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Abstract— We propose a view-based indoor/outdoor naviga-
tion method as an extension of the view-sequence navigation.
The original view-sequence navigation method uses the template
matching method with normalized correlation for localization.
Because the matching method is sensitive to local illumination
changes, it is only used for indoor environment. In this paper,
we propose to adopt the accumulated block matching method
to improve robustness against locally changing illumination, in
which a template is split into small patches and matched by
maximizing the average of the normalized correlations of all the
patches. We also propose a localization criterion which helps the
robot decide its motion. Our experimental results demonstrate
that the proposed methods can be applied to both indoor and
outdoor environments.

I. INTRODUCTION

The advancement of mobile robot technology gives birth

to various kinds of helpful service robots such as surveillance

robot and museum guide robot [2]. They strongly attract our

attention because of their effectiveness. Although it is not a

problem that a specific-purpose robot as described above can

only move around restricted interesting areas, multi-purpose

robots should have the ability to seamlessly move in both

indoor and outdoor environments.

In this paper, we propose a robot system for seamless

indoor/outdoor navigation. The proposed system does not

distinguish the way of navigation for the type of environ-

ment, which simplifies the implementation of the system.

We improved the view sequence navigation [6], which is

only applicable to the indoor environment. We provided the

method with robustness for the illumination changes which

often occur in the outdoor environment.

The rest of this paper is organized as follows. Section 2

introduces related work. Section 3 describes the method to

achieve the robustness for the illumination changes. Section 4

shows the comparison between the original view-sequence

navigation method and the proposed method. We also show

the experimental result of indoor/outdoor navigation. Sec-

tion 5 concludes this paper and describes the future work.

II. RELATED WORK

Research methods for mobile robot navigation are roughly

classified into two types based on the use of specific devices

and/or visual tags (denoted as landmark). As examples of the
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methods which use landmarks, Takeuchi et al. [10] proposed

to use the QR code and Kulyukin et al. [5] proposed to use

the RFID tag for the navigation. However, these methods

require lots of work to set up the landmarks and limit the

environment where the landmarks are available.

In contrast, methods that use existing landmarks have

been proposed. For example, the navigation using the global

positioning system (GPS) was proposed (e.g., [1]). Since the

position estimated by the GPS is usually not accurate enough

for navigation, methods that fuse with odometry [7] and with

both odometry and laser range sensor [4] were proposed to

improve the accuracy of the estimation. However, the GPS is

only available in the outdoor environment. Yoshida et al. [12]

proposed to use Braille blocks. But the blocks are sparse and

therefore the method limits the applicable environment.

As examples of methods which do not use landmarks,

Matsumoto et al. proposed a view sequence navigation

method [6], which helps the robot navigate by adjusting

the difference between the currently observed view and the

corresponding view which were recorded in advance. This

method uses a template matching method to compare the

recorded and the current images. The method is very sensi-

tive to occlusions and illumination changes. This drawback

limits the method to the indoor environment. In order to

solve the occlusion problem, the use of ceiling images was

proposed [11]. However, problem on illumination changes

still remains.

Katsura et al. [3] proposed the view sequence method to

compare the images, not directly, but based on pre-learned

visual features, such as features of sky, tree, building, and

artificial materials. As a result, this method is robust to

illumination changes. The visual features used in this method

usually appear in the outdoor environment, not in the indoor

environment. They did not show the effectiveness of the

method for the indoor environment.

In this paper, we improve the view sequence navigation

method proposed by Matsumoto et al. [6]. Our method has

two advantages: it enables the easy implementation and it

does not rely on landmarks. By providing the method with

the robustness to illumination changes, we aim at achieving

seamless indoor/outdoor navigation.

III. VIEW SEQUENCE NAVIGATION ROBUST TO

ILLUMINATION CHANGES

The view sequence navigation method [6] first records

camera images while moving the mobile robot along the

target path, for teaching the view sequence. Next, it moves

the robot to adjust the difference between the current view
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Fig. 1. Matching errors of the template matching method (upper) and
the ABM method (lower). The horizontal axis indicates the time when the
image was captured and the vertical axis indicates the error. The errors in the
ABM method are smaller than the ones in the template matching method.

sequence and the recorded one. For navigation, the following

three issues should be considered:

1) How to calculate the difference between the current

view and the given target view

2) How to select the appropriate target view from the view

sequence

3) How to decide the reaction of the robot in order to

adjust the view difference

Note that the order of the views in the view sequence helps

to select the target view. This means that the algorithm only

needs to decide whether to keep the current target view or to

change it to the next recorded view; a robot is firstly located

on the start position and therefore the first target view is

known.

A. Accumulated block matching method

The original view sequence navigation uses a template

matching method with normalized correlation. Due to the

drawbacks of the matching method, the local illumination

changes affect the navigation. To solve this problem, we

propose to use an accumulated block matching (ABM)

method [8] in place of the template matching method.

The ABM method splits the template into several small

patches1. Matching score is defined as the average of the

normalized correlations in all the patches, while they move

together during matching. The ABM method can correctly

match the template, even in the case of partial occlusions,

by maximizing the score. Because the local illumination

changes can be regarded as occlusion, it is expected that the

use of the ABM method improves the matching accuracy.

1Saji et al. proposed the method for adaptively splitting the template and
for appropriately changing the number of patches [9]. This method improves
matching stability, but requires much computation. In this method, we fix
the splitting method.

Fig. 2. The results of the template matching method (upper row) and of
the ABM method (lower row). Rectangles at the left column correspond
to the templates and ones at the right column show the matching results.
The severe illumination change affects the result of the template matching
method; the matched position is far from the center, i.e., ground truth. In
contrast, the ABM method correctly matches the template.

Fig. 3. Averages of the normalized correlations in the template matching
method (left) and the matching scores in the ABM method (right). Although
the ranges of the two values are the same, the average in the ABM method
is smaller.

To investigate the robustness to illumination changes, we

captured 840 outdoor images of a fixed camera from 10:00

to 16:00 every 30 seconds and then applied the template

matching method and the ABM method to the images. The

image captured at 10:00 was used as the template.

Fig. 1 shows the magnitude of the displacement

vector (xerror yerror) of matching position, i.e.,√
x2

error + y2
error. Since the camera position was also

fixed, it is preferable that the matching position is fixed,

i.e., the magnitude equals zero. These graphs prove that

matching by the ABM method is stabler than by the

template matching method.

Fig. 2 shows the matching results at around 15:00. Severe

illumination change affects the result of the template match-

ing method. However, the ABM method correctly matches

the template.

Fig. 3 shows the averages of the normalized correlation

and the ABM’s matching scores. Although the range of
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We define the displacement of the matching position along horizontal direction Fx as the horizontal distance of the image. After matching by the ABM
method, the template matching method with the normalized correlation searches the more precise matching independently in each of the small patches.
We define the average of the magnitudes of the displacement Fzi as the depth distance of the image. These two criteria are employed for selecting the
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Fig. 5. Robot control and localization. Localization in rotation is achieved
by the horizontal distance of the image. Localization in moving forward is
achieved by the depth distance of the image. In the case of moving forward,
the robot simultaneously adjusts the steering based on the horizontal
distance.

each value is the same, i.e., from −1 to +1, the average

of the ABM’s matching score is smaller. Due to this affect,

it becomes inaccurate to select the target view by the score.

Thus, we designed novel criteria for the selection.

B. Selection metrics between two images

For appropriately selecting the target view from the view

sequence, we define two types of criteria. Fig. 4 shows the

overview of the method for calculating them. The ABM

method first matches the currently captured image I and

the target view Vn. The central area of the target view is

used as the template. Thus, the displacement of the matching

position from the center, F , is assumed as the difference of

the directions between the target path and the current path.

We define the horizontal element of the displacement, Fx,

as the horizontal distance of the image.

After matching by the ABM method, the template match-

ing method with normalized correlation searches the more

precise matching independently in each of the m small

patches, Ti (i = 1, 2, . . . ,m). As the result, the displace-

ments Fzi of all the patches are obtained. We define Fz in

Eq. (1) as the depth distance of the image.

Fz =
1
s

∑

i∈K

|Fzi|. (1)

K is the set which includes all the small patches whose

normalized correlation is greater than zero and s is the

number of elements in the set K. To improve the stability

in calculating the depth distance, we use the values which

are obtained by applying a low-pass filter (simple moving

average in this paper) to Fz .

C. View sequence using ABM method and image distances

As shown in Fig. 5, robot motions in indoor/outdoor

environments consist of the following two types:

• rotation (e.g., pivoting) in a narrow area, and

• forward motion with small direction change.

In the case of rotation, we employ the horizontal distance

of the image, Fx, for changing the target view. From the

definition, the distance corresponds to the difference of the

directions between the recorded view and the current view.

Let the target view and the next view be Vn and Vn+1,

respectively. The target view is changed just when Fx(n) >
Fx(n+1), where Fx(n) and Fx(n+1) are the horizontal dis-

tances for the two views, Vn and Vn+1, respectively.

In the case of moving forward, we employ the depth

distance of the image, Fz , for changing the target view. In

detail, the target view is changed just when Fz(n) > Fz(n+1),
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Fig. 6. Mobile Robot (EMC-230)

12:00 1 2 3 4

13:30 1 2 3 4

Fig. 7. Recorded image sequences at 12:00 (upper) and at 13:30 (lower)

where Fz(n) and Fz(n+1) are the depth distances for the two

views, Vn and Vn+1, respectively.
Consider the case where the robot moves before the

position where the view Vn was captured. As the robot

moves forward, Fz(n) and Fz(n+1) decrease together while

Fz(n) < Fz(n+1) holds. When a robot approaches the

position where the view Vn was captured, the value of

Fz(n) is minimized. After that, Fz(n) increases and Fz(n+1)

decreases, as the robot moves away. Thus, the target view

is changed when Fz(n) > Fz(n+1). Note that in teaching the

view sequences the horizontal distance Fx for rotating and

the depth distance Fz for moving forward, are used in place

of the normalized correlation.
The rotation can be achieved by continuously rotating until

approaching the goal view. In the case of moving forward,

the robot needs to control the steering to adjust the difference

between the current view and the target view. The steering

angle is decided from the horizontal distance Fx(n). This

algorithm can move the robot along a moderately curved

path.

IV. EXPERIMENTS

A. Mobile robot
In this experiment, an electric wheelchair (Imasen En-

gineering Corporation: EMC-230) was used as the mobile

robot (see Fig. 6). The robot is controlled through the USB

I/O port (Technowave Ltd.: USBM3069F) and is equipped

with an IEEE 1394 camera (SONY Corporation: DFW-VL-

500) to capture gray-scale images.

B. Comparison to original view sequence method
To verify the effectiveness of the proposed method, we

compared the proposed method to the original view sequence

method. Success in the localization can be determined if

the target views are appropriately changed. We employed

a 100 [m] outdoor straight path in our campus for the

comparison. Fig. 7 shows several views of the path. As can

be seen from this figure, illumination changes due to time

differences dramatically alter the images.
The size of the input view image was 80×60 [pixel]. The

image was obtained by down-sampling the captured gray-

scale images whose size was 640×480 [pixel]. We manually

(a)

(b)

Fig. 8. (a) Normalized correlations of the target view Vn and the next
view Vn+1 to the current image, and (b) the selected view ID in each
frame at 12:00. The horizontal axis indicates the frame number of the image
which is used as the current image. The vertical axes indicate normalized
correlation in the upper graph and view ID in the lower graph. The target
views are appropriately changed.

moved the robot twice at 12:00 and once at 13:30 while

recording the images. The view sequence was generated

from the images recorded firstly at 12:00. The threshold

for sparsely sampling the images for generating the view

sequence was manually adjusted in order that the number of

views in the original method was similar to the number in

the proposed method. In detail, we set the threshold for the

normalized correlation in the original method to be 0.9 and

the threshold for the depth distance to be 1.8 [pixel]. In the

proposed method, the number of small patches in the ABM

method was 25 and the size of the search area after the ABM

method was 5 × 5 [pixel]. The simple moving average with

20 frames was used as low-pass filter for the depth distance

of the image. 22 views in the original method and 24 views

in the proposed method were obtained.

We verified if the target views were correctly changed

when using the images recorded second at 12:00 and

recorded at 13:30 as the current views. Figs. 8 and 9 show

the results of the original method. Figs. 10 and 11 show the

results of the proposed method. The numbers in these figures
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(a)

(b)

Fig. 9. (a) Normalized correlations of the target view Vn and the next
view Vn+1 to the current image, and (b) the selected view ID in each
frame at 13:30. Despite arriving at the goal, the selected view is not the
final one.

(a)

(b)

Fig. 10. (a) Depth distances of the target view Vn and the next view Vn+1

to the current image, and (b) the selected view ID in each frame at 12:00.
The target views are appropriately changed.

correspond to the location IDs in Fig. 7.

Fig. 8 (a) shows the normalized correlations of the target

view Vn and the next view Vn+1 to the current image I in

the original method. As the robot approaches the position

where the view Vn+1 was captured, the correlation of the

view Vn decreases and that of the view Vn+1 increases. The

target view is appropriately changed as shown in Fig. 8 (b);

the final view in the view sequence is selected at the goal.

As shown in Fig. 10 (a), the depth distance of the view Vn

increases and the distance of the view Vn+1 decreases in the

proposed method as the robot approaches the position. The

target view is appropriately changed as shown in Fig. 10 (b).

The original method could not appropriately change the

target view for the images recorded at 13:30 as shown

in Fig. 9. The normalized correlations of the view Vn and the

(a)

(b)

Fig. 11. (a) Depth distances of the target view Vn and the next view Vn+1

to the current image, and (b) the selected view ID in each frame at 13:30.
Although the original navigation method could not appropriately change the
target views, the proposed method can do.

Fig. 12. Map of indoor/outdoor environments and robot navigation path.
S and G denote the start and the goal and the arrows indicate the path.

view Vn+1 decrease together. However, the proposed method

can appropriately change the view as shown in Fig. 11. We

verified the effectiveness of the proposed method using the

images recorded at 16:00. From the results, we conclude that

the proposed method is more robust for illumination changes

than the original method.

C. Indoor/outdoor navigation

We conducted experiments for navigation outdoor and

indoor (the first floor in the building of information science)

in our campus. The distance covered was about 300 [m]

and the weather was fine. Although there is an automatic

door at the entrance of the building, the door was turned off

and left open during the experiment. We set the thresholds

for the depth and the horizontal distances to be 1.2 [pixel],

and 10 [pixel], respectively. The view sequence, which
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Fig. 13. Snapshots during the navigation (left) and the corresponding views
from the robot (right)

includes 95 views, was generated from the images recorded

at 9:00. The navigation was performed at 12:00. S and G in

Fig. 12 denote the start and the goal, and the arrows indicate

the path. Fig. 13 shows snapshots during the navigation

and the corresponding views from the robot. The numbers

in this figure correspond to the location IDs in Fig. 12.

Through the navigation, we verified that the proposed method

appropriately changed the target views independent of the

indoor/outdoor environments and succeeded in the navigation

including rotating motion. The proposed method achieved

indoor/outdoor navigation without using tricks that depend

on the type of navigation environment.

V. CONCLUSION

In this paper, we proposed a view sequence navigation

method which can adapt to the environment with illumination

changes for achieving seamless indoor/outdoor navigation.

The original navigation method changes the target view

based on the normalized correlation of the template matching

method. However, due to the intrinsic drawbacks of the

matching method, it is difficult to apply the navigation

method to the outdoor environment where illumination con-

dition changes every moment. To solve this problem, we

first proposed to use the accumulated block matching (ABM)

method, which is robust against occlusions. Next, we defined

novel criteria for changing the target view, i.e., the horizontal

and the depth distances of the images. Then, we actually

designed the navigation method using them. The method

navigates the robot by moving forward and rotating. We

demonstrated that the proposed method was able to achieve

indoor/outdoor navigation without using tricks that depend

on the type of navigation environment.

The robustness to illumination changes causes erroneous

navigation of the robot in the case where obstacles exist on

the path, (e.g., accident caused by hitting an obstacle). The

reason is that the proposed method does not consider whether

small changes on the image are caused by illumination

changes or by obstacles. To realize safe and reliable nav-

igation requires us to implement the algorithm for detecting

obstacles from images or to use additional types of sensors,

such as a laser range sensor.
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