
  

  

Abstract—SLAM is a well studied technique for robots to 

build a map of environments while at the same time keeping 

track of their pose (position and orientation). However SLAM 

does not provide control approaches for how the robot moves 

around the environment. This paper presents an integrated 

approach to create a fully autonomous exploring and mapping 

robot. An EKF-SLAM approach is used to fuse Advanced Sonar 

and Laser Scan-Matching.  This also tackles the problem of 

map-drifts in some types of environment where lasers do not 

supply sufficient information in some directions such as along a 

corridor.  In addition, the proposed exploration algorithm takes 

advantage of the characteristic of the Voronoi Graph to enable 

the robot to strategically explore the environments in a 

loop-closing fashion and safe manner. By revisiting areas to close 

loops as early as possible, the robot can build a more stable map 

incrementally while still reliably tracking its pose. Experimental 

results of the integrated approach are shown to demonstrate the 

algorithm provides real-time exploration of a mobile robot in an 

initially unknown real environment.  Experimental comparisons 

of exploration strategies with and without early local loop closing 

demonstrate the benefits of the approach in the map quality.  

I. INTRODUCTION 

n many cases, a mobile robot needs to know its pose and 

the location of obstacles/objects surrounding in order to 

perform useful operation autonomously in an initially 

unknown environment. The SLAM (Simultaneous 

Localisation and Mapping) algorithms [1-6] provide solutions 

to this problem. Recently, there has been significant progress 

on SLAM, though the solutions do not provide motion control 

of the robot and as a result, the robot has to be driven manually 

to produce useful results. An exploration procedure is 

required to create a complete autonomous exploring and 

mapping robot.  

The most primitive exploration strategies are based on 

random-walks and wall-following. These techniques however, 

are generally not suitable in complex environments, because 

they cannot guarantee map completeness and are also 

inefficient.  Path planning is needed to be incorporated in an 

exploration strategy to make it more efficient and effective. 

One example of this strategy is the Frontier-Based 
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exploration [7], where occupancy grids are used to detect the 

boundary between explored and unexplored cells (called 

frontiers) and then a grid-based path planning technique such 

as distance transform [8] is used to guide the robot to each 

frontier. In addition, similar approaches such as 

Voronoi-Graph-Based exploration [9] uses Voronoi Graph to 

explore unknown nodes in the graph and feature-based 

exploration [10] uses exploration paths that are dictated by 

mapped geometric features to explore environments.  

These approaches do not adequately take account of the fact 

the path executed by the robot influences the quality of the 

map which is built by the SLAM algorithm. More recent 

works have focused on minimising the robot’s pose and the 

map uncertainties while exploring environments. Some 

researchers use learning algorithm such as reinforcement 

learning [11] and neural dynamics [12] to learn control policy 

that minimises uncertainties. This however depends on past 

experience and therefore may require extra time before the 

robot finds the optimal way of exploring environments. 

Another technique [13] uses the Extended Information Filter 

to compute a multi-step trajectory that minimises the 

uncertainty. This method assumes the map is a collection of 

point landmarks rather than a collection of raw laser scans or 

image data and therefore cannot be applied to scan matching 

SLAM [2-4] which is chosen in this paper for its robustness to 

data association errors.  

This paper shares the same idea with active loop-closing 

exploration [14], in the sense that the robot needs to close 

loops while exploring environments in order to reduce 

uncertainties. The approach in [14] maintains both an 

occupancy grid map and a topological map while exploring an 

environment. These maps are then used to identify the 

possibility of loop closing. The loop is detected when the 

shortest path between current pose and previously visited 

locations is large in the topological map but small in the grid 

map. Whenever the loop is not detected, the robot uses the 

frontier-based technique for exploration. The main 

advantages of this method are that it is directly applicable to 

scan-matching SLAM and there is no extra time for learning 

required to acquire a consistent and accurate map. However 

the loop is only detected when the robot is already almost 

closing the loop, so there is a possibility that the robot omits a 

loop. Furthermore, it does not attempt to execute the 

loop-closings strategically, which means that it may choose 

poor visited areas for closing the loops.  In contrast, the 

approach in this paper allows the robot to attempt to close 

smaller loops first before attempting to close bigger loops. As 
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shown later in this paper experimentally, this strategy allows a 

less risky and more stable exploration. 

The paper also contributes by presenting an integrated 

fusion of Advanced Sonar and Laser Scan-Matching SLAM – 

Exploration algorithm / strategy that utilises Voronoi Graph to 

strategically explore environment in a loop-closing fashion 

and thus ensures an accurate and consistent map-building 

process. This paper also presents an algorithm to 

automatically extract loop-paths from the Voronoi Graph.  

This paper is organised as follows. The robot configuration 

is briefly described in section II, the SLAM algorithm used for 

exploration is described in section III, and then in section IV, 

the exploration strategy including loop-path extraction is 

discussed. Finally, section V presents the experimental results 

of the proposed integrated SLAM-exploration technique in 

real-life environments.  

II. ROBOT CONFIGURATION 

 

Figure 1 – The experimental mobile robot with front and rear laser range 

finders and Advanced Sonars.  

The robot used for experimental work is shown in Figure 1. 

It has two Hokuyo URG Laser Range Finders and two 

Advanced Sonar systems which are mounted on an 

ActivMedia Pioneer 3 DX mobile robot. Each laser has a field 

of view of 240 degrees and an angular resolution of 0.36 

degrees with a scanning refresh rate of up to 10 Hz. The laser 

range finders then provide the robot with a 360 degree field of 

view with reported ranges between 20 mm to 4000 mm. The 

advanced sonar systems [15] report accurate range and 

bearing as well as classification of targets. The maximum 

range is 5 meters with error standard deviation of 0.2 mm for 

range and 0.1 degrees for bearing. The classification types are 

planes, right angle concave corners and edges. The Advanced 

Sonars are positioned to face 45 degrees and -135 degrees 

with respect to the robot coordinate frame to allow detection 

as well as range and bearing measurement of wall moulding 

and door frames in corridors. All the measurements are time 

stamped to allow time synchronisation of sensors data. 

III. FUSION LASER PSM AND ADVANCED SONAR SLAM 

The SLAM is implemented using Extended Kalman Filter 

(EKF) which is employed based on the description by A. 

Davison [6] where all map features are included in SLAM 

state vector and updated on each observation step. The 

prediction model is derived as in [1], where the error model 

assumes error sources are additive white noise on the wheel 

separation as well as the left and right wheel distance 

measurements.  

The landmarks for SLAM are defined as two types namely 

templates of the two lasers’ raw-scans data (reference scans) 

and a collection of advanced sonars’ point features (corners 

and edges). The lasers’ landmarks are collected approximately 

every meter of robot travel and observed by a process of Polar 

Scan Matching (PSM) [3] for multiple lasers [2] at 

approximately every 250ms. PSM refers to the process of 

aligning an observed set of scan-points with a reference set of 

scan-points. PSM aligns the current scan with respect to the 

reference scans by minimising the sum of square range 

residual. After each successful PSM, the reference scans are 

updated to include the previously unseen features to allow the 

environment to be mapped more completely and hence to 

allow better path planning. In contrast, the advanced sonar 

corner and edge features are collected and updated as soon as 

they are detected and classified.  

The purpose of using both lasers and advanced sonars is to 

increase the accuracy of SLAM by increasing the variety of 

measurements. The advanced sonars are mounted at a fixed 

facing angle, and therefore do not provide enough feature 

detection and re-observation for SLAM alone. It is feasible to 

scan the sonar across a wide pan angle, but this slows the 

sensor cycle considerably.  Laser scan-matching may suffer 

from ill-conditioned scan matches in some environments for 

example, in a featureless corridor.  The scan-matching may 

have a large positional error in the direction of corridor 

because the two scans taken from different positions look 

alike and so the corresponding scan-points pair do not 

necessarily represent the same physical point in the 

environment. Proper error modelling of the scan matching 

such as in [21] can cope with the problem but it makes the 

EKF rely on inaccurate odometry and therefore causes the 

estimation to accumulate error especially when the robot is 

travelling on a rough or slippery surface. In the 

implementation, the lasers provide most of the measurement 

for pose correction and the advanced Sonars complement the 

lasers by providing information that is useful when the lasers 

fail to perform accurate scan-matchings.  The sonar can 

produce range and bearing angles to small corner cube type 

targets naturally occurring in doorjambs and other corridor 

wall features not resolvable by the laser. The fusion of the 

measurements is carried out with an EKF.  

The augmented state vector containing the state of the robot 

(θv , xv  , yv) and the state of landmark locations is defined as 

follows: 
T

nvvv pppyxX ],...,,,,,[ 21θ=             (1) 

where the lasers’ landmarks are represented by the pose of the 

centroid of the reference scans in global coordinate frame, 

( )LiLiLii yxp φ,,=  and the advanced sonars’ landmarks 

are represented by a two dimensional point  in global 

coordinate frame, )1,,( sisii yxp = . The observation model 
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for the pose of the laser landmark with respect to the robot is 

calculated as follows: 
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while the observation model for the advanced sonar 

measurements is calculated as follows: 
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As in previous work [2], standard EKF-SLAM validation gate 

(nearest neighbour) and update equations are applied. It is 

important to note that each update will update the entire 

covariance matrix and the entire state vector.  

Each stored feature is tagged with their corresponding types 

and only associated with new measurements with agreed 

feature types. Simple heuristic error modelling as in [2] is used 

for lasers scan matching measurements and advanced sonars’ 

error modelling of [1] is applied. More detailed explanation 

on EKF-SLAM implementation can be found in [6]. The 

example experimental result of the SLAM implementation in 

a corridor environment is shown in Figure 2. In Figure 2, 

phantom advanced sonar features are observed outside the 

physical corridor due to multi-path echoes. These features are 

not used for navigation and associated with new measurement 

only if they are both echoed features.  

 

 

Figure 2 – Example of result of fusion advanced sonar and laser scan 

matching SLAM in a corridor environment. The red dots are the advanced 

sonar point features which represent wall moulding and door jambs in the 

corridor while the green dots are the lasers’ map features which represent the 

wall in the corridor. The grid size is 1m. 

A SLAM experiment with and without the advanced sonars 

in a long laser-featureless corridor was carried out to further 

demonstrate the benefit of the fusion system. The 

experimental result is shown in figure 3. The building plans 

are shown in black whilst the robot measured map is green for 

laser and red for sonar.  The length of the corridor was 

measured from and to the wall perpendicular to the corridor 

which exists at the start and at the end of the corridor. The 

length of the corridor was ~22.3m as measured using a tape 

measure. Figure 3a shows the final result of the fusion of laser 

PSM and advanced sonar features SLAM in the 

laser-featureless corridor, and the length of the corridor was 

found to be ~22.3m.  While, figure 3b shows the result of laser 

PSM SLAM in the laser-featureless corridor while the robot 

was still inside the corridor and figure 3c shows the final 

results when the robot finally fixed the error after coming back 

to the starting position. In the first experiment (with Advanced 

Sonar), thanks to the assistance of advanced sonars the robot 

was always able to localise well in the corridor and the total 

error is found to be less than 0.5%. While without the help of 

advanced sonar, the drift in the direction of the corridor is 

found to be as large as 1m (~5% error) when the robot was still 

inside the corridor and as small as 0.2m (~1% error) when the 

robot is finally back to initial position and fixed the error after 

a successful PSM, thanks to the perpendicular wall at the start 

of the corridor. These results show the significant 

improvement of incorporating advanced sonar features into 

the classical scan-matching SLAM. 

 

 
           (a) 

 
           (b) 

 
           (c) 

Figure 3 – (a) Final map result of the fusion of laser PSM and advanced 

sonar features SLAM in a laser-featureless corridor. (b) Map result of the 

laser PSM SLAM (without advanced sonar) while the robot was still inside 

the corridor and unable to recover from the drift. (c) Final map result of the 

laser PSM SLAM (without advanced sonar) when the robot was finally back 

at the start of the corridor and able to recover from drift after a successful 

scan matching thanks to the existence of the wall perpendicular to the 

corridor which exists at the start of the corridor. The grid size is 1m.  

IV. EXPLORATION ALGORITHM 

A. Voronoi Graph 

Voronoi Graph can be described as a collection of line 

segments which are equidistant from nearby points (called 

sites) in a d-dimensional Euclidean space. If these sites are 

treated as obstacles detected by ranging sensors, then the 

safest paths to travel around the space can be provided by the 

Voronoi line segments. There are a number of algorithms for 

390



  

computing Voronoi Graph among which S. Fortune’s plane 

sweep algorithm [16] provides a simple O (n log n) solution to 

the problem and is thus used in this paper (the code for S. 

Fortune’s Voronoi Graph generation method which is 

modified by S. O’Sullivan is available in [19]). Here, the 

obstacles in the environment are represented by a set of points 

which are supplied directly from a set of stored reference 

scans acquired from the aforementioned SLAM algorithm. 

These set of reference scans are used as the input for the 

Voronoi Graph generation and all the resulting Voronoi line 

segments with distance to the nearest site less than the radius 

of the robot is eliminated.  

Next, for the Voronoi Graph to be useful in exploration, the 

connectivity between Voronoi vertices needs to be 

constructed. In this work, the Voronoi Graph is converted into 

an undirected-weighted graph structure [18] which is 

represented by an adjacency list data structure [18] where the 

end points of the line segments become the nodes and then the 

links between the nodes are established by the lines and 

weighted by the length of the lines. An example of a Voronoi 

Graph and its corresponding adjacency list is shown in Figure 

4 and Figure 5 respectively. Once the adjacency list is built, 

then existing graph algorithms such as Breadth First Search 

(BFS) [18] and Depth First Search (DFS) [18] can be used to 

find path between any vertices in the Voronoi Graph. 

 

Figure 4 – Example of Voronoi Graph and its graph structure. 

 

Figure 5 – Adjacency-list representation of the Voronoi Graph example. 

B. Exploration Algorithm 

In the proposed exploration strategy, a Voronoi Graph is 

used as possible safe paths to destinations. The characteristic 

of Voronoi Graph allows the robot to plan its collision-free 

path to anywhere in the environment. The main advantage of 

utilising Voronoi Graph over grid-based path planning is that 

the path is safer and more natural. The grids traversal of 

grid-based path planning is limited to eight directions and thus 

produces unnecessary turns in a lot of its planned path. 

Another important characteristic of Voronoi Graph is that it 

exhibits loop-paths that can help in guiding the robot to close 

loops during exploration. The loop-paths extraction algorithm 

is discussed in section IV.C. 

It is well known that the loop closing is an important 

attribute of most SLAM algorithms as it increases the stability 

and consistency of both map features and robot’s pose 

estimation. As the robot travels further from its starting 

position, the uncertainty in the state estimation increases due 

to the addition of new map features with accumulative 

positional error into the SLAM state vector as a result of 

imperfect robot’s pose estimation and correction. Moreover, 

these new features are never associated with the old features 

and as a result the joint correlation between elements in the 

SLAM state vector is weakened over time. If the robot 

re-enters previously visited areas, this uncertainty is generally 

reduced and the joint correlation is strengthened. Note that, 

re-entering places which are too close to the current position 

has a small effect of improvement, while re-visiting places 

further from its current position has a larger effect on 

improvement. However, if the loop-path is too large, the map 

can be already too distorted for the loop-path to exist in the 

Voronoi Graph prior to closing the loop and furthermore there 

is a need to integrate additional loop-closing algorithms such 

as in [17] to successfully close the loop. The exploration 

strategy is designed based on the above deduction where 

loop-paths which are considered too small are ignored and the 

robot attempts to execute smaller loop-paths first before 

attempting to execute larger loop-paths. This will ensure a 

stable partial map creation before the robot travels further to 

explore the environment.  

The priority of the proposed strategy is performing 

loop-paths while exploring environments, but the existence of 

loop-paths cannot be guaranteed in Voronoi Graph and/or in 

some environments such as corridors. Moreover, there is no 

assurance that the robot will fully map the environment by just 

executing the loop-paths. In the event where no loop-paths 

exist, Voronoi-Graph based exploration is used to visit all the 

unknown nodes. An occupancy grid-map is maintained 

throughout the whole exploration process which is then used 

to determine whether a node has been explored. To determine 

whether or not a node is explored, the node position in the 

occupancy grid-map is calculated and then the probability 

value of its corresponding cell is checked. If the probability 

value is not 0.5, then it is explored and vice versa. The 

selection of nodes to explore is done by firstly extracting paths 

to all unexplored nodes from the robot’s current position using 

Dijkstra method [20] and then followed by sorting the paths 

by their error costs. The first on the list will be the path with 

minimum error cost and therefore executed. In order to avoid 

oscillation, if the destination point changes but the difference 

in error cost is not large, the robot keeps going to the current 

destination point. The error cost is calculated as the 

propagated odometry error [1] of following the path. The 

complete strategy on the proposed algorithm is shown as 
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flow-chart in Figure 6. 

 

Figure 6 – Flow chart for exploration  

C. Loop-Paths Extraction 

Loop-paths or cycle-paths refer to paths that start and end at 

the same node in the graph. The loop-paths can be extracted 

by using a modified DFS (Depth First Search) which is 

implemented using a recursive function. By using the DFS, all 

the nodes are explored to see if there exist paths which end at 

their corresponding starting node. The implementation uses 

the following objects: 

1. adj: a map data structure; to store the adjacency list of the 

graph. 

2. loop: a map data structure; to store a list of loop-paths 

3. q: a queue data structure; to store current loop-paths 

extraction. 

4. curr: an integer data type; to store the current node number. 

5. start: an integer data type; to store the starting node number. 

In the following implementation shown in pseudo code form 

in Algorithm 1, the size of the queue, q is initially zero and as 

the DFS is visiting nodes, the nodes are pushed back into q if it 

does not already exist in q. When the DFS reach back to the 

starting node, the whole q is pushed back to the loop-path list, 

loop. Every time the DFS reach the end of path or finish the 

loop, then the queue is popped back to try another path. The 

algorithm recognises the end of path without a loop when the 

entire next nodes at the current node in the adjacency list, adj 

already exist in q. the full pseudo-code of the algorithm is 

shown in Algorithm 1. 

The starting node is required to be one of the inputs of the 

loop-paths extraction algorithm, because it determines where 

the loop-paths should start and end. At the start of the 

exploration, the starting node is found by selecting the closest 

node to the starting position of the robot. The selected node 

has to have at least two links to other nodes, where one link is 

used for starting path and the other links are used for the 

ending paths. However, only those nodes with more than two 

links are considered in the search in order to reduce the search 

complexity. This starting node is used until all the resulting 

loop-paths have been executed. If the loop-paths are not found 

in the starting node, then the starting node is changed to the 

next closest node and the search stopped when all the nodes 

have been attempted. The loop-paths extraction is repeated 

every time the robot is 1 m away from its previous location, 

since as the robot explores the environment, the map expands 

and the Voronoi Graph also changes. 

 

Algorithm 1 – The Loop-Paths Extraction Algorithm 

 
int loop_extract (map adj, map  loop, queue q, int curr, int start) 

{ 

 if (q.size == 0) 

  q.pushback (curr); 

 count = 0; 

 for I = 0:adj[curr].size 

  next_curr = adj[curr][i]; 

  if ( next_curr is not in q) 

   q.pushback (next_curr); 

   flag = 1; 

  else 

   count++; 

   flag = 0; 

  endif 

  if ( next_curr == start ) 

   if (q.size > MIN_SIZE) 

    loop.pushback (q); 

   endif 

  else if (flag == 1) 

   if ( loop_extract(adj, loop, q, next_curr, start) ) 

    q.popback(); 

    count++; 

   endif 

  endif 

  if (count == adj[curr].size) 

   return 1; 

  else 

   return 0; 

  endif 

 end for 

} 

 
 

V. EXPERIMENTAL RESULTS 

The exploration algorithm described in this paper has been 

implemented in real-time C++ using the abovementioned 

robot. The experiments were carried out in a robotics 

laboratory with size of 10m x 10m. The integration of the 

SLAM algorithm and the exploration strategy enabled the 

robot to explore and build the map of the environment without 

any human intervention. However, as the proposed method 

assumes a static environment, the experiment was done 

without any human and/or other robots moving in the 

environment.  

Figure 7 shows the final Map and the resulting Voronoi 

Graph of the robotics laboratory while Figure 8 shows the 

footage of the exploration. The white robots in Figure 8 

represent the collection of the pose SLAM estimation of the 

reference scans. They were numbered according to their 

creation time. The robot started where the white robot was 

numbered 0 and then moved to the selected unexplored node. 
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As it moved to the selected node, then a loop was detected, 

then the robot changed to follow the loop-path until it 

successfully closed the loop. Once the small loop had been 

closed, the robot then decided to follow the bigger loop as 

detected by loop-extraction algorithm. As depicted by Figure 

7 and 8, only two loops existed in the environment, and so as 

soon as the robot closed the second loop, the robot then used 

graph-based exploration to complete the map. It is also worth 

mentioning that the robot can close the loop without any 

special loop-closing algorithm e.g. [5] because the size of the 

loop is relatively small. A similar but larger experimental 

result with three loops and a corridor is shown in figure 9.  

Another experiment was carried out by manually driving 

the robot around the laboratory to show the potential benefit of 

the proposed algorithm over the other exploration algorithms. 

In this experiment, the robot was driven as far as possible 

(while performing SLAM) before attempting to close the loop. 

Some other algorithms such as Frontier-based allow the robot 

to travel as far as the map permit without closing the loop and 

therefore risky in terms of maintaining a consistent map in 

SLAM. As shown in Figure 10, the map error of the manual 

drive is significantly larger than the map error of the proposed 

method prior to closing the loop which is about 0.2m larger in 

both x and y direction. This result demonstrates that by closing 

smaller loop first before attempting to close a larger loop 

which is encouraged by the proposed algorithm, the robot can 

build a more stable map and perform less risky loop-closings.  

 

 

Figure 7 – The final Map and Voronoi graph of autonomous 

SLAM-exploration experiment with 2 loops. The orange lines are the 

resulting Voronoi Graph of the Robotics laboratory. The green dots are the 

laser map features while the red dots are the advanced sonar map features. 

The sonar map features is labelled with its captured index and its 

re-observation count. The gird size is 1m. 

 

                   
        (a)                 (b) 

                   
     (c)                   (d) 

                     
(e)         (f) 

                                   
                 (g)                                                   (h) 

                
       (i)                 (j) 

Figure 8 – The footage of the exploration experiment in the robotics lab. 

The red coloured robot shows the current position of the robot, while the 

white coloured robot shows the pose of the stored reference scans. Violet 

lines show the extracted exploration path and the red lines shows the 

exploration path. The grid size is 1m.  

 

Figure 9 - The final Map of autonomous SLAM-exploration experiment 

with 3 loops and a corridor. The gird size is 1m. 
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                 (a)                     (b) 

Figure 10 –   The SLAM Map result before loop-closure. The right picture 

shows the map result of integrating Voronoi loop exploration prior to the 

attempt to close the second loop (red to 8), while the left picture shows the 

map result of manual drive prior to the attempt to close the first loop (red to 

0). As shown above, the map error of trying to close a big loop without 

closing a small loop first is significantly larger.  The grid size is 1m. 

VI. CONCLUSION AND FUTURE WORK 

The proposed integrated SLAM-exploration algorithm has 

been shown to successfully enable the robot to explore and 

build a stable and consistent map of environment without 

human intervention. This approach is especially suitable in an 

environment where loop-paths can be extracted and hence a 

more accurate map of the environment is obtainable by 

performing loop-closing frequently.   The method has also 

illustrated the benefits of deploying different sensor 

modalities, such as sonar and laser where each has its 

limitations.  The laser sensing cannot localise well in long 

corridors where drift is a problem due to the lack of accurate 

lengthwise information that the sonar can detect – namely 

doorjambs and protrusions into the corridor.  

The proposed method has not been designed to scale well 

with the size of environment and hence the results presented 

are for relatively small scale environments. Operation in large 

scale environments requires a map decomposition or local 

map approach to avoid storage and computational 

complexities for both the EKF-SLAM, and the Voronoi Graph 

generation and the loop extraction.  Local map strategies for 

SLAM exist and similar approaches can be applied to the loop 

extraction process so that real time performance is maintained 

in larger environments.   This paper has shown that the early 

loop closing strategy is beneficial and in future can be applied 

to larger scales. 
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