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Abstract— We address the problem of foothold selection
in robotic legged locomotion over very rough terrain. The
difficulty of the problem we address here is comparable to
that of human rock-climbing, where foot/hand-hold selection is
one of the most critical aspects. Previous work in this domain
typically involves defining a reward function over footholds as
a weighted linear combination of terrain features. However, a
significant amount of effort needs to be spent in designing these
features in order to model more complex decision functions, and
hand-tuning their weights is not a trivial task. We propose the
use of terrain templates, which are discretized height maps of
the terrain under a foothold on different length scales, as an
alternative to manually designed features. We describe an algo-
rithm that can simultaneously learn a small set of templates and
a foothold ranking function using these templates, from expert-
demonstrated footholds. Using the LittleDog quadruped robot,
we experimentally show that the use of terrain templates can
produce complex ranking functions with higher performance
than standard terrain features, and improved generalization to
unseen terrain.

I. INTRODUCTION

Traversing rough terrain with carefully controlled foot
placement and the ability to clear major obstacles is what
makes legged locomotion such an appealing, and, at least
in biology, a highly successful concept. Surprisingly, when
reviewing the legged locomotion literature, relatively few
projects can be found that actually address walking over
rough terrain. Most legged robots walk only over flat or at
best slightly uneven terrain, a domain where wheeled systems
are usually superior. Walking over rough terrain poses a
variety of challenges. First, the walking pattern needs to be
very flexible in order to allow close to arbitrary foothold
selection – indeed, even the choice of which leg is the
swing leg may have to be altered on the fly [1]. Second,
balance control becomes crucial due to slipping and other
mistakes, such that sole reliance on a stable walk pattern
is insufficient [2]. And third, foothold selection for maximal
robustness and speed is crucial. In previous work [1], [2], we
have addressed the first two issues. In this paper, we consider
the problem of foothold selection for locomotion over rough
terrain.

Related work in the literature has used classifiers that
classify footholds on the terrain as acceptable or unac-
ceptable using terrain features like slope and proximity to
cliffs [3]. Other work involves defining a reward function
over footholds as a weighted linear combination of terrain

Fig. 1. The LittleDog quadruped robot on rocky terrain

features like slope and curvature on different length scales,
and subsequently picking the foothold that maximizes the
reward [4]. The weights on the features in the reward
function in [4] are inferred using a learning procedure called
hierarchical apprenticeship learning on footholds and body
paths demonstrated by an expert. The performance of such a
system, however, is critically dependent on the careful design
of heuristic terrain features which are flexible enough to
model the expert’s training data.

The contribution of this paper is the introduction of terrain
templates (hereafter simply referred to as templates) as a
tool for learning locomotion over rough terrain. The concept
is partly inspired by template matching techniques widely
used in computer vision [5]. A template is a discretized
height map in a small area around a foothold that the robot
encounters. We introduce an algorithm that can learn a set
of templates from expert-demonstrated footholds, along with
an associated set of weights, and use them to successfully
navigate previously unseen terrain. We present results show-
ing that the learnt templates alone can outperform multi-
scale terrain features on complex terrain. We also show that
the combination of features and templates performs the best,
due to the broad generalization ability of features, and the
specialization capability of templates.

The rest of this paper is laid out as follows. In Section II,
we formulate the foothold selection problem and introduce an
algorithm that learns a ranking function for foothold selection
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from expert demonstrations, using an arbitrary set of features
that represent a foothold. In Section III we introduce the
concept of terrain templates as a flexible foothold feature
representation, and propose an algorithm that learns a set
of templates and a corresponding foothold ranking function
from expert demonstrations. In Section IV, we introduce
our experimental setup and describe our control architecture.
In Section V we present results showing that the use of
terrain templates for foothold selection allows navigation
of more complex terrain than previously possible. Finally,
we conclude the paper and discuss ideas for future work in
Section VI.

II. LEARNING A RANKING FUNCTION FOR FOOTHOLD
SELECTION

We develop our work in the context of quadruped lo-
comotion, but this approach equally scales to any other
legged locomotion system. We consider static or quasi-static
locomotion, in which either the Center of Gravity (COG) or
the Zero Moment Point (ZMP) [6], respectively, is always
maintained within the support polygon. The task is to find
a suitable foothold for the swing leg, given the positions of
the stance legs. The chosen foothold must:

• Minimize slipping on terrain
• Not result in collisions with the environment
• Maximize forward progress towards the goal
• Be within the kinematic range of the robot
• Serve to maximize the area of future support polygons

for maximum stability
Most often, these goals are conflicting, and trade-offs must

be made between them. Specifying these trade-offs by hand
is non-trivial, since it typically involves manual tuning of a
large number of parameters. From our experience, it is nearly
impossible to achieve a system that generalizes well to all
kinds of terrain purely by manual parameter tuning, as the
search space is prohibitively large.

We seek to learn the optimal trade-offs for foothold
selection, using footholds that are demonstrated by an ex-
pert. To this end, we formally define the foothold selection
problem below, describe the process of collecting expert
demonstrations, and then introduce an algorithm that learns
how to select good footholds.

A. Problem Formulation

The state of the robot is defined as the 3D position of all
feet, 3D body position and orientation, and the knowledge of
which leg is the swing leg. We define the set of n footholds
reachable from this state by F = {f1 . . . fn}. Each of these
footholds fi is described by a feature vector xi ∈ Rd.
We define this feature vector xi as being composed of two
groups: terrain features, which encode information about the
terrain at the foothold, and pose features that quantify all
other relevant information like progress towards the goal,
stability margins, and collision margins.

We define a reward function R over footholds as a
weighted linear combination of the features:

R(fi) = wT xi, (1)

where w ∈ Rd is the weight vector. This reward function
can then be used to rank all the footholds in F , and the one
with the highest reward selected as the target foothold1. The
task of learning the trade-offs for foothold selection has thus
been reduced to learning the weight vector w.

B. Collecting Expert Demonstrations

An expert is shown logs of runs executed by the robot
on different kinds of terrain. S/he inspects each run for sub-
optimal foot placement choices made by the robot, and in
each of those situations, labels the correct foothold fc that
s/he thinks is the best greedy choice from among the entire
set of reachable footholds F . Fig. 3(a) shows a screenshot
of our teaching interface, where the red ball depicts the sub-
optimal foot placement choice made by the robot, and the
white ball below shows the optimal foot placement chosen
by the expert.

C. Learning From Expert Demonstrations

When the expert labels the foothold fc from the set F as
the optimal foothold, s/he is implicitly providing information
that the reward for the chosen foothold fc is better than the
reward for all others:

wT xc > wT xi ∀i ∈ F ; i 6= c. (2)

This corresponds to the widely studied rank learning or
preference learning problem in the machine learning lit-
erature [7]. This problem can be converted into a binary
classification problem [8]. Rearranging Eq. (2), we get:

wT (xc − xi) > 0 ∀i ∈ F ; i 6= c. (3)

The optimum value of w could be found by defining a
suitable loss function that penalizes values of wT (xc − xi)
that are lower than zero. However, it is observed that such a
loss function would be identical to that of a linear binary
classifier, in which the inputs are the pairwise difference
feature vectors (xc−xi), all mapped to the target class +1.
Hence, the weights w can be obtained by running a linear
classifier2 like Support Vector Machines (SVM) or logistic
regression (LR) on the pairwise difference feature vectors
(xc−xi). The resulting weight vector w is used to evaluate
the reward R in Eq. (1) on all candidate footholds fi ∈ F .
The ranking imposed upon F by the reward R will satisfy
all the training data in Eq. (2), if and only if the expert’s
ranking function is truly a linear function of the features.
We show in the following section that this is usually not the
case, especially with conventional feature representations of
footholds.

1Maximizing the immediate reward for the current foothold is an inher-
ently greedy approach. At the expense of higher computation time, one
can achieve better performance in practice by choosing the foothold that
maximizes a multi-step criterion, i.e., the value function, which is the sum
of expected future rewards obtained by choosing a foothold, using standard
heuristic graph search algorithms like A*.

2Our choice of a specific classifier is motivated in Section III.
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III. TERRAIN TEMPLATES

Some of the terrain features previously used for the
foothold selection problem are slope, curvature and standard
deviation of the terrain on various spatial scales [4], [9].
However, since the rewards are defined to be linear in the
features, such a feature set can only represent more com-
plex decisions by careful engineering of nonlinear features.
For example, Fig. 2 shows three footholds with increasing
levels of curvature. The foothold illustrated in Fig. 2(b) is
preferable to flat terrain (Fig. 2(a)), because it prevents foot
slippage. The one in Fig. 2(c), however, is not, because the
foot could get stuck in it. Such a ranking is hard to achieve
with a reward function that is a linear function of curvature.

Although this specific example could possibly be handled
by hand-crafting additional features, one can imagine that
many more such situations exist which cannot be foreseen.
The problem thus requires a much more general solution3.

We propose the concept of a terrain template, which is a
discretized height map of the terrain in a small area around
the foothold. One could imagine an approach in which the
robot maintains a library of such templates, each associated
with a reward value. Subsequently, during execution, each
candidate foothold can be assigned the reward from the
closest matching template in the library (using an arbitrary
similarity measure). In the context of Fig. 2, the robot would
store a template for each of the three footholds shown, along
with an appropriate reward for each. Assigning the highest
reward to the template for Fig. 2(b) would allow the robot
to select that foothold over the others.

Manual creation of such a library of templates would be
too time-consuming, and it would be nearly impossible to
attain good generalization performance, since the rewards
for each template would have to be tuned carefully. Hence,
we propose an algorithm that uses expert-demonstrated
footholds to simultaneously learn a small set of templates,
and a foothold ranking function that uses these templates. We
first describe our methodology for template extraction from
expert demonstrations, followed by the template learning
algorithm.

3Non-linear classifiers, such as the use of radial basis function kernels in
SVMs [10] can learn non-linear ranking functions [8], but are still limited
by the original feature representation. Additionally, the decision function
cannot be interpreted as easily as in the linear case.

(a) (b) (c)

Fig. 2. Three footholds with increasing values of curvature: (a) Flat terrain;
(b) Terrain with mild curvature, preferable to flat terrain since it prevents
slipping; (c) Terrain with high curvature, which can cause the foot to get
stuck, thus less preferred than (a) or (b).

(a)

(b)

24× 24 (mm) 54× 54 (mm) 144× 54 (mm)

Fig. 3. (a) Teaching interface used to demonstrate footholds. Red ball at
the foot indicates the chosen (dangerous) foothold, light green ball below
indicates the demonstrated optimal (safe) foothold; (b) Terrain templates in
multiple scales extracted from the demonstrated foothold. The white spheres
indicate the position of the foot on each template.

A. Template Extraction

From each foothold demonstration 〈F , fc〉 made by the
expert, we extract a set of templates on multiple scales.
Fig. 3(b) shows the three scales of templates that were
extracted from the demonstrated foothold (light green ball
in Fig. 3(a)). The scales that we use are dictated by the
geometry of our quadruped robot, and are designed to
independently capture different properties of the terrain that
make up its reward function. The smallest scale (24 × 24
mm) is on the order of the size of the foot, and encodes
information about surface friction properties and micro-
features that define the slip characteristics of the foothold. We
intend to capture information about clearance from obstacles
and drop-offs using the medium scale (54×54 mm). Finally,
the large scale (144×54 mm) accounts for potential shin and
knee collisions.

Templates on all scales are also extracted from all the
other reachable footholds in the set F , for every expert
demonstration. This creates a large library of templates
representing different kinds of terrain. This comprises the
input to the following template learning algorithm, which
selects a small subset of these templates and learns a foothold
ranking function using them.

B. Template Learning

Each template in the library contributes a feature to
the feature vector xi of a foothold fi. The feature value
represents the similarity between the template and the can-
didate foothold. We choose a radial basis function similarity
measure – a negative squared exponential kernel centered at
the template, and evaluated at the candidate foothold. The
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feature value is given by:

x = exp

(
−h

n∑
i=1

(ti − ci)2
)

, (4)

where x is the value of the feature, h is the bandwidth
parameter of the kernel4, n is the number of terrain points
in the discretized height map of the template, ti is the i-th
height value of the template, and ci is the i-th height value
of the candidate foothold.

This feature set forms the input to the algorithm described
in Section II, that learns a ranking function for footholds
from expert demonstrations. This is done by converting
the expert ranking data into a problem of linear binary
classification, and using the resulting weights as a ranking
function. However, since we have a potentially huge template
library, selecting a small subset of these templates for use
in the final ranking function is important for two reasons.
Firstly, the use of the entire template set would allow the
learning algorithm to trivially overfit all the training data,
resulting in poor generalization. And secondly, the similarity
measure for templates needs to be evaluated in real-time
while the robot is walking, and these computations can be
prohibitively expensive for a large template library.

We combine the steps of template subset selection and
weight learning by using a linear classifier that promotes
sparsity in feature space. We run an efficient implementation
of l1-regularized logistic regression (LR) [11] on the pairwise
difference feature vector data (xc − xi). l1- regularized LR
is a linear classifier that can be defined as an optimization
problem to minimize the following cost function:

J =
m∑

i=1

− log
(

1
1 + exp(−wT xiyi)

)
+ λ‖w‖1, (5)

where m is the number of training examples, x ∈ Rd is
the i-th input vector, yi ∈ {−1, 1} is the label of the i-
th input vector, w ∈ Rd is the weight vector, and λ is
the regularization parameter. The predicted label ytest for
an input xtest is obtained using:

ytest = sgn(wT xtest). (6)

The second term in Eq. (5) is a regularization term that
penalizes the l1 norm of the weight vector. The use of an
l1 regularization term has been known to produce sparse
solutions, i.e. a weight vector w which contains very few
non-zero values [12]. It has been shown that l1-regularized
LR can outperform l2- regularized LR, especially in cases
where the number of features is much larger than the number
of data points [12]. In our case, each expert demonstration
produces a large set of training examples for the classifier.
However, data from footholds that are very close to each
other is likely to be very similar, so the true number of

4Currently, the bandwidth parameter h of the kernel is tuned manually
per length scale. We keep the parameter fixed for all experimental results
shown in this paper.

unique training examples that convey novel information is
usually much lower.

The regularization parameter λ can be viewed as a control
for the desired amount of sparsity – higher values of λ
typically produce sparser weight vectors. We fix the value
of λ by searching through a range of values and picking the
one that minimizes the cross validation training error.

The sparse weight vector w that we obtain from the l1-
regularized LR allows us to discard all the templates from
the library which have a zero weight. The reward for each
foothold can now be evaluated by calculating the feature
values for templates that remain in the library using Eq. (4),
and evaluating the reward function in Eq. (1) using the learnt
weight vector w.

IV. EXPERIMENTAL SETUP AND CONTROL
ARCHITECTURE

In this section we describe our experimental setup and
provide an overview of our robot control architecture.

A. Experimental Setup

Our experimental setup consists of the LittleDog
quadruped robot (Fig. 1) with ball-like feet that are close to
point feet, manufactured by Boston Dynamics. It is about
0.3m long, 0.18m wide, and 0.26m tall, weighs approxi-
mately 2.5kg, and has 3 degrees of freedom per leg. Joint
angle and velocity set-points are sent to the robot from a
Linux host computer over a wireless connection at 100Hz,
and the on-board low level controller servos each actuator us-
ing PD control at 400Hz. LittleDog has a 3-axis force sensor
on each foot, position sensors to measure joint angles, and
an on-board inertial measurement unit (IMU). An external
motion capture system (VICON) provides information about
the absolute world position and orientation of the robot.

We use a set of interchangeable terrain modules of size
61 × 61 cm. The terrain modules include flat modules,
steps of various step heights, different sizes of barriers,
slopes, logs, and rocky terrain of varying difficulty levels.
Each terrain module is scanned by a laser scanning system
beforehand, to produce a high (1mm) resolution 3D model.
A unique arrangement of reflective markers is fixed on each
terrain module, enabling the motion capture system to track
the position and orientation of each module independently,
thus providing complete information about the terrain in
the world. This greatly simplifies the perceptual component
of rough terrain locomotion, allowing us to focus on the
planning and control problems.

B. Control Architecture

We use a hierarchical control scheme, similar to [9], briefly
outlined below:

1) Approximate Body Path Planner: We first plan an
approximate path for the robot body through the terrain, from
the start to the goal. This is achieved by discretizing the entire
terrain into 1 cm square grid cells, and assigning a reward
to each cell. The cell rewards are obtained by assuming that
the center of the robot is in the cell and the four feet are
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in their default stance positions. For each leg, the best five
foothold rewards in a small search radius around the default
position are summed up, along with some heuristic scores
based on body and knee clearance, to form the final reward
for the cell.

The final path is obtained by generating a policy in this
grid-world using Dijkstra’s algorithm. This approximate path
is used to direct the lower level footstep planner. If the
foothold reward function is changed, it usually results in a
different body path. Note that for the purposes of evaluation
in this paper, we kept the body path fixed so as to remove
the influence of the body path planner on foothold selection.

2) Footstep Planner: A reward function over footholds on
the terrain is defined as described in Sections II and III. The
reward function chooses footholds that are biased towards
the global body path plan. Using this reward function for
footholds, we run a five-step look-ahead planner and choose
the foothold that maximizes the reward over the next five
steps.

3) Pose Finder: For every step generated by the footstep
planner, we optimize the pose of the robot (namely, the COG
height, roll, pitch and yaw angles) to maximize reachability
of all footholds and minimize knee and body collisions.

4) Body Trajectory Generation: Using the locations of
the next five footholds generated by the footstep planner, we
generate a COG trajectory through the resulting support tri-
angles which allows for continuous forward movement of the
COG with optimal, velocity-dependent sway. This trajectory
planner is described in detail in another contribution [2].

5) Foot Trajectory Generation: The trajectory for moving
a foot from one location on the terrain to another is defined
by finding the convex hull of the terrain points in between,
and raising the height of the hull by a minimum clearance.
The points on the hull are then connected using piecewise
cubic splines optimized for minimum acceleration subject to
monotonicity constraints.

6) Low level Control: The resulting trajectories are then
converted into desired joint angles and velocities using a
closed form inverse kinematics solution for each 3-DOF leg
individually, which are then tracked by the robot using a
PD controller at 400Hz. Additionally, the body and foot
trajectories are controlled in closed loop at 100Hz (using
the VICON motion capture information) to improve foot
placement tracking performance.

V. RESULTS

In order to evaluate the performance of our template
learning approach, we collected around 100 expert foothold
demonstrations across different kinds of terrain of varying
difficulty levels. Three different foothold reward functions
were learnt using the following feature sets: (a) multi-scale
terrain features, (b) multi-scale terrain templates and (c)
terrain templates + terrain features. 26 pose features were
also used along with each of the above feature sets. The
pose features included measures of progress towards the goal,
stability margins, reachability of the foothold, differences in
leg heights, and knee and body clearance from the terrain.

TABLE I
NUMBER OF TEMPLATES LEARNT ON EACH SPATIAL SCALE, FROM A

TOTAL OF 946, WITH AND WITHOUT AUGMENTATION BY FEATURES

Small scale Medium scale Large scale

Templates + Features 1 19 23
Templates Only 10 24 28

The terrain features we used (on each scale) were slope
and curvature along the x and y axes5, and standard deviation
of the terrain. This resulted in a total of 9 features being
used per length scale. The same three length scales were
used for both feature computation and template extraction,
and are depicted in Fig. 3(b). The features and templates are
mirrored in the y direction for the left and right legs, but
independent functions were learnt for front and hind legs as
their properties tend to be quite different.

A foothold ranking function was learnt for each of the
three feature sets mentioned above, using the algorithms de-
scribed in Sections II and III. The l1 regularization parameter
λ was set individually in each case by choosing the value that
minimized cross validation error on the training data. Table I
shows the number of templates selected on each scale, with
and without the use of terrain features. Interestingly, almost
no templates were needed on the smallest scale when features
were used, however, most of the templates on the medium
and large scales were still required. This suggests that the
expert’s ranking function contained a significant amount of
non-linearities in the larger scales that terrain features were
unable to capture. At the smallest scale, the information
contained by the templates seems to be identical to that of
the features computed at this scale.

We measured locomotion performance using two metrics:
success rate, and average slip experienced by the robot at
each foothold. A run was deemed a success if the robot
crossed the terrain and reached the goal without falling over.
Slip was measured as the distance between the position
of a foot at touchdown and the position of the same foot
before it swings again, i.e., one full walking cycle later. We
averaged the slip only over successful runs, since including
the slip experienced on runs that failed would render the
statistic meaningless. Table II shows the results that were
obtained by performing 21 runs using the three different
ranking functions learnt from the three feature sets. These
runs were performed on a test terrain module which the
robot was not trained on. The use of templates is seen to
improve performance over that of terrain features, in terms of
both success rate and slip. It is also observed that combining
templates and features results in the most robust performance
and lowest average slip. The baseline slip performance of the
robot walking on flat terrain is also shown, as a lower bound
to the achievable amount of slip on our experimental setup6.

5We split each slope and curvature feature into two distinct features for the
positive and negative directions. The x and y axes are in body coordinates,
with x pointing forward, and y to the left.

6The amount of slip experienced on flat terrain might seem rather high.
This is largely because the spherical feet on the LittleDog robot roll forward
as the robot moves forward, resulting in a systematic change in the perceived
foot location.
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Fig. 4. Sequence of snapshots of the quadruped robot LittleDog crossing the test terrain after template learning. (left to right, top to bottom)

TABLE II
SUCCESS RATES AND AVERAGE SLIP AT FOOTHOLDS USING DIFFERENT

FEATURE SETS. EXPERIMENTAL DETAILS CAN BE FOUND IN SECTION V.

Method Success rate Average slip on
(out of 21 runs) successful runs (mm)

Features Only 47.6% 24.8± 5.9

Templates Only 76.2% 20.2± 5.1

Templates + Features 100.0% 17.3± 3.3

Baseline (on flat terrain) 100.0% 13.4± 0.4

The results achieved using a combination of templates
and features suggest that achieving broad generalizations
using heuristic features, while simultaneously representing
exceptions to those rules by using templates results in a
highly performant system. We stress the fact that since
the templates are learnt automatically, strong regularization
during the learning process is a key component in achieving
generalization and preventing overfitting to the training data.

Fig. 4 shows a series of snapshots of the robot crossing
the test terrain. The video attached to this paper presents an
overview of our template learning procedure, and provides a
more life-like impression of the robot’s motion over the test
terrain.

VI. CONCLUSION AND FUTURE WORK

We presented an algorithm that can learn a foothold
ranking function for locomotion over rough terrain. This was
achieved by collecting expert foothold demonstrations and
learning a ranking function by converting the ranking prob-
lem into one of linear classification. We introduced terrain
templates as a flexible feature representation for footholds
that can be used to learn more complex ranking functions.
We proposed an algorithm that can simultaneously select
a small subset of templates and learn a ranking function
using these templates. This ranking function was shown to
outperform the use of heuristic terrain features, in addition,
the combination of features and templates was shown to
achieve the most robust generalization performance.

This work on terrain templates was motivated by a grander
vision of designing a rough terrain locomotion system that
can learn without supervision or expert demonstrations,
improving its own performance from trial to trial. Our initial
experiments suggest that the use of templates provides a
system that can quickly learn from experience. Learning a
foothold ranking function through reinforcement can pos-

sibly result in performance superior to that achievable by
learning from expert demonstrations, since the expert is not
necessarily always optimal in her/his choices. We intend to
address this problem in future work.
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