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Abstract— In this paper, we propose an efficient solution
to 6 degrees of freedom (6DOF) localization using Unscented
Kalman filter for planetary rovers. The solution is a technique
augmented the Unscented Kalman filter for accurate 6DOF lo-
calization, named Augmented Unscented Kalman Filter (AUKF).
The AUKF is designed to deal with problems which occur on
other planets: wheel slip, visual odometry error, and gyro drift.
To solve the problems, the AUKF estimates the slippage ratio in
an augmented state vector, the accuracy of the visual odometry
with the number of inliers among feature points, and sensor
usefulness with Gyrodometry model. Experimental results of
rover runs over rough terrain are presented, the effectiveness
of the AUKF and its each component is shown.

Index Terms— 6DOF localization, Unscented Kalman filter,
slippage ratio estimation, planetary rover, visual odometry.

I. INTRODUCTION

POSITION and attitude estimation is an important prob-

lem for planetary rover missions. For getting power

effectively from solar panels and autonomous navigations

for long distance, accurate position and attitude estimation

is imperative. If the position and attitude estimation was

more accurate, rover missions would be more efficient and

effective.

Most of all surfaces of other planets are rough terrains.

For rover navigations in the rough terrain, position and

attitude estimation should consider 6 degrees of freedom

(6DOF) consisted of rover’s position (x, y, z) and its attitude

(roll, pitch, yaw). Moreover, considering various problems

in other planets (e.g., wheel slip on sandy surface, visual

odometry error, and gyro drift) is also needed for accurate

localization.

At the present day, the rover localization commonly uses

Extended Kalman Filter (EKF) to integrate visual odome-

try, Inertial Measurement Unit (IMU), and wheel odometry

[1][2]. The EKF is also used commonly for localization

of general mobile robots [3]. There are, however, several

problems to use the EKF for planetary rover localization. The

first is that, in the EKF, a nonlinear model is approximated

with Jacobian matrices. If the nonlinearity of the model is

high, the accuracy of approximation becomes bad. In 6DOF

localization, the motion model and the observation model

have high nonlinearity, because these models have terms of

coordinate transformation to all three coordinate axes. The

second is that we must develop the expression for Jacobian

matrices of the motion and the observation model. However,

Fig. 1. Micro6: our planetary rover testbed.

the derivation is difficult when the model is complicated like

the rover’s models.

The Particle filter is also well-used for ground mobile

robot localization [4][5]. There are, however, also several

problems to use the particle filter for planetary rover lo-

calization. Firstly, the estimation using the particle filter

needs significant computational cost for 6DOF localization.

Because, the 6DOF localization needs to compute the mul-

tidimensional probability. This is an serious problem in

rover operations of which resources are limited. Secondly,

a basic particle filter is easy to be influenced by pulsive

noises. The pulsive noises occur frequently in rover missions,

because the visual odometry is easy to induce the pulsive

noises when being in low feature environments or not doing

capture images correctly. The basic particle filter samples

data randomly from an input source. If the pulsive noises

occur, it may happen that there are no particles in the

vicinity of the correct state, which is known as the particle

deprivation problem [6].

In this paper, we propose to introduce Unscented Kalman

filter (UKF) for the planetary rover localization to solve

above problems. The method is based on the technique

proposed by Julier and Uhlmann [7]. Afterward, the method

is applied for various applications (e.g., Unmanned Aerial

Vehicle localization, particle filter, and SLAM [8][9][10]).

The UKF can estimate accurately high dimensions of prob-

ability because it can approximate an arbitrary nonlinear

function. Besides, the expression for Jacobian matrices is

not needed because the method estimates with information
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of chosen sampling points. Therefore, the UKF is useful

for the high dimension estimation like the planetary rover

localization. Besides, computational cost of the UKF is very

small about the same order of the EKF, and the UKF is

robust to the pulsive noises because of using the Kalman

filter framework. For these reasons, the UKF can be said

that it is useful for the planetary rover localization.

The basic UKF is not enough for accurate localization. It

is needed that wheel slip, visual odometry error, and gyro

drift are solved. To solve the wheel slip problem, several

researches have been done [11][12][13]. However, these

studies can only detect that the wheel is slipped or estimate a

slippage ratio using global information (e.g., GPS). For more

practical rover localization, it is needed that the slippage

ratio is estimated continuously without global information

and prior information, and then the slippage ratio is used

for localization. Pulsive noises of visual odometry, which

occur once in a while, are also a serious problem. The noise

may induce crucial localization error. It is important that the

noise are dealt well to estimate accurately the rover position

and attitude. The gyro drift is also an important problem

for attitude estimation [16]. The error from the gyro drift

accumulates, and then considerable attitude error may occur.

In this paper, for more accurate localization, we propose

a 6DOF localization system named Augmeted Unscented

Kalman Filter (AUKF), which is augmented the UKF. The

AUKF introduces three techniques as follows:

1) Slippage ratio estimation in an augmented state vector.

2) Visual odometry accuracy estimation with the number

of inliers among feature points.

3) Introducing Gyrodometry model.

The first technique is that the slippage ratio is estimated in

the augmented state vector. The second technique is that

the accuracy of the visual odometry is estimated with the

number of inliers among feature points, the rover motion

is compensated with the accuracy. The third technique is

to introduce the Gyrodometry Model [17]. Details of these

techniques are described in following sections.

II. MICRO6 SYSTEM

This section describes our planetary rover testbed. The

planetary rover testbed is jointly developed at Meiji Uni-

versity, Chuo University, and Japan Aerospace eXploration

Agency (JAXA), named Micro6 (Fig. 1). It has 6 wheels

connected by our unique suspension link system, named

Huxus. The Micro6 has 3 sensors for position and attitude

estimation: a stereo camera rig, an IMU, and wheel encoders

on the 6 wheels. We use the stereo camera rig which is

made up of Qcam for Notebooks Pro (QVX-13NS) made in

Logicool co in this paper. The camera’s interface is USB2.0,

its resolution is VGA (640 × 480pix), and its baseline

is 20cm. We use the IMU of NAV420CA-100 made in

Crossbow co.

III. UNSCENTED KALMAN FILTER

Unscented Transformation (UT) is a method for calculat-

ing the statistics of a random variable which undergoes a

nonlinear transformation. The UT built on the principle that

it is easier to approximate a probability distribution of an

arbitrary nonlinear function. The UT uses a small number of

chosen test points, which are called Sigma point. The each

sigma point is propagated through the nonlinear function,

and then the mean and covariance are computed through the

use of a weighted statistical linear regression process. The

UT eliminates the cumbersome derivation and evaluation of

Jacobian matrices. Besides, even if the model’s nonlinearity

is heavy, the accurate estimation is possible. It is known

that the estimation of the mean and covariance is accurate

to the second order of the Taylor series expansion of the

nonlinear function. While, it is known that the EKF only

calculates the posterior mean and covariance accurately to

the first order with all higher order moments truncated [6].

Therefore, a filter based the UT is easier to implement and

performs better than the EKF.

The UKF is a one of straightforward applications of the

UT. The UKF estimation algorithm is organized as follows.

The state vector is augmented with a control input and an

observation as follows:

xa
t−1 =





xt−1

0

0



 (1)

Where xa
t−1 is the augmented vector of the state and xt−1

is the previous mean of the vehicle. Its covariance is also

augmented.

P a
t−1 =





Pt−1 0 0

0 Q 0

0 0 R



 (2)

Where, P a
t−1 is the augmented covariance, Pt−1 is the

previous covariance of the vehicle, and Q and R are an input

noise covariance and a measurement noise covariance. The

sigma points are extracted in Gaussian. In the general case,

these sigma points are chosen at the mean and symmetrically

along the main axes of the covariance. A symmetric set of

sigma points χ
a[i]
t−1 is chosen according to the following rule:

χ
a[0]
t−1 = xa

t−1

χ
a[i]
t−1 = xa

t−1 + (
√

(N + λ)P a
t−1)i i = 1, ....., N (3)

χ
a[i]
t−1 = xa

t−1 − (
√

(N + λ)P a
t−1)i i = N + 1, ....., 2N

Where, i is a index of sigma points, N is the dimension

number of the augmented state vector, λ is computed by

λ = α2(N + κ) − N , with α and κ are scaling parameters

that determine how far the sigma points are spread from

the mean x
a[0]
t−1. In this paper, α is set to 10−3, κ is set

to 0. Each sigma point is propagated through the nonlinear

function, thereby probing how the nonlinear function changes

the shape of Gaussian. The set of sigma points χ
a[i]
t−1 is

transformed by the nonlinear motion model f using the

current input ut and the control noise component χ
u[i]
t as

follows:

χ̄
[i]
t = f(ut + χ

u[i]
t , χ

[i]
t ) (4)
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Here χ̄
[i]
t is the transformed sigma points of the state

vector. The parameters, xt|t−1 and Pt|t−1, of the resulting

Gaussian are computed by a linear weighed regression of

the transformed sigma points χ̄
[i]
t as follows:

xt|t−1 =
2N
∑

i=0

ω[i]
g χ̄

[i]
t (5)

Pt|t−1 =
2N
∑

i=0

ω[i]
c (χ̄

[i]
t − xt|t−1)(χ̄

[i]
t − xt|t−1)

T (6)

Here ω
[i]
g are weighs used when the mean is computed,

ω
[i]
c are weighs used when the covariance of Gaussian is

recovered. These wights are calculated as the following rule:

ω(0)
g =

λ

N + λ

ω(0)
c =

λ

N + λ
+ (1 − α + β) (7)

ω(i)
g = ω(i)

c =
1

2(N + λ)
i = 1, ....., 2N

Where, β is chosen to incorporate higher order knowledge

about the distribution underlying Gaussian representation.

In this paper, the distribution is supposed being an exact

Gaussian, we set the parameter β = 2 as knowing the optimal

value. Sigma points of the observation N̄
[i]
t are propagated

through the nonlinear observation model h using the localiza-

tion component of each sigma point χ̄
[i]
t and the observation

noise component χ
z[i]
t of each sigma point.

N̄
[i]
t = h(χ̄t) + χ

z[i]
t (8)

A prediction of observation n̂t and its covariance St are

computed by following equations:

n̂t =
2N
∑

i=0

ω[i]
g N̄

[i]
t (9)

St =
2N
∑

i=0

ω[i]
c (N̄

[i]
t − n̂t)(N̄

[i]
t − n̂t)

T (10)

The cross-covariance between robot localization and obser-

vation Σx,n
t is determined by following Eq. (11):

Σx,n
t =

2N
∑

i=0

ω[i]
c (χ̄

[i]
t − xt|t−1)(N̄

[i]
t − n̂t)

T (11)

The Kalman gain Kt is computed by following Eq. (12):

Kt = Σx,n
t (St)

−1 (12)

Finally, the mean xt and the covariance Pt of the probabilis-

tic distribution of the localization are calculated by following

equations:

xt = xt|t−1 + Kt(zt − n̂t) (13)

Pt = Pt|t−1 − KtSt(Kt)
T (14)

IV. AUGMENTED UNSCENTED KALMAN FILTER

In this paper, we propose a technique to augment the

UKF for accurate position and attitude estimation, named

Augmented Unscented Kalman Filter (AUKF). The AUKF

aims to deal with the problems which are easy to occur on

surfaces of other planets (e.g, wheel slip, visual odometry

error, and gyro drift). We introduced the three techniques to

solve these problems.

A. Slippage ratio estimation

The wheel slip is a primary problem on rover navigation.

In this paper, we propose to estimate the slippage ratio to be

token in the state vector. The slippage ratio i at the time t
is determined as following:

it = 1 −
vtrue,t

vwo,t

(15)

where vwo,t is a forward velocity of the wheel odometry,

and vtrue,t is a true forward velocity (no slip). We use

a observation of the visual odometry as the true forward

velocity. However, the slippage ratio which is calculated

directly with the Eq. (15) is noisy, because the observation

of the visual odometry is instability. The localization may

be insecurity using the slippage ratio directly. Moreover, if

the slippage ratio is used for localization, it should be esti-

mated as a function of exploration environments and running

speeds. Because the ratio changes on running environments

and traveling speed.

In AUKF, the state vector is augmented by the slippage

ratio:

xt =
[

xt, yt, zt, rollt, pitcht, yawt, it
]T

(16)

It is estimated same as for other state components. Eq. (15)

is modeled as the observation model, and the slippage is

updated with both observations of the visual odometry and

the wheel odometry. And then, the estimated slippage ratio

is used for the localization. In AUKF, the forward velocity

component of input vector is determined as follows:

ufv,t = (1 − it)vwo,t (17)

where, ufv,t is the forward velocity component of input

vector at the time t. Information of visual odometry is used

in the form of the slippage ratio for position and attitude

estimation. Furthermore, slippage ratios can be estimated on

several running environments and several traveling speeds

due to initializing the covariance of the AUKF.

B. Assuming plane motion with the number of inliers among

feature points

The visual odometry is not always accurate. For example,

the visual odometry is often unable to function when feature

points are not detected because of rapid image alterations or

being in low feature environments. In these situations, the

visual odometry becomes instability, may have catastrophic

error (e.g., pulsive noise). Especially, errors of the vertical

and lateral directions from the moving direction are signif-

icant problems because rovers usually lack another sensor

which can get information regarding the error.
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Fig. 2. Relationship between the number of inliers and error variance at
an experiment.

In order to solve the problem, we propose to evaluate

the accuracy of the visual odometry using the number of

inliers among feature points. The number of inliers can be

obtained using the framework of RANdom Sample Consen-

sus (RANSAC) and 3-point algorithm in motion estimation

process [14][15]. First, a hypothesis of the motion parameter

is generated from a sample of the 3 set of data points

randomly selected from all data points. After that, all feature

points observed before movement are reprojected into the

current image frame using the hypothesis. Next, we calculate

the reprojection error to each point. If the reprojection error

is smaller than a threshold, the data is regarded as inliers.

Final, we count the number of inliers.

We executed an experiment for showing the relationship

between the number of inliers and the accuracy of visual

odometry. In the experiment, we moved the stereo camera

rig by 10 cm, and the results of estimation and the number

of inliers are measured. Fig. 2 shows the relationship between

the number of inliers and the error variance at the experiment.

The result shows that there is a correlation between the

number of inliers and the estimation error. When the number

of the inliers is high, the accuracy of visual odometry is good,

while when the inlier number is low, the accuracy is bad.

In this paper, we propose to assume the rover motion with

the number of the inliers for preventing the influence form

the visual odometry error. If the accuracy is high, the input

of visual odometry is used as-is, or if the accuracy is low,

the rover motion is assumed to be plane motion. The plane

motion is that the lateral motion dyvo and the vertical motion

dzvo are nothing. Because of it, the lateral and vertical

estimation error is prevented. In AUKF, the components of

input are determined with the following rule:

if Ninliers > Nth

dy = dyvo, dz = dzvo

else

dy = dz = 0

endif

Here, Ninliers is the number of inliers, Nth is the threshold

of the number of inliers.

Fig. 3. Experimental fields: Field A is a slow ascent field (the left picture),
Field B has an undulations and several blockades (the right picture). The red
solid lines in the both pictures are the rover trajectories in the experiments.

C. Gyrodometry model for planetary rover

The gyro drift is also an important problem in rover

localization [9]. The drift brings on an error bias; the bias

will cause the localization error. When the rover is moving

straight, the dyaw component of the wheel odometry are

accurate than the IMU, because the data from the IMU

involves the gyro bias. While, when the wheel slip occurs,

the gyro should be used for localization because slip error is

often bigger than the gyro bias error.

In the AUKF, the dyaw component is selected with

Gyrodometry model [17]. Gyrodometry model is an effective

method for combining measurements from a gyro with mea-

surements from wheel encoders. The method can anticipate

a non-systematic odometry and gyro error (e.g., slip, bump,

and gyro bias). In Gyrodometry model, the dyaw component

is selected with the following rule:

∆t = |dyaw(gyro,t) − dyaw(wo,t)|

if ∆t > ∆theres

dyaw = dyaw(gyro,t)

else

dyaw = dyaw(wo,t)

endif

Here, ∆t is the discrepancy between the dyaw element of

the odometry and the gyro at the time t, and ∆theres is the

threshold value of the discrepancy.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results using the

Micro6 aimed at assessing the overall effectiveness of the

AUKF. We performed three runs on the outdoor rough terrain

(Fig. 3). Details of the three runs were as follows:

Run 1:The rover ran at a constant speed along a straight-

line path in Field A (the left picture of Fig. 3).

Run 2:The rover ran with stop-start movements along a

straight-line path in Field A

Run 3:The rover ran along a closed-loop path in Field B

(the right picture of Fig. 3), in which the rover en-

countered undulations and several blockades, then

the rover K-turned to escape these impediments.

Using data sets gotten in these experiments, we present the

effectiveness of our methods in after sections.
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Fig. 4. Slippage ratio estimation (Run 2).

TABLE I

RESULT OF GYRODOMETRY MODEL (RUN 1).

Mean Absolute Error [rad/s]

Inertial Measurement Unit 0.017921

Wheel Odometry 0.017533

Gyrodometry Model 0.015717

A. Result of Slippage Estimation

We demonstrate the effectiveness and impact of the slip-

page ratio estimation. Fig. 4 shows the result of the slippage

ratio estimation at Run 2. This result shows that the slippage

ratio calculated directly from the raw data is instability. If the

noisy data is used as-is, the localization may be instability.

While, the slippage ratio estimated by our technique was

estimated stably with considering the other state components.

Moreover, in the experiment, the AUKF judged whether

the rover was stop or move with input triggers, then the

covariance of the AUKF was initialized when the rover was

stop. As the results, the slippage ratio was estimated for the

each move period. Because of using triggers, it will become

possible that the appropriate slippage ratio is estimated in

the environment which has parts of different slippage ratio

and when the rover runs on the different speeds.

B. Result of Gyrodometry Model

We show the effectiveness of introducing Gyrodometry

model. Table I shows the mean absolute error of the exper-

imental results at Run 1. In the experiment, the true dyaw
value to calculate the error was token by a fiber optical gyro

(FOG) (the FOG is not used for the rover localization). The

FOG measurement is very accurate (the angle drift is under

±0.5deg/h). Table I indicates that the mean absolute error

with Gyrodometry model is the smallest of the all methods.

Gyrodometry model reduced the mean absolute errors by

almost 12% from the result only using the IMU and by

almost 10% from the result only using the wheel odometry.

Therefore, it was shown that the dyaw component became

more accurate in virtue of introducing Gyrodometry model.
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C. Results of 6DOF localization

In this section, we show the localization results of the

experiments. Fig. 5 shows the result of 6DOF localization

at Run 1. Fig. 5 has the three trajectories of the visual

odometry, a basic UKF, and the AUKF. The basic UKF

estimated only the rover position (x, y, z) and the attitude

(roll, pitch, yaw). The parameters used the AUKF and the

basic UKF in common were same. Fig. 6 shows the result

of localization on the x-y surface at Run 1. The final true

location in the figure indicates the actual point where the

rover stops. The figure indicates that the end of the trajectory

using only the visual odometry stays off the stop point. The

end of the trajectory using the basic UKF is near the stop

point, but it has the error of the direction of movement

because of the wheel slip. The end of the AUKF’s trajectory

is the nearest of all trajectories to the stop point. The arrow

in the figure shows the effect of the slippage estimation.

Fig. 7 shows the result of 6DOF localization at Run 3.

Fig. 7 has the three trajectories as same Fig. 5. The figure

indicates that the trajectory of the visual odometry could not

return to the start point (coordinate origin). The trajectory of

the basic UKF is more accurate than the visual odometry, but

the error along the z axis remained. On the other hand, the

AUKF reduce the error along the z axis due to the assuming

plane motion with the number of inliers. Fig. 8 show the

results of localization on the x-y surface at Run 3. This figure

also indicates the K-turn points. The terminating point of the

AUKF’s trajectory is the nearest of all trajectories from the

start point.

Table II shows the final position errors and the error ratios

to the moving distance at Run 1 and Run 3. The errors are

Euclidean distances between the estimated final point and the

actual final point on the x-y surface. The rover moved about

8.5m at Run 1, and about 18.8m at Run 3. Table II shows
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that the error of AUKF is the smallest of the all methods

in both runs. Because of using the AUKF, the position error

decreased over 50% from the other methods at Run 1, over

80% from using the visual odometry at Run 3, and 50% from

using the basic UKF at Run 3.

Accordingly, it was shown the effectiveness of the AUKF

from these experimental results.

VI. CONCLUSION

In this paper, we proposed an efficient solution to the 6

DOF localization for planetary rovers. To solve problems of

conventional filters, we proposed to introduce the Unscented

Kalman Filter for planetary rover localization. Moreover,

we proposed a technique augmented the Unscented Kalman

filter, named Augmented Unscented Kalman Filter (AUKF).

Experimental results of rover runs over rough terrain were

presented, the effectiveness of the AUKF and its each com-

ponent was shown.
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