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Abstract— In this study, we discuss the common stabilization
mechanism underlying passive dynamic walking (PDW) and
passive dynamic running (PDR), focusing on the feedback
structures in analytical Poincaré maps. To this end, we have
derived linearized analytical Poincaré maps for PDW and
PDR, and analyzed these stabilities on two models, namely
models with elastic elements and with stiff legs. Through our
theoretical analysis, we have found an “implicit two-delay
feedback structure”, which can be seen as a certain type
of two-delay input digital feedback control developed as an
artificial control structure in the field of control theory, is
an inherent stabilization mechanism in PDR appearing from
the model with elastic elements, and two-period and four-
period PDW appearing from with stiff legs. This mechanism
is the key to adaptive function underlying phase transition
phenomenon between PDW and PDR and period-doubling
bifurcation phenomenon in PDW. To the best of our knowledge,
this has not yet to be addressed and studied so far. Our results
shed new light on the common underlying principle of passive
dynamic locomotion, including biped PDW and PDR

I. INTRODUCTION
Passive dynamic walking (PDW) that has its roots in the

pioneering research of McGeer [1], not only intrinsically
offers nonlinear phenomena such as pull-in effect and period-
doubling bifurcation phenomenon [2], [3], but also an ex-
tremely interesting phenomenon, leading to the engineering
feasibility of highly efficient walking robot [4]. In recent
years, several theoretical studies that attempt to elucidate the
underlying principles of PDW have been reported [5], [6].
Using analytical Poincaré map, Sugimoto et al. [6] showed
that implicit feedback structure present in Poincaré map con-
tributes to the self-stability of PDW. Furthermore, feedback
structures corresponding to one-period PDW, two-period
PDW, and four-period PDW are implicit, and the bifurcation
phenomenon is exhibited because of the actualization of
the most stable structure in response to changes in ground
slope angle [7]. Recently, by further developing the concept
proposed by Sugimoto et al., Hirata [8] clearly showed that
the stabilization mechanism in PDW corresponds to cheap
optimal control.

However, all the above theoretical studies are related to
biped PDW. The passive dynamic locomotion includes biped
passive dynamic running (PDR) [9], [10]. The biped PDW is
nothing more than a single form of locomotion. It is essential
to discuss various types of locomotion including biped PDR
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as well as biped PDW, leading to the understanding the com-
mon underlying principle of passive dynamic locomotion,
which in turn extracts design principles that form the core
of adaptive legged locomotion. Moreover, using theoretical
rationalization related to gait transition between PDW and
PDR, it is expected that unprecedented knowledge could be
obtained that is not possible from a single gait such as biped
PDW.

Therefore, the objective of this research paper is to under-
stand the common principle underlying PDW and PDR to
clarify the elementary principles of passive dynamic locomo-
tion. In particular, we focus on phase transition phenomenon
between PDW and PDR [11] as well as the period-doubling
bifurcation phenomenon observed in PDW. The reason why
we have taken these phenomena is that these allow us
to extract the common mechanism of adaptive function
underlying gait transition from PDW to PDR and one-period
PDW to two-period PDW. More specifically, in this research
analytical Poincaré maps are derived based on the techniques
of [5], [6] relating to these phenomena, and these were
used in an attempt to derive and understand the stabilization
mechanisms behind these phenomena. The results of this
analysis show that a feedback structure equivalent to two-
delay feedback control [12] is an inherent stabilization mech-
anism in PDR appearing from a model with elastic elements
(Model 1), and two-period and four-period PDW appearing
from stiff legs (Model 2). Furthermore, these results indicate
that a common principle where the stabilization mechanism
changes from a single input feedback structure to two-delay
feedback structure underlies the phase transition and period-
doubling bifurcation phenomena observed in models having
different physical characteristics. This mechanism is the key
to adaptive function underlying phase transition phenomenon
between PDW and PDR and period-doubling bifurcation
phenomenon in PDW. In addition, we must pay attention
to the fact that, among natural phenomena such as PDW
and PDR that appear according to the laws of physics,
the stabilization structure explained by two-delay feedback
control developed as an artificial control structure in the field
of control theory is implicit.

II. PHASE TRANSITION BETWEEN PDW AND PDR
A. Model 1: PDW and PDR Model with Elastic Elements

In this paper, the common principle underlying passive
dynamic locomotion is discussed using models (Model 1
and Model 2) that have different physical characteristics.
In this section, we will attempt to elucidate stabilization
mechanism and adaptive function underlying phase transition
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(a) Stance phase (b) Flight phase

Fig. 1. PDW and PDR model with elastic elements

from PDW to PDR, which are derived from a model with
elastic elements.

Fig. 1 shows the PDW and PDR model with elastic
elements (Model 1) used in this report. Running motion is
described as the motion that switches between periods of
single-stance and flight phases, while walking motion is de-
scribed as the motion of repetition of single-stance phase. For
simplicity, we don’t consider double-stance phase observed
in human walking in this report, assuming that the double-
stance phase duration is sufficiently short. Therefore, PDW
and PDR can be modeled by conceptualizing a model with
the two phases shown in (a) single-stance phase (hereafter
stance phase) and (b) flight phase of this figure. Motion is
expressed as the motion of three centers of mass for the hip
and the two legs. The body parameters are also shown in this
figure. α denotes the angle of ground slope. A salient feature
of this model is that the stance-legs are equipped with linear
springs and dampers, while the hip joint is equipped with
torsion spring and damper.

1) Equations of Motion of Each Phase: The nonlinear
equations of motion of the stance and flight phases can
be expressed using the Euler–Lagrange method (refer to
[10]). Here, we defined that θes = [θns, θs, rs]T , θef =
[θns, θs, x, y]T are the state vectors for stance and flight
phases, respectively. θns, θs represent the angles of the
swing-leg and stance-leg with respect to the ground slope
in the stance phase, and the angle of each swing-leg in the
flight phase (differentiated by the state of the previous stance
phase). rs in the stance phase represents the displacement
of the linear spring in the direction of leg, and rs is zero
when a leg touches the ground slope. Furthermore, in stance
phase, the foot of the stance-leg is assumed to be fixed on
the ground slope and is treated as a hinge joint. At the
same time, in flight phase, x and y represent the position
of the mass center of the hip. Taking xes = [θes

˙θes]T

and xef = [θef
˙θef ]T , nonlinear equations of motion are

linearized around xes = 0, xef = 0, we get the following
linearized equations of motion:

ẋes = Aesxes + bes, (1)
ẋef = Aefxef + bef . (2)

2) Geometric Constraint Conditions and State Variable
Transition Rules: Since PDW and PDR are modeled by
discrete repetition of stance phases and discrete switching
between stance and flight phases, it is essential to derive
geometric constraint conditions in phase switching and state
variables transition rules that correlate phase variables con-
sistently. Although details of the derivation method have been

Fig. 2. Phase transition between PDW and PDR.

omitted in this report, a short description is given below
(refer to [10]).

Jumping from the ground slope occurs while transitioning
from stance phase to flight phase while running:

Cerf (x−
es) = 0, (3)

x+
ef = Rerf (x−

es). (4)

(3) shows geometric constraint condition and (4) shows state
variable transition rule. Here, x−

es represents the state of
stance phase just before the jumping, and x+

ef represents
the state of flight phase just after the jumping.

State transition occurs at landing on the groud slope
satisfies the following geometric constraint conditions during
shift from flight phase to stance phase in running, and shift
from stance phase to stance phase in walking:

Cers(x−
ef ) = 0, (5)

Cews(x−
es) = 0. (6)

Furthermore, the corresponding state variable transition rules
are expressed by the following equations:

x+
es = Rers(x−

ef ), (7)

x+
es = Rews(x−

es). (8)

Here, x+
es represents the state of stance phase just after

the landing, x−
ef is the state of flight phase just before the

landing, and x−
es is the state of stance phase just before the

landing.

B. Simulation Results
In numerical experiments, nonlinear equations of motion

were numerically integrated using a fourth order Runge-
Kutta with integration step ∆t = 1.0× 10−5 s. Fig. 2 shows
the time of stance and flight phases in a steady gait shown
by the robot of Model 1 at various ground slope angles
(refer to video attachment). It depends on initial condition
whether a gait converges to steady state or not. This figure
shows that it exhibited PDW (time of flight phase is 0)
at α = 0.064 ∼ 0.085 rad as a steady gait, then moved
to a gait where both PDW and PDR are mixed (walking,
walking, running are repeated for every three periods) at
α = 0.086 ∼ 0.091 rad, and then exhibited PDR (flight
phase is present) at α = 0.092 ∼ 0.0157 rad. Therefore,
it can be said that this model exhibits PDW, a gait at
which there is a mixture of PDW and PDR, and a gait
such as PDR in an emergent manner according to ground
slope angle. Moreover, this can also be understood as a
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type of phase transition phenomenon where transition from
PDW to PDR occurs with respect to changes in slope angle.
This phenomenon is discussed below by performing theoret-
ical analysis using Poincaré map. The body parameters of
this model are as follows: Kleg = kleg/(mhipl

2) = 750
1/s2, Khip = khip/(mhipl

2) = 25.0 1/s2, l = 0.30 m,
mhip = 10.0 kg, Cleg = cleg/(mhipl

2) = 9.00 1/ms,
Chip = chip/(mhipl

2) = 0.00, ξ = mleg/mhip = 0.200,
η = rg/l = 0.50.

C. Theoretical Analysis using Poincaré Map

As a method of stability analysis, we adopted a method
that uses an analytical Poincaré map [5], [6], [7], [13]. To
be more precise, we performed analysis using the following
procedure: (1) Derive linearized Poincaré map; (2) Eigen-
value analysis (comparison with simulation results); and (3)
Derive and interpret the stabilization mechanism underlying
Poincaré map.

1) Derivation of Poincaré Map Related to Impact Points:
In this paper, the state just before the leg touches the ground
slope is called the impact point, i.e., in PDW, the impact point
is the state of stance phase and in PDR it is the state of flight
phase. Taking the impact point and period in the steady gait
to be x−

∗ , τ∗, respectively, the state deviation at the (k)th
impact point becomes ∆x−

(k) := x−
(k) − x−

∗ . Therefore, we
can define a function (Poincaré map) that transfers ∆x−

(k−1)

to ∆x−
(k):

∆x−
(k) = P(k)(∆x−

(k−1)). (9)

Since the applicable system is a linear system that includes
state jump, the mapping P(k) becomes nonlinear. We there-
fore take the Taylor expansion of the above formula around
x−

(k) = x−
∗ :

∆x−
(k) =

∂P(k)

∂x

∣∣∣∣
∆x−

(k)=0

∆x−
(k−1) + o(∥∆x−

(k)∥).

By analyzing this linear component P̃(k) := ∂P(k)

∂x

∣∣∣
∆x−

(k)=0
,

the local stability of PDW and PDR can be analyzed. We de-
rived the following theorems from the linearized equations of
motion (1), (2), the geometric constraint conditions between
each phase (3) (5) (6), and the state variable transition rules
between each phase (4) (7) (8):

Theorem 1: Linearized Poincaré map P̃walk(k) of PDW
(Model 1) can be expressed by the following equation:

P̃walk(k) =
(
I − v−

es∗Cewsd

Cewsdv
−
es∗

)
eAesτes∗Rewsd, (10)

where Rewsd, Cewsd are linear components of
Rews(xes), Cews(xes) around xes = x−

es∗
( ∂Rews(xes)

∂xes

∣∣∣
xes=x−

es∗
, ∂Cews(xes)

∂xes

∣∣∣
xes=x−

es∗
). Here, the

impact point of PDW was taken to be the state x−
es∗

of stance phase just before landing, and the walking
period of PDW was taken to be τ∗ = τes∗ (the
period of the stance phase) in steady gait. Furthermore,
∆x−

(k) = ∆x−
s(k) := x−

es(k) − x−
es∗, ves∗ = Aesxes∗ + bes.

Fig. 3. Eigenvalue analysis of phase transition.

(Proof): Since the linearized Poincaré map of PDW can
be explained in a similar manner to [6], the proof has been
omitted in this paper.

Theorem 2: Linearized Poincaré map P̃run(k) of PDR
(Model 1) can be expressed by the following equation:

P̃run(k) =
(
I −

v−
ef∗Cersd

Cersdv
−
ef∗

)
eAef τef∗Rerfd

·
(
I − v−

es∗Cerfd

Cerfdv
−
es∗

)
eAesτes∗Rersd, (11)

where Rersd, Cersd are linear components of Rers(xef ),
Cers(xef ) around xef = x−

ef∗, and Rerfd, Cerfd are linear
components of Rerf (xes), Cerf (xes) around xes = x−

es∗.
Here, the impact point of PDR was assumed to be the state
x−

ef∗ of the flight phase just before landing, the jumping point
of PDR, which is the state just before the leg jumps off the
ground slope, was assumed to be the state x−

es∗ of the stance
phase just before jumping, and the running period of PDR
was assumed to be τ∗ = τes∗ + τef∗ (the sum of the period
τes∗ of the stance phase and the period τef∗ of the flight
phase) in steady gait. Furthermore, ∆x−

(k) = ∆x−
ef(k) :=

x−
ef(k)−x−

ef∗, ves∗ = Aesxes∗+bes,vef∗ = Aefxef∗+bef .

(Proof): Although the proof has not been included in this
paper, a map of the stance and flight phases (stance phase:
∆x−

ef(k−1) → ∆x−
es(k), flight phase: ∆x−

es(k) → ∆x−
ef(k))

can be obtained by developing a formula similar to that
for PDW, and the Poincaré map can be shown using their
multiplication.

2) Eigenvalue Analysis: Using the linearized Poincaré
map given in Theorem 1 and Theorem 2, the stability
of PDW and PDR obtained from Fig. 2 is examined. In
Fig. 3, max |λi(P̃walk(k))| at α = 0.064 ∼ 0.088 rad
and max |λi(P̃run(k))| at α = 0.090 ∼ 0.0157 rad have
been plotted. There seems to be small differences between
simulation and theoretical results depending on linearization
in dynamics and Pincaré maps. For the slope angle at which
the gait transits from PDW to PDR (around 0.090 rad), the
Poincaré map of PDW is unstable whereas that of PDR
is stable. As a result of this, although the gait is unstable
for PDW it becomes stable for PDR, leading to transition
from PDW to PDR. From this figure we can verify that
phase transition from PDW to PDR is exhibited due to the
actualization of the most stable Poincaré map in response to
the groud slope angle. Furthermore, in the gait where both
PDW and PDR are mixed, the Poincaré map of neither PDW
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Fig. 4. Implicit feedback structure in PDW and PDR.

nor PDR has stabilized. In this gait, if Poincaré map of three
periods is taken to be P̃ = Prun(k+2) ·Prun(k+1) ·Pwalk(k),
then it can be considered to be a stable function.

3) Feedback Structures in the Poincaré Maps: Based on
the result of previous section’s eigenvalue analysis about
selecting the most stable Poincaré map, we will discuss the
stabilization mechanism underlying the Poincaré maps. For
the Poincaré map in PDW, substituting

APews = eAesτes∗Rewsd, BPews = v−
es∗,

KPews = (Cewsdv
−
es∗)

−1Cewsd eAesτes∗Rewsd,

from [6] in Theorem 1, we obtain
∆x−

es(k) = APews∆x−
es(k−1) + BPews∆τes(k), (12)

∆τes(k) = −KPews∆x−
es(k−1). (13)

In other words, it can be said that Pwalk(k) corresponds to
a discrete system (12) in which a single feedback input (13)
exists (upper diagram in Fig. 4).

At the same time, for the Poincaré map in PDR, substi-
tuting

APers = eAesτes∗Rersd, BPers = v−
es∗,

KPers = (Cerfdv
−
es∗)

−1Cerfde
Aesτes∗Rersd,

APerf
= eAef τef∗Rerfd, BPerf

= v−
ef∗,

KPerf
= (Cersdv

−
ef∗)

−1Cersde
Aef τef∗Rerfd,

from Theorem 2, we obtain

∆x−
es(k) = APers

∆x−
ef(k−1) + BPers

∆τes(k), (14)

∆τes(k) = −KPers∆x−
ef(k−1), (15)

∆x−
ef(k) = APerf

∆x−
es(k) + BPerf

∆τef(k), (16)

∆τef(k) = −KPerf
∆x−

es(k). (17)

Here, substituting (16) into (14) gives

∆x−
ef(k) = APerf

APers∆x−
ef(k−1) + APerf

BPers∆τes(k)

+BPerf
∆τef(k), (18)

∆τes(k) = −KPers∆x−
ef(k−1), (19)

∆τef(k) = −KPerf
∆x−

es(k). (20)

That is, it can be said that Prun(k) corresponds to a discrete
system (18) in which the feedback structure comprised of
the two inputs (19) and (20) is implicit (lower diagram in

Fig. 5. PDW model with stiff legs

Fig. 4). z−1
s , z−1

f in the figure are taken to be operators
that delay τes∗, τef∗, respectively, z−1 = z−1

s z−1
f ). The

feedback structure underlying PDR can be interpreted as
a structure equivalent to two-delay feedback control [12]
proposed by Mita et al. for digital control, which not only
inputs the state of a sample point (∆τes(k)), but also the
state between sample points (∆τef(k)) as feedback inputs.
In addition, regarding the ground slope angles at which
walking motion cannot continue because of destabilization
of stabilizing structure of PDW (greater than 0.090 [rad]),
it can be presumed that the stabilizing mechanism by two-
delay feedback control structure is actualized as PDR and
phase transition phenomenon from PDW to PDR is observed.
Therefore, in the PDW and PDR model with elastic elements
(Model 1), the mechanism of transition of stable feedback
structure from a single input feedback to two-delay feedback
is intrinsic as an adaptive function.

III. PERIOD-DOUBLING BIFURCATION IN PDW

In this section, based on our knowledge that the stabi-
lization mechanism equivalent to the two-delay feedback
structure is present behind PDR, we attempt a new way of
interpreting the period-doubling bifurcation phenomenon in
PDW, which has already been discussed so far [7].
A. Model 2: PDW Model with Stiff Legs

Fig. 5 shows a model of PDW in which the legs are
modeled as a rigid body (Model 2, hereinafter called PDW
model with stiff legs). This model is comparable to models
that have been generally used in research works in past [1],
[5], [6]. The body parameters are also shown in Fig. 5

1) Equations of Motion: Linear equation of motion for
the stance phase, the geometric constraint conditions at the
impact point, and the state variable transition rule can be
described using the following equations (refer to [5], [6]):

ẋss = Assxss + bss, (21)
Csws(x−

ss) = 0, (22)
x+

ss = Rsws(x−
ss). (23)

Here, θss = [θns, θs]T represents the state vector with
respect to stance phase, which is set to xss = [θss

˙θss]T .
Equation (21) is a linear equation of motion around xss = 0.
Furthermore, x+

ss represents the state of the stance phase just
after landing, and x−

ss represents the state of the stance phase
just before landing.
B. Simulation Results

In numerical experiments, nonlinear equations of motion
were numerically integrated using a fourth order Runge-
Kutta with integration step ∆t = 1.0× 10−5 s. Fig. 6 shows
the walking period (time of stance phase) in a steady gait
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Fig. 6. Period-doubling bifurcation phenomenon in PDW.

demonstrated by the robot of Model 2 at various ground
slope angles. From this figure, we can verify that this model
exhibits one-period PDW at α = 0.050 ∼ 0.068 rad,
two-period PDW at α = 0.069 ∼ 0.076 rad, and four-
period PDW at α = 0.077 ∼ 0.079 rad, depending on
the slope angle. In addition, it also exhibits a chaotic gait
(near α = 0.082 rad). This can also be considered as
a type of period-doubling bifurcation phenomenon where
it diverges from one-period PDW to two-period and four-
period PDW in response to changes in slope angle. The
body parameters of this model were kept the same except
for the springs and dampers: l = 0.30 m, mhip = 10.0 kg,
ξ = mleg/mhip = 0.200, η = rg/l = 0.50.
C. Theoretical Analysis using Poincaré Map

In this section, we analyze the simulation results of section
III-B using the same method as used in section II-C.

1) Derivation of Poincaré Map Related to Impact Point
: From the linearized equation of motion (21), the geo-
metric constraint condition between phases (22), and the
state variable transition rule (23), we derived the following
theorem regarding one-period PDW, two-period PDW, and
four-period PDW occurring in Model 2:

Theorem 3: Linearized Poincaré maps
P̃walk1(k), P̃walk2(k), P̃walk4(k) of one-period PDW,
two-period PDW, and four-period PDW (Model 2) can be
expressed using the following equations:

P̃walk1(k) = Pw1 (24)

P̃walk2(k) = Pw2Pw1 (25)

P̃walk4(k) = Pw4Pw3Pw2Pw1 (26)

Pw(i) =
(
I −

v−
ss(i)∗Cswsd(i)

Cswsd(i)v
−
ss(i)∗

)
eAssτss(i)∗Rswsd(i),

i = 1, 2, 3, 4,

where Rswsd(i) and Cswsd(i) are linear components of
Rsws(xss),Csws(xss) around xss = x−

ss(i)∗. We also as-
sume that vss(i)∗ = Assxss(i)∗+bss. Here, the impact point
of PDW is taken to be the state x−

ss of the stance phase
just before landing (in sequence of x−

ss1∗, x
−
ss2∗, x

−
ss3∗,x

−
ss4∗

from (k)th walk), From (k)th walk onwards, the walking
period of PDW is taken to be τ(i)∗ = τss(i)∗ for the (i)th
period (period of stance phase).

(Proof): For the method for deriving the linearized
Poincaré map of one-, two-, and four-period PDW of Model
2, refer to [7].

Fig. 7. Eigenvalue analysis of period-doubling bifurcation phenomenon.

2) Eigenvalue Analysis: Using the linearized
Poincaré map shown in Theorem 3, we examined
the stability of PDW obtained in Fig. 6. In Fig. 7
max |λi(P̃walk1(k))|, max |λi(P̃walk2(k))|, max |λi(P̃walk4(k))|
are plotted against various slope angles. From this figure, for
the slope angle at which the gait diverges from one-period
PDW to two-period PDW (around α = 0.068 rad), the
condition that destabilizes the Poincaré map of one-period
PDW can be verified. At the same time, the Poincaré map of
two-period PDW is stable at this slope angle. Consequently,
although the gait is unstable for one-period PDW it becomes
stable for two-period PDW because of these stabilities
of Poincaré maps. As a result of this, two-period PDW
is exhibited. In addition, in the bifurcation region from
two-period PDW to four-period PDW, although the Poincaré
map is unstable for two-period PDW, it was observed that
Poincaré map was stable for four-period PDW. There seems
to be small differences between simulation and theoretical
results depending on linearization in dynamics and Pincaré
maps. In the next section, the results of this eigenvalue
analysis are discussed from the perspective of the feedback
structure underlying these Poincaré maps.

3) Feedback Structure in the Poincaré Maps: Similar to
section II-C.3, the feedback structure underlying one-period
PDW can be expressed as the upper diagram in Fig. 8.
Regarding two-period PDW, although it has been discussed
as a stable feedback structure when considered as a single
discrete system during two periods in [7], we will attempt to
interpret this in a new way. In this paper, the feedback struc-
ture underlying two-period PDW is reconsidered from the
standpoint of two-delay feedback control observed in PDR.
To be more precise, we focus on the structure underlying
Poincaré map of two-period PDW obtained in Theorem 3:
∆x−

ss(k) = APsws(k+1)APsws(k)∆x−
ss(k−1)

+APsws(k+1)BPsws(k)∆τss(k) + BPsws(k+1)∆τss(k+1),

(27)
∆τss(k) = −KPsws(k)∆x−

ss(k−1), (28)

∆τss(k+1) = −KPsws(k+1)∆x−
ss(k). (29)

The two-delay feedback structure in the above formula
suggests that a stabilization mechanism created by a single
discrete system in two periods obtained by the coupling of
two destabilized one-period feedback structures is intrinsic.
Similar to two-period PDW, in the case of four-period PDW
also, it can be interpreted that stable walking is continued
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Fig. 8. Implicit feedback structure in one-period and two-period PDW.

as two destabilized two-delay structures of two-period PDW
forms two-delay feedback structure as a single discrete
system in four periods, i.e., in the PDW model with stiff legs
(Model 2), the mechanism that keeps the walking continuing
by the formation of stable feedback structure by multiplexing
of two-delay structures in 2n periods is intrinsic as an
adaptive function.

IV. IMPLICIT TWO-DELAY FEEDBACK
STRUCTURE

In this section, based on the simulation results and the-
oretical analyses obtained so far, we discuss the adaptive
function present in common in both Model 1 and Model 2.
From the simulation results, we were able to verify that the
phase transition phenomenon from PDW to PDR appeared
in Model 1 (Fig. 2), and the period-doubling bifurcation
phenomenon appeared in Model 2 (Fig. 6) as a certain type of
adaptive functions. Moreover, as a result of theoretical analy-
ses using Poincaré maps, we verified that the phase transition
phenomenon in Model 1 occurs because the feedback struc-
ture for PDW stabilization changes to a two-delay feedback
structure for PDR stabilization. At the same time, regarding
the period-doubling bifurcation phenomenon, gait adaptively
changes because of the formation of stable feedback structure
by multiplexing of two-delay feedback structure in two-
period PDW, four-period PDW, and 2n-period PDW. Based
on this discussion, although the phenomena observed due
to physical constraints such as differences in the physical
characteristics seem to be different at first glance, it became
clear that the mechanism behind these phenomena where the
gait adaptively changes from PDW to PDR or one-period
PDW to two-period PDW is based on the common principle
of formation of stabilization mechanism due to two-delay
feedback structure from the feedback structure of a single
input.

V. CONCLUSIONS AND FUTURE WORKS
In this paper, to understand the common principle underly-

ing PDW and PDR, we focused on the phenomena resulting
from two models having different physical characteristics
and analyzed the mechanisms underlying these phenomena
using analytical Poincaré map. As a result of this analy-
sis, we verified that the adaptive function, corresponding
to change in stabilization mechanism because of transition

from a single input feedback structure of (one-period) PDW
to two-delay feedback structure of PDR and two-period
PDW comprised of double input state feedbacks, underlies
the phase transition phenomenon between PDW and PDR
and period-doubling bifurcation in PDW. The fact that the
mechanism of two-delay feedback control, which is one of
the artificially developed control structures, was found in
stabilization mechanism of simple PDW and PDR models
based on the laws of physics only, and also the fact that,
although the phenomena exhibited due to the difference in
physical characteristics seem to be different at first glance,
a common stabilization strategy was found behind them
are extremely interesting. In the future, we are planning to
examine the design principle related to gait transition from
PDW to PDR, or from one-period PDW to two-period PDW
and four-period PDW and shed new light on the design
principles for adaptive bipedal locomotion.
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of 12th International Conference on Advanced Robotics, 2005.

[7] Y. Sugimoto and K. Osuka, “Hierarchical Implicit Feedback Structure
in Passive Dynamic Walking”, in Proc. of the 2007 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS2007),
2007, pp. 2217–2222.

[8] Hirata: “On Internal Stabilizing Mechanism of Passive Dynamic
Walking”, in Proc. of the 9th SICE System Integration Divirion Annual
Conference, 2008, pp.425–426.

[9] T. McGeer, “Passive Dynamic Running”, in Proc. of the Royal Society
of London, Series B, Biological Science, Vol. 240, No. 1297, 1990,
pp.107–134.

[10] D. Owaki , K. Osuka, and A. Ishiguro, “On the Embodiment that
Enables Passive Dynamic Bipedal Running”, in Proc. of the 2008 IEEE
International Conference on Robotics and Aoutomation (ICRA2008),
2008, pp. 341–346.

[11] D. Owaki , K. Osuka, and A. Ishiguro, “Understanding of the
Stabilization Mechanism underlying Passive Dynamic Running”, in
Proc. of The 26th Annual Conference of the Robotics Society of Japan,
2008, 3B1-09 (in Japanese).

[12] T. Mita, Y. Chida, Y. Kaku and H. Numasato, “Two-Delay Robust Dig-
ital Control and Its Applications –Avoiding the Problem on Unstable
Limiting Zeros–”, IEEE Transactions on Automatic Control, Vol. 35,
No. 8, 1990, pp. 962–969.

[13] J. W. Grizzle, F. Plestan and G. Abba, “Poincré’s Method for System
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