
Planning Motion in Point-Represented Contact Spaces
Using Approximate Star-Shaped Decomposition

Jyh-Ming Lien and Yanyan Lu

Abstract— Star-shaped decomposition partitions a shape into
a set of star-shaped components. A shape is star shaped if and
only if there exists at least one point which can see all the points
in the shape. Due to this interesting property, decomposing
a configuration space into star-shaped components can be
beneficial, e.g., for solving motion planning problem. In this
paper, we propose a simple method to decompose the contact
space, represented by point set data, into approximate star-
shaped components. We propose two motion planning methods,
one deterministic and one probabilistic, both based on this idea.

I. INTRODUCTION

Motion planning is a problem of finding a path to move
a robot from a start configuration to a goal configuration
without colliding with obstacles. A key concept in studying
motion planning problems is the idea of configuration space.
The configuration space (denoted as C-space or simply C)
of a given motion planning problem is a set of points
that represent all possible configurations of the robot [1].
Free configuration space (Cfree) is a subset of a C which
represents all collision-free configurations. Essentially, given
a motion planning problem, the goal is to find a sequence of
configurations in Cfree that connects the start configuration
to the goal configuration.

Because of the importance of Cfree in solving a motion
planning problem, the representation of Cfree has been one of
the fundamental issues in motion planning. Similar to many
geometric models, Cfree can be represented by its boundary.
The boundary of Cfree (denoted as ∂Cfree) is called the
contact space, which represents a set of configurations in
which the robot is in contact with obstacles. For robots
with low degrees of freedom (usually ≤ 3), ∂Cfree can be
computed exactly [1]. Unfortunately, the computation of an
exact ∂Cfree has been shown to be intractable for general
motion planning problems [2]. Methods have been proposed
to approximate ∂Cfree, e.g., using octrees [3].

Visibility has been an important tool to explore the topol-
ogy of Cfree. For example, we can use visibility to classify
shapes. A shape is star shaped if and only if there exists at
least one point which can see all the points in the shape. Due
to this interesting property, multiple overlapping star-shaped
components covering ∂Cfree can easily form a network to
represent the topology of Cfree. Such a network is usually
called a roadmap [1] and the motion planning problem can
be solved by connecting the query configurations to the
roadmap. However, little work (except [4]) has been at-
tempted to use star-shapes to solve motion planing problems.
One of the main reasons is the difficulty of extending this
concept to higher (> 3) dimensional spaces.

J.-M. Lien and Y. Lu are with the MASC Group of the Department of
Computer Science, George Mason University, Fairfax, VA, 22030, USA
{jmlien,ylu4}@cs.gmu.edu

start

goal

(a)

goal

start

(b) (c) (d)

Fig. 1. An overview of our approach. (a) A 2D motion planning
problem with a disc robot. (b) Points representing the contact
space are generated from the point-based Minkowski sum. (c) An
approximate star-shaped decomposition (Aε∗-DECOMP) with three
guards of the points in (b). (d) A path found from the Aε∗-DECOMP.

To cope with this difficulty, we propose to use point-
represent ∂Cfree. The result is a framework that

1) represents the ∂Cfree using a finite number of points
whose resolution (i.e., coverage) is controlled by the
user, and

2) decomposes these points into a set of approximate star-
shaped components (this term will be defined more
carefully in Section III).

Fig. 1 shows an overview of our approach. The pseudocode
of the proposed framework in sketched in Algorithm I.1.

In this paper, we propose two new methods, one deter-
ministic and one probabilistic. Both methods can be viewed
as extensions to the framework described in Algorithm I.1.
The deterministic method is resolution complete and is more
efficient when applied to problems in low dimensions (≤ 3),
while the probabilistic method is more applicable to the
problems in high dimensional spaces. The decomposition is
done iteratively by generating guards until all points in S
are visible. The main differences between the deterministic
and the probabilistic methods are how the points cover the
∂Cfree and how the visible points are determined. Details of
these two methods will be discussed in Sections IV and V.

Algorithm I.1 Aε∗-ROADMAP

Input. A motion planning problem
Output. A roadmap that captures the connectivity of Cfree

Generate a point set S that covers ∂Cfree

Let G = ∅ be a set of guards
while exit a point s ∈ S that is not visible from G do

Create a new guard g near s and G = G ∪ g
Compute the visibility region VS(g) of g

Extract a roadmap from the visibility of G

Main contributions. To the best of our knowledge, the
proposed motion planners are the first planners using the

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5420

star-shaped decomposition in both low (≤ 3) and higher di-
mensional spaces. The first motion planner that decomposes
Cfree into a set of star-shaped components is due to Varadhan
and Manocha [4]. Although we use the same concept of
star-shaped decomposition, there are several fundamental and
significant differences between their method and our work:

• In [4], meshes are constructed to approximate the con-
tact space while we use only points.

• Because the star-shaped components are constructed on
top of an octree in [4], the number of such components
can become very large. On the other hand, the number
of the star-shaped components is usually small using
our method.

• Instead of decomposing Cfree, our method decomposes
the contact space, which has lower dimensionality and
therefore is easier to “guard”.

• Our method can handle general motion planning prob-
lems while [4] can only handle problems in 3-d config-
uration space.

As a result, the proposed method has been shown to
naturally provide a (tunable) compact representation of a
∂Cfree. Our experiments show that the size of the resulting
roadmap is usually smaller than the size of the roadmap
generated by the sampling-based methods.

II. RELATED WORK

The main feature of our method is the decomposition of
the contact space represented by points. In this section, we
will review some work closely related to the proposed motion
planning method.

Motion Planning. Over the last four decades, many
approaches have been proposed to solve this problem; see
surveys [1], [5]. Since the motion planning problem has been
shown to have high complexity [2], researchers have focused
on discrete and approximate approaches. In particular, a col-
lection of randomized methods called probabilistic roadmap
(PRM) have enabled motion planning to be applied to more
realistic applications. PRM methods learn the connectivity of
the free space of a given C-space by constructing a graph
using random sampling and simple local connections. The
solution path is then extracted from the graph.

Star-Shaped Decomposition. There is little known about
star-shaped decomposition in space higher than two dimen-
sions. On the contrary, decomposing simple polygons into 2-
d star-shaped subpolygons is well studied; see a survey in [6].
Similar to most of the decomposition problems, decomposing
a polygon with holes into minimum number of star-shaped
components is NP-complete [7]. For polygons without holes,
the partitioning can be done in O(n) [8] time and results
in n

3 components. Star-shaped decomposition is related to
guarding an art gallery [9]. A polygon is said to be guarded
if it is covered by the visible regions of the guards. The
visible region of a guard is a star-shaped component. The
problem is known to be NP-complete for polygons with or
without holes [10], [11].

Decomposition of Points. Several methods have been
proposed to decompose point set data into meaningful com-
ponents, e.g., by Dey et al. [12]. Recently, Yamazaki et
al. [13] proposed a decomposition method based on the
estimation of the centrality of each point using approximated
geodesic distance. Despite their promising results, one major

s

q

g

p

Vg

(a)

Vg(P)g

r

s

pq

(b)

Fig. 2. (a) A polygon. (b) A point set representing the same shape.
See Section III for details.

drawback of this approach is that computing the centrality
is both time and memory consuming.

In [14], we proposed the only known method that decom-
poses a set of points into approximate star-shaped decom-
position. Our motion planning methods are based on this
method, which will be discussed briefly in Section III.

III. PRELIMINARIES

In this section, we will provide a brief overview of the
methods that the proposed planner will be based on. To
simplify our discussion, we first assume that, in Section III-
A, the given point set data represents a general shape and
each point in the set is associated with an outward normal.
We will discuss how to generate these points in ∂Cfree in
Section III-B.

A. Preliminary: Point-based Visibility
A point set data is a type of boundary representation

except that these points are not connected to form meshes.
Without connectivity, the boundary of a shape becomes more
ambiguous, thus the visibility can be only approximated.
Fig. 2 illustrates the differences between the traditional and
the point-based visibility.

We let P be a point set. We assume that the point set P is
a sample of the boundary of a shape. Let a point p ∈ P be
2-tuple (vp,"np), where vp and "np are d-dimensional vectors
in Rd, respectively, representing the position and the outward
normal direction of the point p.

To compute a star shape, we are mainly interested in if a
point g can see points p on the boundary of the shape. More
specifically, we find the star shape of g by removing the
invisible points of g, which include (i) back-facing points of
g and (ii) the points that are “blocked” by back-facing points.
We observe that if p is a back-facing point of g then the
“viewing line” from g to p, denoted as −→g p , and the outward
normal at p point are in the opposite direction. The only
exception is at the discontinuous point of ∂Vg (e.g., the point
s in Fig. 2(b)). The remaining points are the visible points
and form a star shape.

Our method is based on this simple observation to find
visible points. For a given point g and a point set P , we
define Vg(P) as a subset of P that are visible from g.

Finally, we say that the point set P is star-shaped if there
exists a guard g such that none of the points p in P are
invisible from g. Then, a star-shaped decomposition of P is
a set of star-shaped point sets {Pi} whose union is P .

Our proposed star-shaped decomposition method is built
based on these properties of visibility and internality of point
sets without using any global or local connectivity, which can
be expensive to compute.

5421

B. Preliminary: Point-based Minkowski Sum
Our method of generating configurations in the contact

space is based on the point-based Minkowski sum [15].
The point-based Minkowski sum produces a set of points

that cover the boundary of the Minkowski sum of two given
polyhedra, S and T . More specifically, we will generate a
point set P so that P is a d-covering of the Minkowski sum
boundary, where d is a user-specified value. Intuitively, d
controls the sampling density of a boundary. A smaller d
will produce a denser approximation of the boundary.

There are three major steps in the point-based Minkowski
sum. First, we sample two point sets from the input S and T .
Second, we generate the Minkowski sum of the point sets
simply using the definition of the Minkowski sum. Third,
we separate the boundary points (both hole and external
boundaries) from the internal points.

Step 1: Sample points. Let S and T be two polyhedra. We
generate two point sets from S and T , denoted as PS and PT .
The point set P representing the Minkowski sum boundary
of S and T is simply (PS ⊕ PT) ∩ ∂(S ⊕ T). We want the
point set P to cover the entire Minkowski sum boundary
w.r.t. a user specified interval d. As shown in [15], we can
guarantee that the final point set is at least a d-covering of
the Minkowski sum boundary by simply making PS and PT

be the d-covering of S and T , respectively.
Step 2: Compute the Minkowski sum. This step is

straightforward. Using PS and PT , we compute PS⊕T by
simply following the Minkowski sum definition.

Step 3: Extract boundary points. In this final step, we
separate (filter) points into two groups: Boundary points and
inner points. Boundary points will be returned as our final
answer and inner points will be discarded.

The first filter, named normal filter determines if a pair
of sample points (from S and T , resp.) is an inner point by
examining their origins and orientations. Kaul and Rossignac
[16] have shown that a facet of the Minkowski sum boundary
can only come from a facet of S and a vertex from T (or
vice versa) or from two edges of S and T , resp., if the facet,
vertex and edges are properly oriented [16].

This filter is efficient, but it alone cannot filter out all
inner points. The second filter, named CD filter uses collision
detection to separate boundary points from inner points. CD
filter is computationally more expensive but it provides an
unambiguous decision. More details of these filters can be
found in our previous work [15].

IV. DETERMINISTIC Aε∗-ROADMAP

In this section, we present a deterministic motion planner,
in which both the points representing the contact space and
their visibility are computed deterministically. The determin-
istic method is resolution complete and efficiently handles the
problems with the dimensionality no higher than three.

A. Generating Points in ∂Cfree

Recall that in order to apply the concept of point-based
visibility sketched in Section III-A, we need both the position
and the normal direction of each point in the point set.

The positions of the point set can be obtained using the
point-based Minkowski sum discussed briefly in Section III-
B. For a robot with rotational degrees of freedom, we
compute and enumerate a set of points for each (discrete)

(a) input problem (b) top view

(c) sideview

Fig. 3. (a) A 2-d workspace with a robot and the obstacle (shaded).
(b)(c) A top and a side views, resp., of the contact space generated
from the point-based Minkowski sum. The vertical axis in (c)
represents rotational degree of freedom SO(1).

orientation. Because of the simplicity of our framework,
these enumerated points do not need to be either connected
(e.g., to form a mesh) or ordered. Moreover, since we only
consider the problems with low dimensional contact space,
the size of the final point size is still reasonable. Figs. 3
shows the points generated from the contact spaces of a
motion planning problem.

The orientation (i.e., the outward normal) of the point can
also be obtained easily in low dimensional space. Since a
point p on the Minkowski sum of S and T can only come
from a facet of S or T or from a pair of edges of S and T ,
respectively, we can quickly determine the normal of p from
the normal of the “source” facet or the cross product of the
“source” edges.

B. Aε∗ of a Guard

Based on the properties discussed in the previous section,
we are now ready to present the method that approximates
the visible region (an approximate star shape or Aε∗) of
a given point. In our planner, we always pick the initial
position of a guard g from the points P .

Given a point set P generated in the contact space and a
point g, we first cluster P using g. P is clustered in the way
that, after projected to the spherical surface around g, nearby
points are grouped into a cluster. In our implementation, we
project P to the boundary of a 2d-sided box, where d is the
C-space dimensionality. An example of such a clustering is
shown in Fig. 4(a).

Then, for each cluster, we identify the closest invisible
point p to g (see Fig. 4(b)). All points in the cluster that are
closer than p to g are visible by g. Recall that we can find out
if a point is invisible from another by checking the outward
normal and the viewing direction. Fig. 4(b) illustrates all the
visible points from g, which collectively form the Aε∗ of g.
Algorithm IV.1 outlines this process.

5422

Algorithm IV.1 Aε∗(P , g)
Input. A point set, P , and a query point g
Output. A set of points Vg(P) ⊂ P that are visible from g

Subdivide P into radial subdivisions {Pi} centered at g
for each radial subdivision, Pi do

Compute p ∈ Pi, the closest invisible point to g
If p exists, let dp = |g − p|, else dp = +∞
for each point r ∈ Pi do

if |g − r| < dp then
Vg(P)← r

g

p

(a)

g

p

(b)

Fig. 4. (a) A radial clustering of the point set P from the point
g. Points in P are projected to the boundary of a 2d-sided box
defined around g. For each cluster, the closest invisible point p is
found and all points that are closer than p are considered visible.
(b) Darker points are considered as visible points from g.

The advantage of Algorithm IV.1 is its efficiency. Comput-
ing a guard takes only O(n) time for a point set with n points
and the computation efficiency can be further improved if a
spatial data structure is built to pre-process P .

C. Aε∗ Expansion
In our planner, we pick the guard g from the point set

P . For such guards g that are close to the boundary, g can
have poor visibility. In this case, more guards are needed to
see (cover) the entire point set. Therefore, we need a way
to reduce the number of guards needed to cover the space.
Intuitively, our strategy is to find a “better g” near g that can
see more points than g.

More specifically, we compute the kernel Kg of the visible
points Vg(P) of a guard g and find a new guard in the
kernel Kg . Our strategy guarantees to find a larger visibility
region than Vg(P). We define a kernel of a point set as the
following.

Definition 4.1: A kernel of a set of points Q is another
set of points K that is visible from all the points in Q.

Algorithm IV.2 Aε∗-EXPAND(g, Vg(P))
Compute the kernel Kg from Vg(P)
Let K′

g contain log n vertices from Kg

Find k ∈ K′
g so that k has the largest visible region Vk(P)

if |Vk(P)| > |Vg(P)| + |P |
c then

return Aε∗-EXPAND(k, Vk(P))
else

return (g, Vg(P)) ! no expansion found

Once the kernel is known, we compute a visible region
for each vertex in the kernel. Since the visible regions of the
vertices of the kernel are larger than or equal to Vg(P), our
visible region must expand monotonically. This process is

repeated until no expansion can be gained. The subroutine
Aε∗-EXPAND is defined in Algorithm IV.2.

The kernel Kg of a set of points Vg can be computed as the
intersection of half-spaces defined by the points in Vg . The
key to compute the kernel efficiently is that we can convert
these half-spaces to the points Vg in the dual space, where
Vg is defined as: Vg = { "ng−→p g ·"np

| p ∈ Vg}.
Then the boundary points in the kernel Kg are simply

dual to the facets of the convex hull of Vg , which can be
computed efficiently in O(n log n), where n is the number
of points in Vg . The time complexity of Algorithm IV.2 is
O(n log n) for problems in a low dimensional space.

D. Discussion
To conclude this section, we provide some discussions and

implementation issues of the proposed method.
Resolution complete. The motion planner proposed in

this section can only be applied to the problems in low
dimensions. The main reasons include (i) the number of
points required to cover the contact space and (ii) the radial
clustering for computing the visibility. Both of these methods
cannot be extended to more general motion planning prob-
lems without losing efficiency. However, an important benefit
of this deterministic planner is its resolution completeness.
This is because when the value of the covering d approaches
to zero the contact space will be completely covered.

Special orthogonal group. One important detail that
requires special attention is that some dimensions of the C-
space represent the orientations of the robot. For example,
the best way to represent the contact space in Fig. 3(c) is in
fact a donut shape that joins the top and the bottom points
together. Therefore, during the computation of the Aε∗, we
should be aware that a configuration in the contact space
can have multiple representations (e.g., by adding 2π to the
orientation) and can be classified into multiple clusters.

Query. Since the visibility of points is not exact, the
connection between configurations may not be always valid.
From our experiments, there are roughly 5% of the edges in
the roadmap colliding with obstacles. As a result, during the
query process, we have to validate the extracted path. When
an edge in the path is found invalid, we will simply delete
that edge and extract a new path.

Moreover, we can solve the motion planning problem in
the fashion of multiple queries or single query. If multiple
queries are expected, we simply decompose the points so that
all points or a large portion of the points in the contact space
are visible by at least one guard. Similar to the star-shaped
roadmaps [4], we form a network of the guards to capture
the connectivity of the Cfree.

If the motion planning problem is a single shot, we do not
need to decompose the entire contact space. In this case, we
start to grow two Aε∗ trees rooted at the start and the goal
configurations. To expand an existing Aε∗ tree, we simply
compute the Aε∗ for the farthest visible point by the tree,
and include the newly visible points as part of the tree.
The process repeats until the goal is visible from one of
the guards in the tree.

V. PROBABILISTIC Aε∗-ROADMAP

In this section, we propose a probabilistic motion planner
that can handle problems in higher dimensional space.

5423

A. Generating Points in ∂Cfree

Because we only enumerate points from the contact space,
our approach can naturally be applied to the motion planning
problems involved with articulated robots and multiple free-
flying robots using the strategy discussed above. However,
enumerating points to form a d-covering becomes unrealistic
for these robots. In fact, The number of the points needed
to cover the contact space grows exponentially with respect
to the degrees of freedom of the robot.

To cope with this problem, we take the strategy similar to
PRMs, where the user will be asked to specify the number of
points in the final roadmap in Cfree. We ask users to specify
the number of points needed to represent the contact space in
∂Cfree. To generate these points, we still use the point-based
Minkowski sum and enumerate over the rotational degrees
of freedom. However, we randomly throw away points to
maintain the size and the variety of the configurations.

Approximate Normals. Recall again that computing vis-
ibility requires the point normals to check if the points are
invisible from a guard g. Point normals can be estimated
exactly when the dimensionality of the problem is low.
In high dimensions, we can only approximate the normal
direction. Let p be a point in the point set generated as the
method discussed above. Because p is in the contact space,
a small perturbation in the direction of −→g p or −→p g will put
the robot in collision with the obstacle, where g is a guard.
Thus, we can approximate the normal of p using either −→g p
or −→p g , whichever pushes p into the Cfree.

B. Aε∗ of a Guard
Recall that, in low dimensions, we compute the point-

based visibility by projecting all points onto the surface of a
unit sphere centered at the guard g, and then we cluster the
points by superimposing a grid in spherical coordinates. In
each of these clusters, we find a list of points that are visible
from g. Although the definition of the point-based visibility
remains the same in high dimensional space, the size of the
grid grows exponentially with the degrees of freedom of the
robot. As a result, this approach becomes unrealistic.

To cope with this problem, we again allow users to provide
the number of clusters as an input parameter k. Then,
the planner uses this parameter with a k-means clustering
method and Lloyd’s algorithm to cluster the points P . More
specifically, we randomly select k configurations p ∈ P from
the point set and use the vectors −→g p pointing from the guard
g to p as the “centers” the clusters. Then each point q ∈ P
is assigned to a cluster whose angles between −→g q and the
center of the cluster is smaller than those of the other clusters.
Once we have the clusters, we find a list of points that are
visible from g in each of these cluster based on the same
definition for the point-based visibility.

VI. DISCUSSION AND COMPARISON

Aε∗-based motion planning is closely related to PRM
methods. Both of these planning strategies avoid computing
the exact representation of the Cfree. PRMs have been shown
to solve many practical motion planning problems. Neverthe-
less, PRM-based motion planners are probabilistic and one
of the most famous problems called the “narrow passage
problem” prohibits PRM from solving some simple problems,
e.g., the motion planning problem shown in Fig. 5(a). On

TABLE I
Aε∗-ROADMAP VS. PRMS VS. VISIBILITY PRMS VS.

STAR-SHAPED ROADMAPS

approximation roadmap handle > 3
type size C-space

Aε∗-based roadmap both small easy
PRM [17] probabilistic large very easy
visibility PRM [18] probabilistic small very easy
star-shaped map [4] deterministic large hard

the contrary, the Aε∗-based motion planner is resolution
complete thus does not suffer from the narrow passages.
Another benefit of the Aε∗-based motion planner is that
it provides a natural way to provide a (tunable) compact
representation of the Cfree by monotonically expanding the
Aε∗ of a guard.

Aε∗-based motion planning is also closely related to the
star-shaped roadmaps [4]. Both methods are deterministic
and attempt to approximate the contact space using star-
shaped decomposition and the Minkowski sum of the robot
and the obstacles. However, the representation of the contact
space and the way that the Minkowski sum and the star-
shaped decomposition are generated are all fundamentally
different. In the star-shaped roadmaps, meshes are used to
represent the contact space and star-shaped components are
identified within the octree cells. On the contrary, the Aε∗-
based motion planner represents the contact space using point
set data and the star-shaped components can be arbitrarily
large. Therefore, as a consequence, the Aε∗-based motion
planner produces fewer guards to cover the contact space.
Another advantage of the Aε∗-based motion planner over
the star-shaped roadmaps is that point-based representation
allows us to extend the basic framework to become prob-
abilistic and can handle higher dimensional problems, e.g.,
the problem in Fig. 5(c). Table I summarizes our comparison
to PRMs and the star-shaped roadmaps.

VII. EXPERIMENTAL RESULTS

In this section, we show experimental results of our Aε∗-
based motion planners. We test our implementation on three
motion planning problems, including a 3-d translational robot
and a 2-d (shown in Fig. 5). Both of these experiments are
conducted using the deterministic version of the planner. We
also studied a 3-d free-flying robot using the probabilistic
version of the planner. All the experiments reported in this
paper are performed on a Pentium 2.0 GHz CPU with 512
MB RAM. Our implementation is done in C++. Results of
our experiments are shown in Tables II.

3-d translational robot. The motion planning problem
shown in Fig. 5(a) has a robot tightly fit into the hole of the
obstacle. Our goal is to remove the robot from the holes. To
generate the points covering the contact space, we sample
48 points from the robot and 74 points from the obstacle.

2-d free-flying robot. The motion planning problem
shown in Fig. 5(b) has two interlocked ‘P’s. Our goal is
to unlock them. To generate the points covering the contact
space, we sample 52 points from the robot and 52 points
from the obstacle and we compute the Minkowski sum from
100 orientations of the robot.

5424

(a) (b) (c)

Fig. 5. (a) The start and the goal configurations are shown along with the points that cover the contact space. A path that connects the
start and the goal is shown in the thick line. The path is extracted from a set of 6 overlapping (b) A 2-d workspace motion planning
problem. When the contact space is represented using point set data (shown in the small dark dots), we can efficiently decompose the
contact space into star-shaped components, which then can help us finding a path (shown in the thick line) connecting the start and the
goal configurations. The horizontal axis in the figure represents the robot’s orientational degree of freedom. Aε∗ components. (c) The start
configuration is shown (left) along with the points that cover the contact space (right).

3-d free-flying robot. The motion planning problem
shown in Fig. 5(c) has a long robot trapped inside a hole
of the obstacle. In this problem, the robot needs to move
out of the hole and has 6 degrees of freedom. Fig. 5(c)
also shows a “slice” of the contact space. We generate
825,000 configurations in total to cover the contact space
and only 103 guards are needed to cover the entire point-
based contact space. In this experiment, we use k = 10 in
the k-means clustering method for each guard during the
visibility computation.

Compare to Visibility PRM. We also use the visibility
PRM [18] to solve these three problems above. With 100
runs of the visibility PRM for each problem, on average,
215 guards are created. On the contrary, Aε∗ decomposition
approaches generate only 145 guards. This is not surprising
because the visibility PRM randomly selects the positions
of the guards, while our methods attempt to improve the
guards by computing visibility kernels and iteratively move
guards to increase their visible ranges. However, because of
the same reason, the visibility PRM is several times faster
than our methods.

TABLE II
EXPERIMENTAL RESULTS

point generation Aε∗ decomp. total
Fig. time (sec) 0.27 0.31 0.58
5(a) size 1,327 points 8 guards
Fig. time (sec) 4.17 40.70 44.87
5(b) size 8,947 points 34 guards
Fig. time (sec) 478.5 86.2 564.7
5(c) size 825,000 points 103 guards

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present two motion planning methods
using the approximate star-shaped decomposition of the
contact space represented by point set data. These two
methods are deterministic and probabilistic extensions of the
framework in Algorithm I.1. The resulting representation
of the free configuration space is composed of a set of
guards. These guards collectively can see the entire contact
space and they can be connected into a network to capture
the connectivity of the free space. Although the proposed
methods are promising, it is not without limitations. For

example, the proposed methods is not efficient. It takes more
time than regular PRM methods.

We view Aε∗-based motion planner as a complement to the
PRM methods and the traditional deterministic approaches. It
provides a deterministic approach while can still be applied
to high dimensional problems. One of the main challenges
is to extend our methods to handle articulated robots.

REFERENCES
[1] J.-C. Latombe, Robot Motion Planning. Boston, MA: Kluwer

Academic Publishers, 1991.
[2] J. F. Canny, The Complexity of Robot Motion Planning. Cambridge,

MA: MIT Press, 1988.
[3] F. Lingelbach, “Path planning using probabilistic cell decomposition,”

in Proc. of IEEE Int. Conf. on Robotics and Automation, 2004, pp.
467–472.

[4] G. Varadhan and D. Manocha, “Star-shaped roadmaps: A deterministic
sampling approach for complete motion planning,” in Proc. Robotics:
Sci. Sys. (RSS), 2005.

[5] S. M. LaValle, Planning Algorithms, 6th ed. Cambridge University
Press, 2006.

[6] J. M. Keil, “Polygon decomposition,” in Handbook of Computational
Geometry, J.-R. Sack and J. Urrutia, Eds. Amsterdam: Elsevier
Science Publishers B.V. North-Holland, 2000, pp. 491–518.

[7] ——, “Decomposing polygons into simpler components,” Ph.D. dis-
sertation, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, 1983.

[8] S. K. Ghosh, “A linear time algorithm for decomposing a monotone
polygon into star-shaped polygons,” in Proc. 3rd Conf. Found. Softw.
Tech. Theoret. Comput. Sci., 1983, pp. 505–519.

[9] V. Chvátal, “A combinatorial theorem in plane geometry,” J. Combin.
Theory Ser. B, vol. 18, pp. 39–41, 1975.

[10] J. O’Rourke and K. J. Supowit, “Some NP-hard polygon decomposi-
tion problems,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 181–190,
1983.

[11] D. Lee and A. Lin, “Computational complexity of art gallery prob-
lems,” IEEE Trans. Inform. Theory, vol. 32, no. 2, pp. 276–282, 1986.

[12] T. K. Dey, J. Giesen, and S. Goswami, “Shape segmentation and
matching with flow discretization,” in Proc. Workshop on Algorithms
and Data Structures, 2003, pp. 25–36.

[13] I. Yamazaki, V. Natarajan, Z. Bai, and B. Hamann, “Segmenting point
sets,” in IEEE Intl. Conf. Shape Modeling and Applications (SMI),
2006, pp. 4–13.

[14] J.-M. Lien, “Approximate star-shaped decomposition of point set data,”
in Proceedings of the IEEE/Eurographics Symposium on Point Based
Graphics (PBG), 2007.

[15] ——, “Point-based minkowski sum boundary,” in PG ’07: Proceedings
of the 15th Pacific Conference on Computer Graphics and Applica-
tions. Washington, DC, USA: IEEE Computer Society, 2007, pp.
261–270.

[16] A. Kaul and J. Rossignac, “Solid-interpolating deformations: construc-
tion and animation of PIPs,” in Proc. Eurographics ’91, 1991, pp.
493–505.

[17] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp.
566–580, August 1996.

[18] C. Nissoux, T. Simeon, and J.-P. Laumond, “Visibility based proba-
bilistic roadmaps,” in Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS),
1999, pp. 1316–1321.

5425

