. [5] proposed a

two-tier approach to reduce this large latency where the first

tier uses a static low fidelity, high spatial coverage sensor

providing real-time “global” information about the environ-

ment. The second tier, using actuated sensing, exploits the

information from the first tier to perform guided sampling

in the regions of interest. However, the second tier only

performs uniform sampling within the regions of interest.

Krause et al. [8] considered the sensor placement problem,

where a subset A of k locations is selected from all possible

observation locations V , (A ⊆ V), in order to maximize

the collected information about phenomena distribution. By

exploiting the intuitive “diminishing returns” property - the

more locations that are already observed, the less information

we will gain by observing a new location - they proved

that greedily selecting locations based on this criterion is

near-optimal. Singh et al. [7] extended their approach to

provide an efficient path planning algorithm for adaptively

sampling the observed environment at only a small subset

of locations while also including the path cost. We also

gave a strong approximation guarantee for the proposed

algorithm. The time complexity of their algorithm, however,

may restrict its utility for very large spatial domains.

Motivated by the effectiveness of the spatial decomposi-

tion algorithm and by the greedy selection of observation

locations within the selected cells (regions of interest) [7],

we propose MUST - a MUltiscale approach with STochastic

modeling. MUST extends the two-tier multiscale algorithm

proposed in [5] by using a stochastic modeling approach

together with greedy observation selection from [8]. Bringing

these approaches together allows MUST to effectively ad-

dress both the challenge of observing complex phenomena in
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a large spatial domain and the challenge of reducing latency

in order to capture temporal variations. To accomplish this,

MUST uses the information from the first tier “global” sensor

to learn a stochastic Gaussian Process (GP) model. Next, the

path planning algorithm exploits the GP model by greedily

selecting a small subset of locations to observe with the sec-

ond tier sensor in the regions of interest, which are also se-

lected by the first tier. This efficient path planning algorithm

is easily extensible to the multiple robot setting (c.f. Sec-

tion III-A). We empirically demonstrate the effectiveness of

our approach for the application of monitoring light intensity

in the forest understory. We performed extensive empirical

evaluations both in simulation using data collected in the

field as well as on an actual cabled robotic system - Net-

worked Infomechanical System for Planar actuation (NIMS-

PL) [9]. Results indicate that the hybrid approach of MUST

considerably and consistently outperforms a provably effi-

cient path planning algorithm for light intensity monitoring.

In Section II we briefly discuss the Gaussian Process

modeling approach and the corresponding properties that

provide a near-optimal approximation guarantee for greedy

observation selection within a task. Section III outlines two

path planning algorithms: 1) our proposed MUST algorithm;

and 2) the OP heuristic - an efficient path planning algorithm

shown to perform well for the application of light intensity

monitoring [9]. We discuss extensive empirical evaluations

in Section IV, including experiments performed using a

cabled robotic system, NIMS-PL.

II. GAUSSIAN PROCESS MODELING

Let us now introduce some notation and review Gaussian

Process models for regression [10]. We are given a set

of observations, S = {xi, yi}
N
i=1, consisting of N input

locations, xi ∈ R
D, and the corresponding observed

values, yi ∈ R. A Gaussian process model places a

multivariate Gaussian distribution over the space of function

variables, f(x), mapping the input to the output space, i.e.,

f(x) ∼ GP (m(x), k(x,x′)), where m(x) specifies a mean

function and k(x,x′) specifies a covariance function (also

called the kernel).

Observations in the environment are typically noisy

samples of the underlying model. This noise is incorporated

by assuming y = f(x)+ǫ, where ǫ is the zero mean Gaussian

noise with variance σ2. The set of locations, model output,

and observations at the observed locations are represented by

(X, f ,y) = ({xi}, {fi}, {yi})
N

i=1
, and unobserved locations

are represented as (X∗, f∗,y∗) = ({x∗,i}, {f∗,i}, {y∗,i})
N

i=1
.

Using the GP model learned from the observations, the

objective is to compute the predictive distribution f∗ at the

unobserved locations X∗. Conditioning on the observations,

the predictive distribution at the unobserved locations can

be obtained by:

p (f∗ | X∗, X,y) = N (µ∗,Σ∗) , (1)

µ∗ = K (X∗, X)
[

K (X, X) + σ2I
]−1

y,

Σ∗ = K (X∗, X∗) + σ2I−

K (X∗, X)
[

K (X, X) + σ2I
]−1

K (X, X∗) ,

where µ∗ and Σ∗ represent the conditional mean and

covariance, respectively, at the unobserved locations.

Informative observation locations: Intuitively, the most

informative observation locations result in the greatest

reduction of uncertainty at unobserved locations. A natural

definition of uncertainty is the conditional entropy of unob-

served locations V \ A after placing sensors at A locations,

H(XV\A|XA)=−

∫

p(xV\A,xA)log p(xV\A |xA)dxV\AdxA,

where XA and XV\A refer to sets of random variables at

locationsA and V\A. The differential entropy for a Gaussian

random variable, Xy , conditioned on some set of variables,

XA, is a monotonic function of its variance:

H(Xy|XA) = 1

2
log(2πeσ2

Xy|XA
)

= 1

2
log σ2

Xy|XA
+ 1

2
(log(2π) + 1)

(2)

Thus for the unobserved locations, we can compute the en-

tropy in closed form using the conditional covariance matrix

computed in Eq. (1). Instead of directly using the entropy

as the information criterion, we use the mutual information

(MI) criterion defined in [11] for representing sensing qual-

ity. For a set of locations A, the MI criterion is defined as:

I(A) ≡ MI(A) ≡ H(XV\A)−H(XV\A | XA), (3)

where H(XV\A) is the entropy of the unobserved locations

V\A, and H(XV\A | XA) is the conditional entropy of loca-

tions V \A after sensing at A locations. The effectiveness of

mutual information in selecting informative sensing locations

was studied in [8].

Submodularity: A key observation allowing us to obtain

an efficient algorithm is that mutual information satisfies

the following diminishing returns property [8]: The more

locations we have already observed, the less information

we will gain by observing a new location. This intuition is

formalized by the concept of submodularity: A function f is

submodular [12] if:

f(A∪s)−f(A) ≥ f(B∪s)−f(B);∀A⊆B⊆V and s∈V\B.

Another intuitive property is that sensing quality is mono-

tonic 1, i.e., I(A) ≤ I(B) ∀ A ⊆ B ⊆ V: The more locations

we observe, the more information we will collect.

In [8], the authors exploited the submodularity and

monotonicity property of MI to prove that if the

discretization V is fine enough, and if the GP satisfies mild

1Monotonicity only approximately holds for mutual information [8];
however, this is sufficient for the scenario discussed in this paper.
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Fig. 1: An overview of a two-tier MUST architecture. A future data flow
path is marked with a broken line.

regularity conditions, greedily selecting locations is near-

optimal. More specifically, the greedy algorithm (which we

will call GreedySubset), after selecting the first i locations,

Ai, picks the location with maximum residual information,

i.e., vi+1 = argmaxv IAi
({v}) and sets Ai+1 = Ai∪{vi+1}.

Thus, GreedySubset iteratively adds locations yielding the

most mutual information. The performance of the greedy al-

gorithm for submodular functions was proven to have a near-

optimal approximation guarantee using a result from [12].

III. EFFICIENT PATH PLANNING FOR ENVIRONMENTAL

MONITORING APPLICATIONS

Next we discuss two path planning algorithms: 1) MUST

- our proposed multiscale stochastic algorithm with greedy

observation selection; and 2) the OP heuristic - a path

planning algorithm known as the Orienteering algorithm

proposed in [13].

A. MUST: Multiscale Stochastic Algorithm

We now present the novel MUltiscale approach with

STochastic modeling, henceforth referred to as MUST. MUST

extends the hierarchical multiscale algorithm proposed in [5]

in two ways: a) a stochastic approach is used to model the

observed environment; b) stochastic properties of the model

are exploited to achieve near-optimal observation selection

(i.e. within a region of interest) as proposed in [8].

First, we will briefly discuss the two-tier hierarchical

algorithm proposed in [5]. We proposed exploiting different

sensing modalities to observe a spatio-temporal dynamic

environment with high fidelity. A low fidelity sensor with

large spatial coverage and high temporal resolution is used

to capture a “global” view of the environment under observa-

tion. When monitoring light intensity in a forest understory,

a down-looking imager provides low fidelity data about light

intensity distribution, i.e., the images identify the bright,

sunlit regions. The fidelity of the information is low because

the image provides a map of the reflected light, which is only

a proxy for actual light intensity. The image, when collected

frequently, can also provide high temporal resolution. The

information from the first tier sensor is used to guide a mo-

bile robot carrying a high fidelity sensor, which takes mea-

surements in the regions of interest. When monitoring light

Algorithm: MUST

Input: s, t, k, m

Output: A path P = s, . . . , t over selected observation

locations

begin
1 T ← tier1Tasks;

2 PT ← taskPrioritization(T );
3 Σ← learnGPmodel;

for 1 ≤ i ≤ m do
4 GSi ← GreedySubset (PT (i),Σ, k);
5 P ← tourOpt(GS);

return P;
end

Algorithm 1: Efficient observation selection using MUST.

intensity distribution, a PAR (Photosynthetically Active Ra-

diation) sensor is guided to the sunlit regions to collect high

fidelity measurements in these regions. Note that in [5] a uni-

form, raster scan path was performed to observe every loca-

tion within the selected task, where as MUST observes only

a subset of possible measurement locations within the task.

Algorithm 1 provides an outline for the MUST algorithm

and Fig. (1) illustrates the corresponding schematic view.

Similar to the proposed hierarchical approach in [5], the

first tier sensor (an imager) provides regions of interest,

referred to as tasks, for mobile robots to service (c.f. Line 1

of Algorithm 1). Task extraction is performed next. Gray

scale images are first converted to binary (black and white)

images via a threshold found using Otsu’s method [14].

This threshold is chosen such that the variance is minimized

among black and among white pixels. Then, edge detection

is performed on these binary images by tracing the exterior

edges of the white objects. Fig. (2b) illustrates this task

extraction procedure on the image specified in Fig. (2a).

Next, we perform greedy task allocation, prioritizing the

tasks based on the total area to observe (c.f. Line 2 of

Algorithm 1). Tasks with an area smaller than an experimen-

tally determined threshold are discarded as noise, i.e., not

having large enough areas to constitute significant regions

of interest. The key idea here is that observing larger tasks

will result in observation locations that are both informative

and relatively close together, which reduces traveling cost,

thus providing a higher benefit to cost ratio. In addition to

task allocation, information from the first tier sensor (pixel

intensities for our example) is used to learn a stochastic

Gaussian Process model (c.f. Section II). This is illustrated in

Line 3 of Algorithm 1. The first tier sensor can also be used

to periodically update the GP model; This is represented by

a connection from first tier to the GP model in Fig. (1).

Pixel intensities do not directly measure the incident

light responsible for photosynthesis, instead, they accurately

recreate light intensity correlations in the observed

environment. For a Gaussian Process model, only the

correlations between observation locations are important.

Eq. (2) and Eq. (3) show that mutual information can
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(a) Image taken at 10:00 a.m.
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(b) Image with selected tasks
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(c) Illustrative paths for MUST and OP heuristic

Fig. 2: Illustration of path planning experiment using images collected from the San Jacinto Mountain Reserve. Grid locations in (b) represent the discrete
observation locations used for path planning.

be calculated in a closed form by using the posterior

covariance. Eq. (1) illustrates that the posterior covariance

only depends on the correlations between the observation

locations and not on the actual observation measurements.

Therefore, our approach of learning the GP model from the

first tier sensor information is highly efficient and accurate.

MUST takes as input a parameter m, which specifies the

possible number of tasks to observe, and k, which specifies

the number of locations to observe within each task. In the

next step, for each task GreedySubset (c.f. Section II) uses

the learned Gaussian Process model to greedily select k

locations as per the mutual information criterion specified

in Eq. (3) (c.f. Line 4 of Algorithm 1). In our example, we

discretize the image into a 15x15 uniform grid of observation

locations as illustrated in Fig. (2b). MUST greedily selects

k locations from this uniform grid of observation locations.

Note that Krause et al. [8] proved that greedy selection

without a path cost constraint is near-optimal while

optimizing a submodular, monotonic function. We then used

the tour-opt heuristic from [15] to find the shortest path for

the mobile robot (i.e. second tier that acts locally) to traverse,

starting at a given location s, going through the selected

observation locations vi; i ∈ m ∗ k, and finishing at a given

location t (c.f. Line 5 of Algorithm 1). The execution time of

MUST is polynomial in the number of observation locations.

We associate with each observation location, v, in the

selected grid, a measurement cost (where C(v) > 0),

quantifying the expense, i.e, dwell time of obtaining a

measurement at location v. When traveling between two

locations, u and v, a robot incurs a traveling cost (where

C(u, v) > 0), which we model using the euclidean distance

criterion. The output path P from MUST is a sequence of

(l = m ∗ k + 2) locations starting at node s, and finishing at

node t. The cost C(P) of path P = (s = v1, v2, . . . , vl = t)
is the sum of measurement costs and traveling costs along

the path, i.e., C(P) =
∑l−1

i=2
C(vi)+

∑l

i=2
C(vi−1, vi). This

path cost is then used as the input budget for comparison

with the OP heuristic, which is discussed in Section IV.

It is important to note that MUST can be implemented

using a variety of sensor combinations, task extraction and

task prioritization methods. For light intensity monitoring,

we have specified each of these approaches above. However,

the first tier sensor need not be a single sensor; instead, it can

be a set of uniformly distributed static sensors. A clustering

approach could be used to extract regions of interest from the

set of static sensors providing the “global” view. Addition-

ally, task prioritization need not be greedy and based on area

size. Our proposed stochastic modeling with greedy obser-

vation selection will provide similar performance guarantees

with any of the task extraction and task allocation methods.

We can also easily extend our proposed single robot MUST

algorithm to the multiple robot setting using the sequential-

allocation algorithm proposed in [7]. As proved in [7],

sequential-allocation will also maintain the performance effi-

ciency of our proposed algorithm for the multi robot-setting.

B. Orienteering Algorithm

We use the orienteering algorithm (hereafter referred

to as the OP heuristic ) discussed in [13] to efficiently

compute efficient paths. This heuristic has been empirically

found to be one of the best heuristics in a similar problem

setting [16], and has furthermore been shown to perform

effectively for monitoring light intensity [9]. For the sake

of completeness, we briefly describe the OP heuristic

algorithm for estimating efficient paths.

We start with an initial budget constraint that is in terms

of the total feasible path cost. The OP heuristic algorithm

works in two phases: initialization and improvement. In

the initialization phase, an initial solution is calculated by

constructing an ellipse over the entire set of observation

locations with the given starting and finishing locations

serving as the two foci of the ellipse. The available

budget constraint is the length of the major axis. Now,

only locations lying inside the ellipse satisfy the budget

constraint requirement. Several paths are then explored over

this set of observation locations, which also satisfy the budget

constraint. Afterward, the paths are subjected to an exchange

of locations between the possible paths, insertion/deletion of

locations within a path, and finally, moving locations within

the path. This exchange of observation locations seeks to find

a path with an improved collected reward and a reduced path

cost. In the improvement step, the total reward is allowed

to decrease in search of a path with a larger total reward.

Details of the OP heuristic algorithm are presented in [13].
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(a) Error for images taken around 10 a.m.
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(b) Performance comparison around 10 a.m.
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(c) Error for images taken around 8 a.m.
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(d) Error while MUST makes observations in the
two highest priority tasks
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(e) Performance comparison while MUST makes
observations in the two highest priority tasks
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(f) Comparison with measurement cost 3 times the
distance between two observation locations

Fig. 3: Empirical evaluations comparing performance of MUST and OP heuristic for the light intensity application using images collected at around 10
a.m. (except in (c) when data is used from images collected around 8 a.m.). Path cost = measurement cost + pixels traversed, %RMS error = RMS error /
(total RMS error when no observations are made), %MI = MI / (total MI when all observations are made in the observed tasks).

IV. EXPERIMENTS AND ANALYSIS

In this section we validate the performance of MUST for

the application of light intensity monitoring through both ex-

tensive simulations using field data and on an actual robotic

platform, NIMS-PL (c.f. Section IV-A). We collected a series

of images, every 17 seconds, throughout the day in a mixed

conifer forest at the James San Jacinto Mountain Reserve in

Southern California 2. These images were collected using a

down-looking imager capturing an area approximately 6 m

in length by 4 m in width. We used a series of 11 images

beginning at 10 a.m. as our representative dataset for the

spatial and temporal variations occurring in the observed

environment. For comparison, we also provide results for

another set of 11 images collected beginning at 8 a.m.

For each experiment, we compared the performance of

MUST and the OP heuristic. When comparing the root

mean square error, we predicted the light intensity at

the unobserved locations using Eq. (1) and compared the

predicted intensity with the observed intensity. For the set of

11 images, we discretized each image into 15x15 uniformly

spaced locations. We averaged the pixel intensities in the 5x5

neighborhood of each location to eliminate noise and emulate

the observation made at the corresponding location. The ob-

servation locations are sufficiently far apart and, therefore, do

not influence the correlations. Next, we empirically learned

a Gaussian Process model, i.e., the corresponding covariance

matrix Σ. We trained the GP model using 10 images from the

set of 11 images. The 11th image was used as the test image.

Each image in the dataset was used as a test image with the

2http://www.jamesreserve.edu/

remaining images serving as training images. At the end,

the results were averaged - leave-one-out cross-validation.

To compare the performance of MUST and the OP

heuristic, we first calculated the path cost of the output

path from MUST (as specified in Section III-A). This path

cost was then given as the budget constraint to the OP

heuristic algorithm and the corresponding heuristic path was

evaluated for the total collected mutual information and the

root mean square error. For simplicity, we set the starting

location equal to the finishing location. We experimented

with all four corners of the observed environment as the

starting/finishing locations. We only present the results with

the starting and finishing location specified in Fig. (2c)

since the rest of the results exhibited similar patterns.

For each performance comparison, the x-axis represents

the total path cost for the output path. Unless otherwise

specified, we assumed the measurement cost to be the same

as the traveling cost between two adjacent grid locations

oriented along the x-axis. In the field, this is equivalent to

a measurement cost of about two seconds, given the robot

velocity = 0.25m/s and the distance between observation

locations = 0.4m. This measurement cost allows multiple

PAR measurements to be taken while the robotic node

settles at the observation location. These PAR measurements

are averaged, yielding an accurate measurement. For the

simulation experiments, we present the path cost in terms

of the number of pixels visited. For the experiments using

NIMS-PL, the path cost is presented in meters.

A. Experiments in Simulation

Fig. (3) illustrates the results for the performance compar-

ison of the MUST algorithm and the OP heuristic. We first
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Fig. 4: Experiments using NIMS-PL robotic system with images collected around 10 a.m.

restricted MUST to make observations only in the highest

priority task, i.e., m = 1 in Algorithm 1. Then, we varied the

number of locations that could be observed within the highest

priority task (i.e., variable k in Algorithm 1) from 5-20. For

each of the output paths, P , from the MUST algorithm, we

calculated the total path cost and used that as the budget

constraint for the OP heuristic to get its corresponding

path with same path cost. Fig. (3a) and Fig. (3b) compare

the root mean square error and the mutual information for

MUST and the OP heuristic. As we increased the number of

observed locations, the collected information asymptotically

saturates (c.f. Fig. (3b)), which is in accordance with the

submodularity property discussed in Section II. Similarly, in

Fig. (3a) as the path cost increases, and therefore the number

of observed locations increases, MUST asymptotically

reaches the minimum achievable percent root mean square

error. For Fig. (3a) and Fig. (3b), MUST outperforms the

OP heuristic for the complete path cost range. To illustrate

the general applicability of our comparative analysis, we

present in Fig. (3c) the root mean square error comparison

between the two algorithms for the set of 11 images

collected beginning at 8 a.m.; MUST again outperforms the

OP heuristic, which indeed was the general trend observed

for experiments using other image datasets as input.

Next we increased the number of observed tasks, m, to

2 and performed similar experiments varying the number

of observed locations within each task and comparing the

corresponding performance of MUST and the OP heuristic.

Fig. (3d) and Fig. (3e) compare the root mean square error

and mutual information, respectively. MUST clearly provides

better performance when compared with the OP heuristic.

Another interesting observation from Fig. (3e) is that the

collected information saturates at a higher path cost (approxi-

mately 2500 pixels) as compared with Fig. (3b) (observations

in a single task) where the collected information saturates at

a lower path cost (approximately 2000 pixels). Additionally,

when comparing the same path cost across experiments, more

information is collected when m = 1. This result supports our

approach of prioritizing tasks based on their coverage area

to increase the utility/cost ratio. Finally, we increased the

measurement cost to three times the distance between two

adjacent grid locations along the x-axis. Fig. (3f) compares

the collected mutual information for both algorithms. In this

scenario, as the path cost increases, both algorithms approach

the asymptotic limit of maximum collected information.

For simplicity, these experiments analyze sampling

performance over a relatively small area of 6 m in length by

4 m in width. MUST scales independently of the size of the

area because of the first tier “global” view. Therefore, we

would expect similar performance results for MUST when

sampling much larger areas. On the other hand, the latency of

adaptive sampling algorithms is prohibitive when observing

phenomena that is dynamic in both space and time.

B. Real Robot Experiments

We validated our proposed MUST algorithm using the

Networked Infomechanical System for Planar actuation

(NIMS-PL) - a four cable-based robotic system used for

actuation in planar workspaces [9]. NIMS-PL consists of

four tension controlled cables actuating a sensor or sensor

suite to provide planar spatial coverage. Planar operation is

feasible both in a vertical plane as well as in a horizontal

plane. The four cabled configuration enables quadrangular

workspaces, resulting in a larger feasible workspace as

compared with a three cabled configuration. Additionally, in

aquatic deployments even larger spatial coverage is possible

with NIMS-PL since the weight of the end-effector need

not be supported by the cables but rather the water surface

can support a buoyant sensor node. A schematic of the

NIMS-PL system observing light intensity by actuating an

optical sensor in a vertical plane is shown in Fig. (4a).

We now compare the performance of the two algorithms

using the actual robotic system, NIMS-PL. To get the

ground truth data, we projected each of the 11 images from

the 10 a.m. dataset. A lab scale NIMS-PL system with

a vertical workspace of 0.75m x 0.75m was used in the

experiment. The end-effector of NIMS-PL was equipped

with a photodiode to measure the incident light intensity

from the projected images. Light intensity was sampled at a

rate of 100Hz and measurements were relayed via Bluetooth.

A continuous scan was performed at a velocity of 0.25m/s in

the workspace. Measurements during the scan were averaged

to get the corresponding data at each of the 15x15 grid

locations uniformly distributed throughout the workspace.
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We used the pixel intensity data from the projected

images to learn the Gaussian Process model. Photodiode

measurements made at the selected path locations were used

to calculate the collected mutual information and to predict

photodiode observations at unobserved locations for both

MUST and the OP heuristic. Fig. (4b) compares the collected

information for the two algorithms when performing path

planning using NIMS-PL. MUST significantly outperforms

the OP heuristic on a robotic system. This result is similar

to the results obtained in simulation experiments, thus

validating the simulation performance results.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented MUST - a multiscale stochastic

algorithm with greedy observation selection. We explained

the implementation of a two-tier MUST algorithm for mon-

itoring light intensity to study plant growth. We used a

stochastic Gaussian Process approach to model the uncer-

tainty in the observed environment. We presented the predic-

tion accuracy in terms of root mean square error as per the

learned GP model. We then used the mutual information and

root mean square error criteria to compare the performance

of MUST with an efficient orienteering algorithm proposed in

the literature. We performed extensive empirical evaluations

using field datasets both in simulation and on a robotic

system to validate the efficiency of our proposed algorithm.

In the future, we plan to extend MUST for online path

planning by using new observations to update the GP model.
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