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Abstract— Localization is a part of many automotive appli-
cations where safety is of crucial importance. We think that
the best way to guarantee the safety in these applications
is to guarantee the results of their embedded localization
algorithms. Unfortunately localization of vehicles is mostly
solved by Bayesian methods which (due to their structure) can
only guarantee their results in a probabilistic way. Interval
analysis allows an alternative approach with bounded-error
state estimation. Such an approach provides a bounded set of
configurations that is guaranteed to surround the actual vehi-
cle configuration. We have validated the bounded-error state
estimation with an outdoor vehicle equipped with odometers,
a GPS receiver and a gyro. With the experimental results we
compare the bounded-error state estimation with the particle
filter localization in terms of consistency and computation time.

I. INTRODUCTION

Most of the works dealing with the localization problem

use both proprioceptive and exteroceptive sensors [3]. Using

proprioceptive sensors to calculate the vehicle trajectory

generates a cumulative error as the vehicles moves. Con-

sequently, only using proprioceptive sensors does not give

a positioning which is satisfactory enough to be used in

higher level task like path following or path planning. To

cope with this problem, all localization processes also use

exteroceptive sensors to improve the predicted configurations

of the vehicle. Thus, localization processes are classically

broken down into two steps called iteratively. The resulting

algorithms alternate a prediction stage using proprioceptive

sensors and a correction stage using exteroceptive sensors.

The most commonly used methods are based on Kalman

filtering [17], [9], [22], [8] and Markov localization, using

either a probability grid [5] or particle filtering [2], [28].

Kalman filtering [7] (in its basic implementation) does nei-

ther require a great computation power nor great memory

capacity. In return, it cannot perform a global localization and

it can only track one vehicle configuration. Moreover, with

its version dedicated to the non linear model (the Extended

Kalman Filter), it can diverge very swiftly. Often, this issue

persists even using methods developed to overcome some of

its limitations, as reported in [14].

The Markov localization methods require more computing

power but provide more reliable estimated configurations (es-

pecially in complex, dynamic or badly mapped environments
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[6]). They have been reigning for the last few years and the

research to improve them is still going on, especially the

Monte Carlo localization [29]. These methods evaluate the

probability for a vehicle to be positioned in a given region but

nothing ensures that the vehicle is indeed in the configuration

with the highest probability.

Bounded-error state estimation [15] is an alternative and

less known method which has been proposed for initial

localization [23] and tracking [18] applications. This method

is based on the SIVIA algorithm [16] and takes its roots on

R. E. Moore’s work [24] on interval analysis. [24] propose

to represent a solution to a problem by an interval in which

the real solution is guaranteed to be. Thus, whereas most of

localization methods provide probabilistic results, bounded-

error state estimation gives a set of bounded configurations

in which the vehicle is guaranteed to be.

In bounded-error state estimation, all model and measure-

ment errors are assumed to be bounded, with known bounds.

At each time instant, the bounded-error recursive state

estimation provides a set containing all possible vehicle

configurations given the measurements and the noise bounds.

The methodology has proved its feasibility in simulations

[18]. Experiments have demonstrated that this method can be

made operational on a mobile robot navigating in an indoor

environment [26], [27]. This paper extends such a work

by providing results for an outdoor vehicle (navigating at

higher speeds than an indoor mobile robot and using different

sensors). Similar works [4] do not give computation times.

Other publications [10] claim that the predictor/estimator

used in [18], [4] is very slow and thus is not adapted to a real

time implementation. The goal of this paper is twofold: we

show with our experimental data that the method achieves

the real time constraints and we provide a comparison with

the popular particle filter approach in term of computation

time and consistency.

Section II describes the necessary mathematical tools

based on interval analysis. Then, section III presents the

subpavings which are used in order to represent the solution

set. Section IV describes the localization process. Finally,

Section V shows the experimental results of bounded-error

state estimation and compares it with a particle filter based

localization.

II. INTERVAL ANALYSIS

A. Overview

Bounded-error state estimation is based on interval anal-

ysis. Interval analysis was introduced in the sixties in order

to avoid approximations in calculations. R.E. Moore [24]

proposes to represent a solution of a problem by an interval
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in which the real solution is guaranteed to be. Interval

analysis provides a set of rules to calculate with intervals

[x] = [x, x] ⊂ R where x and x are respectively the

minimum and the maximum of [x]. The width of an interval

is w [x] = x−x. Arithmetical operations (+, −, * and /) and

standard mathematical functions readily extend to intervals.

For example,

[1, 2] + [3, 4] = [4, 6]

ln ([1, e]) = [0, 1] . (1)

B. A free library

The computation with interval analysis is simplified by

the use of PROFIL/BIAS (Programmer’s Runtime Optimized

Fast Interval Library / Basic Interval Arithmetic Subroutines)

[20], [19], [1], a C++ class library supporting the most

commonly needed interval and real operations in a user

friendly way. This library allows manipulating intervals as

numbers. All basic mathematical functions are implemented

to accept numbers as well as intervals.

C. Inclusion function

The notion of inclusion function is one of the most impor-

tant tools provided by interval analysis [15]. For any function

f : D ⊂ R → R defined as combinations of arithmetical

operators and elementary functions, interval analysis makes

it possible to build inclusion functions f[] satisfying

∀ [x] ⊂ D, f ([x]) ⊂ f[] ([x]) , (2)

where f ([x]) denotes the set of all values taken by f (.) over

[x].
The simpliest way to obtain an inclusion function is to

replace all real variables by interval ones and all real-

valued operators or elementary functions by their interval

counterparts. The natural inclusion function is then obtained.

For example, the natural inclusion function for

f (x) = x2 − x + 1 (3)

is

f[] ([x]) = [x]
2
− [x] + 1. (4)

It is then possible to enclose the set of all values taken by

a function over a given interval into a computable image

interval.

For convergent functions (all functions considered in this

work are convergent), the width of the image interval tends to

zero when the width of the corresponding argument interval

tends to zero. As a consequence, cutting the interval into

smaller intervals improves the result of the inclusion function

(see [25], [15]). For instance using Eq. (3), f[] ([0, 2]) gives

a result of [−1, 5]. Whereas a calculation of f[] ([0, 1]) ∪
f ([1, 2]) gives an interval of [0, 4] better than f[] ([0, 2]).

Outer-approximation of sets may be achieved by a union

of non-overlapping boxes or subpaving. Subpaving combined

with direct image evaluation and inverse image evaluation

algorithms are the building stones of the bounded-error state

estimation algorithm.

III. DEALING WITH SUBPAVINGS

A. Introduction

The vehicle configuration in the global frame is denoted

by x = (x, y, θ)T where (x, y) are the coordinates of the rear

axle center and θ specifies the orientation of a local frame

attached to the vehicle with respect to the global frame.

To estimate and handle the sets implied in our problem,

we use the concept of boxes as bounded configurations: a

box [x] ∈ R
3 is composed of 3 intervals [x] = [x]× [y]× [θ].

Then, subpavings are a union of non-overlapping bounded

configurations.

B. Use of a subpaving in the localization process

The principle of localization consists of testing the binary

relevance of each box according to the data returned by the

exteroceptive sensors. We verify if a box (or a part of it) is

compatible with the measurement. If the answer is positive

then the box is kept, if not the box is discarded. If only a part

of the box is compatible with the measurement, then the box

is cut into smaller boxes making it possible to improve the

description of the solution. The set of vehicle configurations

is either represented as a list in which overlapping boxes

are present (a temporary representation during the prediction

step), or as a binary tree which avoids overlapping boxes.

For the tree representation, each node has the description of

a box and the box located at the root of the tree contains all

the boxes in the tree.

C. Tree organization

The binary tree is built by dichotomy: a box is cut into two

children boxes by interval bisection. One dimension of the

box is cut at the middle to give two boxes. These boxes have

equal subinterval lengths in one dimension and unchanged

lenghts in the other dimensions. We chose to cut the box

on the largest length. For instance, cutting the root box [x]
among y dimension leads to two boxes named L [x] and

R [x] (corresponding respectively to the left and the right

children):

L [x] = [x, x] × [y,
y+y

2 ] × [θ, θ],

R [x] = [x, x] × [
y+y

2 , y] × [θ, θ].
(5)

Consequently, the root of the tree is the largest box and going

down the tree leads to smaller boxes. This property is used

by the correction step of the localization algorithm to quickly

discard unsuited areas.

IV. LOCALIZATION PROCESS

The previously described mathematical tools and the no-

tions of boxes/subpaving are now applied to the localization

process divided in a prediction/correction scheme.

A. Prediction step

The prediction step uses the measurements of two propri-

oceptive sensors of our experimental platform: the speed of

the rear wheels and the yaw rate.
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1) Proprioceptive data integration: A non linear discrete-

time state-space model is considered to describe the evolution

of the configuration xk of the vehicle

xk = f(xk−1,uk,vk), (6)

where uk is a known two-dimensional control vector, as-

sumed constant between the times indexed by k − 1 and k
and vk is an unknown state perturbation vector that accounts

for the model uncertainties. The classical evolution model,

described in [21], is considered:

f(xk−1) =





xk−1 + δs. cos
(

θk−1 + δθ
2

)

yk−1 + δs. sin
(

θk−1 + δθ
2

)

θk−1 + δθ.



 , (7)

where δs is the longitudinal motion and δθ is the rotational

motion.

X is a subpaving of R
3 in which the vehicle is guaranteed

to be. The integration of the proprioceptive data is done

by founding the subpaving that includes Y = f(X ) where

f is a known non linear function. Xk|k−1, the set that is

consistent with sensor data provided at time k knowing k−1,

is computed using the following equation:

Xk|k−1 = f (xk−1,uk,vk) (8)

with

{

xk−1 ∈ Xk−1|k−1,
uk + vk ∈ [uk + vk]

}

= f
(

Xk−1|k−1, [uk + vk]
)

.

with [uk + vk] the state vector uk added with the bounded-

error vk on the measurement.

Applying bounded parameters on Eq. (7) for each box

[xk−1] ∈ X k−1|k−1 the bounded evolution of the vehicle is

described by the following inclusion function:

f[]([xk−1]) =









[xk−1] + [δs] × cos
(

[θk−1] + [δθ]
2

)

[yk−1] + [δs] × sin
(

[θk−1] + [δθ]
2

)

[θk−1] + [δθ]









.

(9)

[uk + vk] = ([δs] [δθ])T is deduced in a bounded way from

the longitudinal speed ṡ and yaw rate θ̇ by taking into ac-

count the elapsed time δt: [δs] = [ṡ] [δt] and [δθ] =
[

θ̇
]

[δt].

As the set of boxes Xk−1|k−1 is described by a subpaving

and an inclusion function for the prediction function f is

available, an outer-approximation Xk|k−1 can be evaluated

using the IMAGESP (IMAGE SubPaving) algorithm [15].

2) IMAGESP: The IMAGESP algorithm can be decom-

posed into three steps:

a) Mincing the subpaving: First, the boxes of the

subpaving are minced, i.e., all the boxes are bisected until

their width is lower than a specified precision parameter

ε. Previous works [27] do not clearly state that it is not

necessary to bisect the boxes in all their dimensions: only

the width θ should be bisected. When a variable occurs only

once in an expression then the natural inclusion function is

minimal for this variable [24], [25]. This property allows

us to significantly decrease the computation time compared

with the brute approach of bisecting all widths.

b) Computation of the inclusion function: The images

of the resulting boxes are then evaluated using the inclusion

function for f and the PROFIL/BIAS library. According to

Eq. (2) , the union of these images is guaranteed to con-

tain f
(

Xk−1|k−1, [uk + vk]
)

. When ε decreases, the image

subpaving Xk|k−1 gets closer to the optimal subpaving. The

cost of a such decreasing is an increasing of the prediction

computation time.

c) Merging the boxes: Finally, these images are merged

in order to get a subpaving that is guaranteed to contain the

configuration of the vehicle. This last step builds a subpaving

(a set of non-overlapping boxes) represented as a binary tree.

It reduces the number of boxes that are used in the further

steps.

B. Correction step

The correction step integrates the data provided by the

GPS receiver of the experimental platform.

1) Measurement equation and estimation principle: The

measurement equation at time k for the GPS receiver can be

described as

[yk] = h (xk) + [wk] , (10)

with h (xk) =





1 0 0
0 1 0
0 0 0



xk = x2×2
k and [wk] the

measurement noise matrix. In short, [yk] is returned by the

GPS receiver as a point (x, y) with an associated oriented

ellipse. In fact the GPS does not directly return a cartesian

point but a latitude and longitude coordinates which are

converted in a Cartesian local frame. [wk] is obtained thanks

to the GST NMEA frame.

The output [yk], available at time k, can be taken into

account by updating Xk|k−1 (the previous localization set

obtained during the prediction step) into an outer approxi-

mation Xk|k

Xk|k = h−1 ([yk]) ∩ Xk|k−1. (11)

We have described Xk|k−1 as a union of boxes. In the same

way Xk|k may be obtained as a union of boxes by the use

of the SIVIA (Set Inversion Via Interval Analysis) algorithm

[15].

2) SIVIA: The goal of the Set Inversion Via Interval

Analysis is to compute the reciprocal image of a set by a

function and to approximate it by an external subpaving.

The key idea is to test if the image of the boxes located in

a search domain are in the image set. If the images of the

boxes lay within or intersect with the image set then they

are part of the reciprocal image.

More specifically, starting from the root of the binary

tree provided by the prediction step, each box of the tree

is evaluated as follows:

• If h[]([xk]) ⊂ [yk] , then any xk ∈ [xk] is consistent

with the measurements and noise bounds and [xk] is

proved to be in Xk|k. [xk] is kept in the solution list.
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Fig. 1. CARLLa platform

Fig. 2. Embedded hardware architecture

• If h[]([xk]) = ∅, then there is no xk in [xk] consistent

with the measurements and noise bounds and [xk] does

not belong to Xk|k. [xk] is eliminated.

• If h[]([xk]) ∩ [yk] 6= ∅ and if [xk] < ε, then the box

is too little to be cut. At least one configuration in [xk]
is consistent with the measurements and noise bounds

and due to its small dimension, [xk] is kept.

• If h[]([xk]) ∩ [yk] 6= ∅ and if [xk] > ε, the same tests

are applied to the right and left children (if they do not

exist they are computed).

As this work considers GPS measurements, h[]([xk]) =

[xk]
2×2

and [yk] is the surface of an ellipse. Consequently

SIVIA does some simple tests between rectangles and an

ellipse.

V. EXPERIMENTAL RESULTS

A. The vehicle and its embedded architecture

In order to test and to validate the bounded-error state

estimation approach for the positioning of a vehicle on

road, a set of real data have been collected with LIVIC’s

prototype (CARLLa). On this platform (Fig. 1 and 2),

both the hardware and the software architectures have been

embedded. The hardware architecture includes 2 computers,

the first one is dedicated to the proprioceptive sensors

and the GPS receivers management. The control/command

algorithms and the localization algorithms are also executed

on this computer. The second computer is used for the

other exteroceptive sensors and for the perception algorithms

Fig. 3. Satory’s tracks

(including image processing algorithms). In this study, we

only use the first computer: it collects data (coming from

the gyro, the odometers and the GPS receiver) and executes

the localization algorithms.

A solid-state vertical gyro VG400CC provides the yaw rate

data. The odometry is rebuilt from the data coming from

the CAN bus (only the rear wheel speeds are used). The

GPS sensor (AgGPS 132) returns a position vector (latitude,

longitude) with a covariance matrix. The localization is done

in a local tangential frame to surface earth (French Lambert

I conic projection) which is the projection of the WGS84

terrestrial global reference frame. In order to collect the data,

the RTMaps platform has been used. This platform provides

powerful tools in order to collect data in real time with an

accurate time stamping.

The reference used for the evaluation of the positioning

method is a RTK GPS. This sensor provides a centimeter

accuracy of the ego-vehicle. In addition to the RTK reference,

we have a very accurate map of these tracks (centimeter

accuracy) with its left, right and center road markings. With

a camera we have confirmed the lateral accuracy given by

the RTK GPS [12], [13].

B. The test tracks

In order to validate the localization algorithms, the data

have been collected on the Satory test tracks. The first track

is similar to a peri-urban road (on the top of the Fig. 3)

and the second one to a rural road (on the bottom of the

Fig. 3). The second track is a very interesting area because

of the presence of a forest. In this area, major troubles

with the AgGPS 132 have been observed due to important

signal losses. These troubles have a particularly long duration

during our experiments and allows us to heavily test the

robustness of our localization algorithms.

C. The localization results

The collected data have been used to localize our vehicle

with two algorithms: the Bounded-Error State Estimation

(BESE) previously describes and a classical Particle Filter

(PF). The implementation of the PF is not described in this
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paper. The reader who is not familiar with the subject could

read the algorithmic principles in [2] and an application to

outdoor vehicles in [11]. Both the BESE and the PF use

the same sensor data. But the PF is fed with the standard

deviation σ of the sensors whereas the BESE uses a xσ
error bound where x is defined afterwards. Two main values

of x have been used in this paper: x = 2 which defines a

0.95 confidence level and x = 3 which corresponds to a 0.99

confidence level. Consequently, where we should considers

to find a data with a 0.95 or a 0.99 probability, the BESE

assumes to find it with a 1 probability. Practical experiments

show us that the 3σ bound is definitely safe enough (the true

value always lies in the 3σ bound during our experiment).

The vehicle has followed the 7 minutes path drawn on

Fig. 3 at the mean speed of 60 kph. Fig. 4 shows the interval

error of the BESE and the PF. The imprecision area of the

BESE (using a 3σ bound errors) has directly been used

to compute the interval error. For the PF the imprecision

(standard deviation) has been magnified 3 times. A filter
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Fig. 6. Comparison between PF and BESE for 2σ error bounds
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Fig. 7. Comparison between BESE (3σ) and consistent PF with 19σ error
bounds

exhibits good results if its corridor is thin and if it always

includes the zero value (it means that the filter imprecision

embraces the reference value). The PF is more confident

than the BESE but the PF is sometimes inconsistent whereas

the BESE is always consistent. The great inconsistency of

the PF before t= 200s is due to a large number of repeated

biased measurements (see Fig. 5). The BESE does not

suffer from those biased measurement as the data meet the

bounded-error constraints.

The total computation time of both prediction and correction

(for the 400s of the experiments) is 68 seconds for the

BESE and 24 seconds for the PF (with 1000 particles).

The single prediction and correction time is 34ms for the

BESE and 12ms for the PF. A higher number of particles

for the PF shows higher computation times but similar

results. Those computation times emphasize the real time
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capability of the BESE for dealing with the outdoor vehicle

localization on standard computers.

In order to drive the BESE to the wall, the Figure 6

uses a 2σ error bounds. Not surprisingly the PF is more

inconsistent than with the 3σ error bound. We are much more

surprised by the results of the BESE which stays consistent

most of the time. An analysis of the interval error shows

that the BESE is (lightly) inconsistent for t∈ [170, 200]s
and around t= 225s. This inconsistency is related to some

inconsistent GPS measurements occurring at these times. The

most important point is that the BESE quickly recovers from

those inconsistency.

Finally we have computed the x value for the PF to be

consistent. We found 19 and drew the 19σ interval error on

Fig. 7. Thus we can compare both consistent filters. The

PF is greatly penalized by its inappropriate great confidence

(a thin corridor which is far from the 0 value, see Fig. 4)

around t=195s which leads to a huge 19σ interval error to

recover from this error. The resulting corridor is up to 100

meters width which is much larger than the consistent BESE.

VI. CONCLUSION

This paper presents a bounded-error state estimation to

the localization problem of an outdoor vehicle. Experiments

show the ability of the method to solve the localization

problem in real time with better consitency then PF.

Furthermore we point out that the PF can locally converge

towards a wrong solution due to bias measurements which

lead to a huge local inconsistency. Similar experiments

with an Extend Kalman Filter (EKF) could show the same

phenomenon. EKF strongly underestimates its covariance

matrix in presence of repeated bias measurements. We claim

that this is the biggest advantage of the BESE approach

over Bayesian approach. Unfortunately, the price to pay

for such advantage is the difficulty of BESE to deal with

inconsistent measurements (outliers). This difficulty is not

verified in our experiments: BESE quickly recovers from

outliers with only small local inconsistency. Furthermore a

simple test could allow BESE to detect (and signal to the

end user) huge inconsistency in measurement thus avoiding

most of the possible failures of the BESE. Nevertheless we

cannot guarantee that such failure will not appear. We think

that further works should deal with this subject.
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