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Abstract— In this paper we present a general framework for
predicting the positioning uncertainty of underwater vehicles.
We apply this framework to common examples from marine
robotics: standalone long baseline (LBL) positioning and inte-
grated LBL reference and Doppler velocity log (DVL) dead-
reckoning.

The approach is based on formulating positioning as an
estimation problem. Using simple sensor models for the most
common information sources, we show how the the Cramér
Rao lower bound can be used to predict the system-level navi-
gation performance. The resulting three dimensional covariance
matrix is then summarized using scalar performance metrics
based on the notion of dilution of precision (DOP), a well-known
concept from the global positioning system (GPS) community.
To illustrate this general tool, we present the answers to a few
particular questions:

• How does the baseline length affect the solution for
standalone LBL positioning?

• When using DVL and heading odometry, how precise is
the combined DVL/LBL solution?

• For an integrated DVL/LBL solution, what is the required
update rate from the absolute reference to constrain
odometry drift?

• What is the relative importance of heading, odometry and
range precision for overall performance?

We substantiate our estimation framework through experi-
mental evidence which shows that the analytical predictions are
consistent with performance in the field.

I. INTRODUCTION

The challenge of underwater positioning—determining
the location of submerged assets—continues to limit our
capability to explore, understand and operate in the marine
environment. Robotic technologies such as remotely operated
vehicles (ROVs), autonomous underwater vehicles (AUVs)
and gliders have pushed back the frontier of scientific,
military and industrial programs (some examples include
[1]–[5]). This expansion of robotic work in the deep ocean
has been accompanied by constant innovation in underwater
navigation. Some innovations are specific to the marine
environment. For example, long baseline (LBL) range-based
positioning and Doppler velocity log (DVL) dead-reckoning
were both created specifically for ocean applications. Other
advances have transferred new tools from terrestrial nav-
igation to the challenge of positioning submerged assets.
Examples include inertial measurement units (IMUs) and
fiber-optic gyro (FOG) instruments. Finally, there has been
considerable work focused on combining these disparate
information sources into a navigation estimate, the most
common examples address the integration of LBL and DVL
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instruments [6]. The last 30 years of research and operations
have left the vehicle designer with a variety of options
for instrumentation hardware, operational configurations and
integration algorithms. We present an analytical framework
to aid in the design of these increasingly complex systems.

The goal of this paper is to answer some important ques-
tions for practical robotic underwater navigation. Because
operational solutions typically include range measurements
providing an absolute reference, we focus on quantifying
how range measurements are included in modern, multi-
modal navigation solutions. It is our hope that this article
will contribute a tool for making design decisions, providing
researchers, engineers and operators with methods for quan-
tifying the trade-offs when including range observations into
estimates of location.

II. CLOSELY RELATED WORK

The foundations of this work are well established. There
is a large body of literature on stochastic sensor models,
estimation prediction using the Cramér Rao lower bound
(CRLB) and metrics for summarizing uncertainty. The main
contributions of this work is the creation of a sensor model
to capture the salient dynamics of conventional underwater
navigation and the experimental evaluation of the resulting
performance predictions. Additionally, the results of this
analysis provide practical guidance for designers of marine
robotic systems.

Previous researchers have proposed stochastic models for
underwater localization. Deffenbaugh applied the CRLB to
standalone acoustic positioning [7]. More recently, Eustice
presented a combined navigation model to support maxi-
mum likelihood estimation based on one-way acoustic travel
times [8]. The sensor model presented here builds on the
standalone solution by incorporating odometry information.
By considering exclusively the along-track and across-track
directions, we generate generalizable conclusions on the rela-
tionship between the various characteristics of the complete
navigation solution.

III. APPROACH

Navigation is an estimation problem. Predicting the per-
formance of the estimator requires three things: a stochastic
model, a method of relating measurement uncertainty to
estimate uncertainty and performance metrics to summarize
the estimate quality. In this work we apply simple models—
abstractions which relate noisy observations to the under-
lying quantities we wish to estimate. For navigation we
estimate position based on noisy measurements that might
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include range distances to fixed locations, velocity over the
bottom, heading and a variety of other information sources.

Part of our approach is based on Gaussian distribution
noise models. These models are not proposed as full quan-
tifications of the complex uncertainty, but instead as useful
tools that provide pertinent predictions for making design
trade-offs. This is an important distinction. Our goal is not
to fully characterize the noise measurements, but instead to
predict the performance of these systems in such a way as
to aid their operation and design. The experimental portion
of this work is designed to substantiate the applicability of
these simple models.

To quantify how the measurement uncertainty leads to
estimate uncertainty we use the Cramér Rao lower bound [9].
This technique provides a prediction of position uncertainty,
typically a three-dimensional covariance matrix. The CRLB
is a measure of how much information about the vehicle
position is available in our measurements of range, velocity
and heading.

A. Models for Navigation Uncertainty

The first component of our estimation framework is a
set of observation models for spherical positioning, velocity
observations and heading observations.

1) Spherical Positioning Measurement Model: Spherical
positioning is based on observing individual range values
(zri

) between known fixed beacon locations (xbi
) and an

unknown mobile host position (xh) where the individual
range measurements is indexed by i.

zri = ‖xh − xbi‖+ wri (1)

We consider the additive noise in each measurement (wri ) as
an independent, zero-mean, Gaussian variable with variance
σ2
r .

wri
∼ N

(
0, σr

)
(2)

The utility of this Gaussian error model along with the
measurement of the σr statistic will be discusses in the
experimental results that follow.

2) Odometry Measurement Model: A DVL has become
a standard instrument for underwater robotics because of
the quality of the solution and ease of use. Dead-reckoning
with a DVL consists of fusing the measured velocity over
the seafloor with an accurate heading reference to estimate
distance traveled. The DVL instrument provides independent
measurements of velocity (vk) in each of three dimensions
(indexed by k). Transforming these sensor frame measure-
ments into a local coordinate frame requires knowledge about
sensor and vehicle attitude. Heading is the most important
measurement for this coordinate rotation [10]. Again we
use a simple additive Gaussian noise model to represent the
heading (ψ) measurement.

While it is possible to carry forward the complete three
dimensional uncertainty formulation [11], for the clarity we
present the two-dimensional case. This is a non-limiting
simplification for two reasons: most underwater vehicles are
passively stable in pitch and roll, furthermore pitch and roll

Fig. 1. This figure illustrates the 3D positioning trilateration problem. The
three fixed acoustic nodes are arranged in an equilateral triangle (xbi

) for
i = {1, 2, 3} and the mobile host (xh) a distance (D) above the plane
containing the three fixed nodes. The extent of the fixed nodes is captured
with the baseline parameter (BL).

Fig. 2. Illustration of odometry uncertainty dynamics. The ellipses illustrate
the 1-σ uncertainty in the along track (x) and across track (y) directions.
Five discrete vehicle positions are shown, indexed by i. The distance
between consecutive positions is d.

are typically measured much more accurately than heading.
We also consider the uncertainty along track to be inde-
pendent of the uncertainty across track. This consideration
captures the dominant dynamics of error growth and allow us
to simplify our two-dimensional model, preserving intuition.
This approach leads to an observation model of odometry
where each discrete measurement of incremental distance
(zoj

, where j is the index for velocity measurements).

zoj
=
(
xhj
− xhj−1

)
+ wo (3)

The additive noise is characterized by a two-dimensional
covariance matrix (Σo) in the along track and across track
directions.

wo ∼ N
(
0,Σo

)
(4)

Σoi
=
[
tσ2
v 0

0 d2σ2
ψ

]
(5)

The diagonal matrix in Equation (5) is a consequence of the
independent along track and across track uncertainty growth.

Figure 2 is an illustration of this simple odometry model.
The aspect ratio of error ellipses increases with time, il-
lustrating the linear growth of the along track uncertainty
(growing with distance traveled) and the growth of the along
track position with the square root of time.
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B. Predicting Performance Using The Cramér Rao Lower
Bound

As an estimation problem we consider the estimation of an
unknown parameter vector x based on a set of observations
z with known probability density pz(z;x). When it exists,
the CRLB gives the lower bound on the variance of any valid
unbiased estimator x̂() for x [9].

1) The Cramér Rao Lower Bound for Spherical Position-
ing: We apply this tool to the spherical positioning problem
by linearizing the measurement model [7]. The individual
range measurements of Equation (1) are assembled into an
measurement vector of length n.

Zr = {zri}
n−1
0 (6)

= h(xh,xb) + wr (7)

where h() is the non-linear function for spherical positioning
and wr is a zero mean random vector with covariance Σr.

wr ∼ N
(
0,Σr

)
(8)

The CRLB can be calculated by linearizing the measurement
model about an operating point xho

, i.e., let xh = xho
+δxh.

Zr ≈ h(xho ,xb) + C(xho ,xb)δxh + wr (9)

The Jacobian (C(xho
,xb)) is evaluated at a particular vehi-

cle position xho
and for each fixed transponder location xb.

For this linearized, Gaussian noise measurement model the
CRLB is a matrix combination of the the Jacobian, repre-
senting the current system geometry, and the measurement
covariance.

Λ =
[
C(xho

,xb)TΣ−1
r C(xho

,xb)
]−1

(10)

The CRLB is the best-case estimate of the state covariance
of the positioning solution based on (1) the geometry of the
static acoustic beacons, (2) the location of the host relative
to the beacons and (3) the range uncertainty.

2) The Cramér Rao Lower Bound for Integrated Position-
ing: To apply this tool we must express the complete obser-
vation model for integrated absolute and relative positioning
measurements. We present this in two dimensions, recalling
that x is the along track dimension and y is the across track
dimension. The result is a combined measurement model
including n measurements of the absolute x and y positions
along with n − 1 measurements of the relative distance
traveled in each direction.

Zc = [A]



x1

...
xn
y1
...
yn


+ Σc (11)

where

[A] =


In×n 0n×n
0n×n In×n

∆n−1×n 0n−1×n
0n−1×n ∆n−1×n

 (12)

∆n−1×n =

 0
...
0

In−1

−
 In−1

0
...
0

 (13)

Σc =

 σ2
pI2n 0 0
0 σ2

v(dt)In−1 0
0 0 σ2

ψ(dx)2In−1

 (14)

where In is an n× n identity matrix, dt is the elapsed time
between absolute position updates and dx is the correspond-
ing distance traveled along track between successive absolute
position updates.

C. Metrics for Navigation Uncertainty

Using the CRLB and the preceding measurement models
we can predict the positioning performance in the form of
the full covariance matrix (Σxh

).

Σxh
=

 σ2
x σ2

xy σ2
xz

σ2
xy σ2

y σ2
yz

σ2
xz σ2

yz σ2
z

 (15)

We use scalar metrics adapted from the GPS community
[12] to succinctly summarize the performance: the horizontal
dilution of position (HDOP—σHDOP ) and the 50% circular
error probable (CEP).

σHDOP =

√
σ2
x + σ2

y

σr
(16)

CEP ≈ 0.59 (σL + σS)) (17)

where σL and σS are the major and minor axes of the
uncertainty ellipse, the eigenvalues of the two-dimensional
covariance matrix1.

In order to provide consistent comparisons between modes
of positioning, we introduce two non-standard metrics: hori-
zontal precision (HP) and normalized circular error probable
(NCEP).

HP =
√
σ2
x + σ2

y (18)

NCEP ≈ 0.59 (σL + σS))
σr

(19)

IV. ANALYTICAL PREDICTIONS

A. Standalone LBL Solution

Figure 1 illustrates the specific geometry considered in
the following analysis. By varying a single non-dimensional
parameter, the ratio of the distance to the baseline length

1The linear approximation of the CEP can be derived from the estimate
covariance. The difference between the true CEP and the approximation
of Equation (17) is less than 1.5% when the uncertainty ellipse has a low
aspect ratio (0.5σL ≤ σS ≤ σL), otherwise a quadratic approximation can
be substituted [13].
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(D/BL), and using the CRLB to predict the positioning per-
formance, we quantify how the baseline length affects host
positioning quality. The distance parameter (D) is the length
of line extending perpendicular from a plane containing the
fixed beacons to the mobile host.

To determine the CRLB lower bound (Equation (10)) we
evaluate the Jacobian (C(xho ,xb)) from Equation (9) for
the spherical positioning observations. Using the specific
geometry illustrated in Figure 1,

Since we have assumed the range measurements are
independent and identically distributed, the covariance of
the observations (Σr) is simply a diagonal matrix where
each element on the diagonal is the variance in the range
observations (σr). This leads to a simple expression for the
CRLB.

Λ = σ2
r

 2
(
r
BL

)2 0 0
0 2

(
r
BL

)2 0
0 0 1

3

(
r
D

)2
 (20)

We evaluate the performance metrics HDOP and NCEP
(Equation (16) and Equation (19) respectively) by using the
approximation

(
r

BL

)
≈
(
D
BL

)
. This approximation has small

error for even modest values of D/BL2.

HDOP ≈ 2
(
D

BL

)
(21)

(22)

Equation (21)is the analytical predictions for the relation-
ship between the relative baseline size and the positioning
performance of a range based system. This simple linear
relationship is a “rule of thumb” to inform operational trade-
offs.

B. Integrated LBL/DVL Solution

Using the CRLB framework we predict the navigation
performance for integrated solutions that employ both abso-
lute and relative positioning techniques. Figure 3 illustrates
this prediction for a large range of system parameters. To
calculate the HDOP we normalize the uncertainty in the
x and y directions with the overall absolute positioning
uncertainty (σp). To evaluate the HDOP for a particular inte-
grated navigation solution requires quantifying the following
parameters:
• Position uncertainty (σp) which is the standard deviation

of the overall absolute position reference.
• Along track uncertainty (σalong) which is a function of

the velocity uncertainty (σv) and the acoustic update
rate (dt).

• Across track uncertainty (σacross) which is a function
of the heading uncertainty (σφ) and the distance traveled
between acoustic updates (dx).

To interpret the results in Figure 3 we can examine the
three regions labeled A, B and C. On the left, in region A,
the along track uncertainty is much smaller than the absolute

2The error is less than 10% for D ≥ 0.68(BL) and the error is less than
1% for D ≥ 2.3(BL).

Fig. 3. This figure quantifies the trade-offs in designing an integrated
positioning solution using absolute (LBL) and relative (DVL/Heading)
positioning. The vertical axis shows predictions of the overall HDOP. The
point labeled “Ex1” and corresponds to the illustrative example described
below.

position uncertainty, i.e., the velocity error is small and that
the update rate is relatively fast, preventing large drift in the
relative positioning between updates. The result, indicated
by a low HDOP, is that the overall positioning uncertainty is
10% of the standalone absolute positioning. Because of the
accuracy of the relative measurements between individual
absolute updates, the information from each absolute refer-
ence cycle accumulates, lowering the overall uncertainty. In
fact, this asymptote achieves the lower bound for the overall
uncertainty of 1/

√
n, where n is the number of absolute

position updates. In this case n = 100.
Another interesting aspect of this limiting case is that the

across track uncertainty does not affect the resulting per-
formance. This is an important result because for solutions
that employ only relative positioning (dead-reckoning), the
heading reference is a key determinate of performance. In
contrast, the prediction illustrated in Figure 3 shows that
when both absolute and relative positioning are combined
and the velocity measurements have low uncertainty, the
quality of the heading reference has little impact on the
overall performance.

Region C, in the far right of Figure 3, illustrates the
performance prediction for the opposite extreme when the
relative positioning is poor compared to the absolute refer-
ence. In this case the HDOP asymptotically approaches 1.0,
indicating that the standalone absolute position uncertainty
is equivalent to the combined uncertainty.

To further the illustration we present an example based on
a typical operational configuration for underwater vehicles:
a 1,200 kHz RDI DVL (σv = 3 mm/s), an Octans true
north heading reference (σψ = 0.1 degrees) and Benthos
LBL transponders (σr ≈ 3.0 m). We assume a representative
velocity of 1.0 m/s for the purposes of demonstration. These
sensor parameters would place this system in Region A of
Figure 3 (labeled “Ex1” in the figure) where the odometry
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significantly improves the standalone acoustic positioning
performance. Based on the predicted uncertainty, the required
acoustic positioning update rate would be t < 68 s, i.e.,
the LBL position updates would need to arrive roughly each
minute to take full advantage of the synergies between LBL,
DVL and heading information.

V. EXPERIMENTAL RESULTS

The preceding analytical predictions are predicated on
the applicability of simple models and additive, Gaussian
noise. In particular, we claim that the techniques of the
GPS community can be applied to underwater range-based
positioning. Here we describe a range-only positioning ex-
periment designed to test this hypothesis.

A. Positioning System Overview

The Sonic High Accuracy Ranging and Positioning Sys-
tem (SHARPS) is a general purpose high-frequency, spread
spectrum navigation tool capable of precise time-of-flight
range measurement. This system has been used to provide an
accurate position reference in a variety of operating scenarios
including deep-sea archaeology surveys [1], [14], operational
support for the Jason-Medea two-body ROV system [15] and
tank installations to support academic research [16].

B. Setup and Procedure

To directly observe the effect of baseline length on posi-
tioning performance we measured the mobile host location
at a sequence of locations. At each location we made an
average of 320 range measurements to each of the fixed
beacons (see Figure 4). A coarse median filter was used to
reject outliers caused by the dense multipath structure of the
shallow pool environment. We used the range measurements
to solve 3D spherical positioning problem using a real-time
non-linear least-squares estimator3 and to calculate the non-
normalized CEP and HP performance metrics for a set of
stations between 0.83 and 11.43 m from the fixed beacons. To
calculate the normalized NCEP and HDOP metrics required
an estimate of the range uncertainty. The z component of
the position covariance provides an estimate of the range
uncertainty, i.e., E [σ̂z] = 0.42cm ≈ σr. This procedure was
intended to reproduce the scenario illustrated in Figure 1.

VI. DISCUSSION

Figure 5 illustrates the comparison between the analytical
predictions of Section IV-A and the experimental results of
Section V. There are two similar analytical predictions in
Figure 5. The “Theory” prediction is for the idealized geome-
try in Figure 1, and the “Simulation” prediction results from
numerically evaluating the CRLB for the actual geometry
used in the test.

A linear fit of the empirical evidence for the HDOP metric
shows strong correlation: R2 of 0.93. This leads to the most
important conclusion of this comparison: both the analytical

3It can be shown that the least-squares method is an efficient estimator for
the non-linear spherical positioning problem, i.e., the least-squares algorithm
achieves the CRLB.

Fig. 4. Annotated photo of experimental setup. The three beacons in the
lower part of the image are fixed to a frame where the baseline between
1 and 2 and between 2 and 3 are both 0.59 m. The host is located at a
variable distance away from the beacon network. Shown here the host is
approximately. 2 m from the beacons.

Fig. 5. This figure illustrates the HDOP as a function of the normalized
distance between the mobile host and the fixed acoustic network. Four
scenarios are shown for comparison: (1-Theory) theoretically predicted
closed form solution for equilateral triangle with baseline, (2-Simulation)
simulation results for right triangle, (3-Experiment) experimental results
from SHARPS pool testing with a right triangle with 0.59 m baseline, (4-Fit)
linear regression best-fit results.

prediction and experimental evidence show a consistent
linear relationship between positioning performance and the
(D/BL) ratio, just as predicted by the analytical framework
proposed earlier.

While both the analytical and experimental results have a
linear form, the linear coefficients are significantly different.
The fractional difference in coefficients is 18% for the NCEP
metric and 24% for the HDOP metric. We believe that this
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is most likely a consequence of variance in our estimate of
range uncertainty used to normalize the HDOP and NCEP
metrics. The mean range variance of 0.42 cm had a standard
deviation of 0.13 cm, 32% of the mean. This suggests that
the actual range uncertainty could be lower which would
account for the discrepency.

VII. CONCLUSIONS

The preceding sections present an analytical framework
for predicting the performance of navigation solutions for
underwater vehicles. This framework uses the Cramér Rao
lower bound to combine models of navigation observations to
produce succinct scalar metrics of positioning performance.
The experimental evidence substantiates the validity of these
simple models. In particular we derive analytically, and
then show empirically, that the uncertainty in the range-
only positioning solution degrades linearly with the relative
size of the fixed baseline. We also extend this analysis
to illustrate the interplay between accuracy and precision
necessary for understanding the trade-offs in designing an
integrated navigation solution.

To introduce this approach we presented specific questions
of importance for marine operations. Using this framework
we have illustrated the following answers to those questions:
• All else being equal, the precision of the positioning

solution is linearly related to the effective baseline
length (see Equation (21)).

• The overall precision of an integrated DVL/LBL po-
sitioning solution is a function of the performance of
each component and the LBL update rate. If designed
correctly, the overall performance of this integrated
solution provides a much more precise solution than
either standalone solution. The actual performance can
be predicted using Figure 3.

• For the DVL/LBL configuration typical of oceano-
graphic operations, an absolute position fix should be
acquired roughly each minute to take full advantage
of the complementary nature of the two information
sources.

• The relative impact of heading, odometry and range pre-
cision on the overall navigation system performance can
be inferred through general results similar to Figure 3.

While the particular results are important, the generaliz-
able conclusions have more impact. This information-based
framework is a general purpose tool for predicting the perfor-
mance of potential sensor and algorithm combinations. As a
design tool, the ability to predict performance allows vehicle
designers to make quantitative trade-offs when it comes
to combining and configuring the variety of commercially
available navigation solutions.

A. Future Work

The experimental work described here substantiates the
applicability of Gaussian noise and linearized sensor models
for range-only positioning. A similar experiment could be
done to validate the random walk models used to incorporate
the dead-reckoning contribution to positioning uncertainty.
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