
  

  

Abstract—Most existing approaches to indoor localization 
focus on using either cameras or laser scanners as the primary 
sensor for pose estimation. In scan matching based localization, 
finding scan point correspondences across scans is challenging 
as individual scan points lack unique attributes. In camera 
based localization, one has to deal with images with few or no 
visual features as well as scale factor ambiguities to recover 
absolute distances. In this paper, we develop multimodal 
approaches for two indoor localization problems by fusing a 
camera and laser scanners in order to alleviate the drawbacks 
of each individual modality. For our first problem we recover 3 
Degrees of Freedom (DoF) of a camera-laser rig on a rolling 
cart in a 2D plane, by using visual odometry to facilitate scan 
correspondence estimation. We demonstrate this approach to 
result in a 0.3% loop closure error for a 60m loop around the 
interior corridor of a building. In our second problem, we 
recover 6 DoF of a human operator carrying a backpack 
system mounted with sensors in 3D, by merging rotation 
estimates from scan matching and translation estimates from 
visual odometry, resulting in a 1% loop closure error.  

I. INTRODUCTION 
ocalization in environments with limited global 
positioning information is a challenging problem. Indoor 
localization is particularly important in a number of 

applications such as indoor modeling, and human operator 
localization in unknown environments. Localization has 
been primarily studied in the robotics and computer vision 
communities. In robotics, the focus has been on estimating 
the joint posterior over the robot’s location and the map of 
the environment using sensors such as wheel encoders, laser 
scanners and Inertial Measurement Units (IMUs). This is 
typically referred to as Simultaneous Localization and 
Mapping (SLAM)[5]. To localize a wheeled robot, simple 
2D maps are typically generated using 2D horizontal 
scanners which serve to both localize the robot and measure 
depth to obstacles directly. Scan matching based localization 
approaches such as Iterative Closest Point (ICP) involve 
computing the most likely alignment between two sets of 
slightly displaced scans [1]. The open loop nature of the 
pose integration from ICP and wheel odometry tends to 
introduce large drifts in the navigation estimates. These 
estimates can be improved by applying loop closure within a 
probabilistic framework to estimate the robot's location and 
the map[4, 6, 7, 8, 9, 10].      
    The computer vision community has studied pose 
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estimation and Structure from Motion (SfM) for a long time 
[2, 11, 12, 13, 14]. With a single camera, pose can be 
estimated only up to an unknown scale factor. This scale is 
generally determined using GPS waypoints, which makes it 
inapplicable to indoor environments unless objects of known 
size are placed in the scene.   To resolve this unknown scale 
factor, stereo camera based approaches have gained 
popularity, as the extrinsic calibration between the cameras 
can be used to recover absolute translation parameters [15, 
16, 3]. Se et. al. present a three camera based stereo system 
that triangulates SIFT feature correspondences between the 
cameras to localize a robot mounted with the camera rig 
[17]. Newman et. al. present a system that uses a camera and 
a 3D laser scanner to localize a vehicle outdoors, with loop 
closure to enforce global consistency [18].  
    In this paper, we propose new dead reckoning algorithms 
that integrate single camera visual odometry, and scan 
matching to localize a camera and 2D laser scanners. The 
ultimate goal is to build 3D models of the environment. 
Even though laser scanners measure the 3D structure of the 
scene directly and with minimal noise, scan matching is 
prone to errors in environments with poor geometric 
features, such as hallways and long corridors. Camera 
images, on the other hand, capture color and texture from 
which visual correspondences can be found across images. 
Visual odometry techniques perform poorly when there are 
few, or no visual features in the images. In this paper, we 
show that fusing camera and laser scanners is likely to 
overcome some of the above shortcomings of each in order 
to improve localization accuracy. Specifically, we consider 
two indoor localization problems. The first one deals with 
recovering the 3 DoF motion parameters of a sensor rig 
mounted on a rolling cart in the 2D plane; the second one 
deals with full 6 DoF localization of a backpack of sensors 
being carried by a human operator in 3D. 

For the 2D case on a cart, we mount a horizontal and a 
vertical laser scanner on the rig and strap down a side 
looking camera. The rig is placed on a wheeled cart, and is 
pushed around the interior corridors of a building. The 
purpose of the horizontal laser scanner is to localize, while 
the vertical scanner provides a dense point cloud of the 
environment for geometry modeling purposes. The camera 
serves a dual purpose in that it is used for both localization 
and providing color and texture to the 3D models. We 
introduce a Visual Odometry aided Scan Matching (VOSM) 
method that uses visual odometry to determine the camera 
pose between successive images, which in turn aids in 
determining scan correspondence estimates across images.  

For the 3D localization problem, we mount the rig on a 
backpack that is carried by a human operator. Specifically, 
we have mounted three 2D laser scanners orthogonal to each 
other in order to estimate the yaw, pitch, and roll. We then 
use these angle estimates within a visual odometry algorithm 
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to compute all the 6 pose transformation parameters in 3D. 
Fig. 1(a) depicts the conceptual CAD model of the backpack 
system, Fig. 1(b) shows the backpack system being carried 
by a human operator, and Fig. 1(c) shows the system placed 
on a rolling cart. 

This paper is organized as follows. In Section II we 
present our extrinsic calibration method to find the relative 
orientation between a 2D horizontal laser scanner and a 
camera. In Section III we provide an overview of existing 
pose estimation methods for standard visual odometry with 
specific implementation details. In Section IV we describe 
our VOSM algorithm for 2D dead-reckoning and 
characterize its performance on an indoor dataset. In section 
V we introduce a combined laser-camera dead reckoning 
algorithm in 3D, and characterize its performance against 
ground truth collected in an indoor corridor with minimal 
clutter and obstacles. Conclusions and future research are 
presented in Section VI. 

 

II. EXTRINSIC SENSOR CALIBRATION 
The relative rigid transformation between the camera and 

the laser scanner is needed to effectively fuse the two 
sensors. We determine the camera's internal parameters 
using the Caltech camera calibration toolbox [19]. We 
compute the extrinsic calibration between the camera-laser 
pair only once, as the sensors are rigidly mounted relative to 
each other. Using the pinhole camera model, a 3D point in 
camera coordinates, , , , is represented in 
image coordinates as,  1  z⁄ ⁄ 1       1  
   
where  is the intrinsic camera calibration matrix, and  is 
the image pixel location of point . Thus, the unit vector of 
the directional line from the camera center to  is, ⁄                              2  
 

The laser scanner measures a 2D slice of the scene; thus, 
in laser coordinates a scan point is assumed to lie on the 
plane 0, and is represented by , , 0 . We 
begin by manually choosing three (laser point, image vector) 
pairs, i.e., ([ , ,  , , ), corresponding to 
three world points, , , . These pairs are used by the 
3-point algorithm (p3p) to determine the distance to the 
world points from the camera center, thus recovering their 

position in camera coordinates [20]. The relative pose 
between the sensors is now obtained by applying Horn's 
method to the three point pairs in laser and recovered camera 
coordinates [21]. The p3p algorithm requires the distance 
between the 3D world points to be known. This is obtained 
by computing the Euclidean distance between pairs of laser 
points.  

We use a thin rectangular box placed at the height of the 
laser as the calibration target. Laser scan point-camera pixel 
correspondences are obtained by manually selecting the two 
ends of the box. Calibration sets consisting of scans and 
images of the target are collected from 20 to 30 different 
locations by moving the sensor platform. We have 
implemented our extrinsic calibration process within a 
RANSAC framework, where we choose three point-pixel 
pairs at a time to generate a pose hypothesis, and evaluate it 
on all the calibration sets. The winning hypothesis is further 
refined using iterative nonlinear methods, where the 
objective function being minimized is the error between 
scan-point back-projections and true pixel locations of the 
points in all the calibration images. To project laser scans 
onto images, we first transform each scan point  to the 
camera coordinate frame using the estimated rotation and 
translation from laser to camera frame of reference, i.e. , . We then find the image coordinates of the point 
using Eqn. 1. Fig. 2 shows a scatter plot representing the 
error between laser point back-projections and true pixel 
locations of the corresponding image points for all 30 
calibration sets. On average, there is a 6 pixel error in laser 
scan back-projection on to camera images. 

 

III. VISUAL ODOMETRY 
Image sequences from a camera could potentially 

provide sufficient information to determine a camera's 
trajectory. In the visual odometry setting, features in images 
are tracked between frames to determine the pose of an 
internally calibrated camera from the visual feature 
correspondences. The epipolar constraint between two 
overlapping camera views are enforced by the essential 
matrix, , such that, for any two calibrated point 
correspondences , we have, 

  0                       3  
The 5-Point algorithm can be used to determine the 

essential matrix in scenes with planar degeneracies which 
are ubiquitous in indoor environments [13]. As the name 
suggests the algorithm determines  given 5 image feature 

Fig. 2. Scatter plot of error between manually chosen image pixel 
locations and corresponding scan point back-projections onto 
images found using computed laser-camera extrinsic parameters. 
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Fig 1- The data acquisition system; (a) CAD model of backpack
system; YS, PS, and RS are the short range laser scanners for
estimating yaw, pitch, and roll, and CAM is the camera; (b) the
assembled backpack system carried by a human operator; (c) the
system placed on a cart. 
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correspondences. The epipolar geometry computation is in 
general most accurate when sufficient motion occurs 
between two image frames. Hence, we choose to detect and 
track SIFT features across successive images until the 
number of correspondences falls below a preset threshold 
[22]. We then compute the essential matrix between the first 
and last image in the tracked image sequence with the five-
point algorithm within a preemptive RANSAC routine. 
Finally, we apply nonlinear iterative refinement to find the 
best pose transformation that minimizes the Sampson 
reprojection error of the features between the two images. 
The convenient structure of the essential matrix  allows it 
to be decomposed into a rotation and translation because, ,                                   4  
where ,  represent the camera rotation and unit 
translation direction, and .  is the cross product. 

IV. VISUAL ODOMETRY AIDED SCAN MATCHING (VOSM) 
In static environments with sufficient geometric features, 

such as walls at different angles and other obstacles, point-
wise scan matching can be used to determine the ego-motion 
of the moving horizontal laser scanner. ICP [1] is the most 
popular scan matching algorithm which iteratively computes 
the scan transformation, , , by minimizing the squared 
distance between each of the  points in the first scan, , 
and their nearest neighbors in the second scan, , i.e., min,  N .                      5  

A na ve nearest neighbor approach to find point 
correspondences is likely to fail when the environment being 
scanned has few geometric features. The basic idea behind 
VOSM is to take advantage of feature rich visual imagery to 
compensate for the lack of geometric features in scenes. 
Specifically, our approach in VOSM is to assign scan point 
correspondences across successive scans by using the 
rotation and translation from visual odometry. We use these 
correspondences to compute the transformation between the 
two successive scans within a RANSAC framework. The 
details of the VOSM algorithm are provided in the 
remainder of this section.  

A. Image Based Nearest Neighbor Search 

We project laser scans of a scene from two different 
locations onto their corresponding images. The scan 
projection tracker finds the best scan point correspondences 
across the two images as follows. 
1. Two successive laser scans, , , are projected 

onto their corresponding images, , . 
2. The rotation and translation estimates from visual 

odometry are used to warp image  into image ’s 
view, and to determine a search window across the two 
images to find scan correspondences. 

3. Image patches are extracted around each scan point 
projection in images  and  in order to find patch 
correspondences across images by minimizing the bi-
directional Sum of Absolute  Difference (SAD) within 
the search window established by visual odometry. 

In our experiments, the optimal window patch size was 
empirically set to 31x31 pixels, and the search window was 
restricted to be 50x50 pixels. 

B. Robust Scan Matching 

Once the scan point correspondences are found using 
images, the rigid transformation between the two sets of 
scan points can be obtained directly without any iterative 
scheme. However, to improve the robustness of the 
matching process, we adopt a RANSAC based approach in 
which two sets of candidate point matches are randomly 
selected, and a pose hypothesis is computed. This candidate 
hypothesis is evaluated on all the scan point 
correspondences, and a score is assigned to it. The 
hypothesis evaluation scheme is determined based on the 
angular distribution of lines in the scan. At the end of the 
routine, the winning hypothesis is chosen as the one with the 
highest score. To determine the hypothesis evaluation 
metric, lines are extracted in each scan, and an angle 
histogram is computed, with 10° bins as shown in Fig. 3(c). 
Each line's angle relative to the scanner is determined from 
its slope. If the angular distribution of scanned lines is 
sufficiently wide, then a laser based metric to evaluate the 
RANSAC hypothesis is instantiated. In this case, each 
candidate pose hypothesis is scored inversely to the 
alignment error between the second scan and the first scan 
transformed with the hypothesis. Fig. 3(a) shows a typical 
scene where the laser based evaluation metric is used since 
there is a wide distribution of lines across many angles as 
seen in Fig. 3(b). 

On the other hand, if the angular distribution of scan 
lines is narrow, then an image based evaluation method is 
used. Specifically, for each subset of two point 
correspondences, a pose hypothesis is generated. With this 
hypothesis, the first scan, , is transformed and projected 
onto the warped second image . The SAD of image 
patches around each projected scan point of  between the 
first and second image, i.e.  and , is computed. The 
hypothesis score assigned is inversely proportional to the 
mean of the SAD error of all image patches. A final stage of 
ICP is performed to refine the computed pose 
transformations. 

C. Scale Computation 
The true scale in the translation, ,  computed via visual 

odometry is determined as follows. For the first pair of 
images in the tracked image sequence, the search window 
for the nearest neighbor algorithm presented in section IV-A 
is set as the size of the entire image. The 3D coordinates of a 
single point, , is obtained from the laser scanner, and its 
location in the first and last image in the tracked image 
sequence are obtained from the image patch correspondence 
algorithm. This image correspondence pair is triangulated 
with the current camera pose estimate, , , to determine 
the scaled coordinates of the point, i.e., . The scale in the 
translation is then obtained directly as, 
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 ⁄ ,                               6  

where, . , is the Euclidean norm. The triangulation proce-
dure is described in detail in [13].  After this form of 
initialization, the scale in translation for subsequent image 
pairs, , , is obtained in a boot-strapped manner, by 
putting the triangulated features, , in the coordinate 
system of the triangulated features, , in the previous 
image pair, , . With this computed scale, the 
corresponding location in the second view, , of a point 

 in the first view is found using,                               7  
where, , , are the camera rotation and unit translation 
obtained from visual odometry, and  is the translation scale 
at  the current time, . The search window for the image 
patch matching algorithm is centered around the pixel back-
projection of  onto the warped image . 

D. Algorithm 

Fig. 4 shows the flowchart of the VOSM algorithm. Since 
the laser scanner and camera operate at different frame rates, 
the two sensors are initially synchronized. The laser scans 
are then transformed to camera coordinates with the 
extrinsic calibration computed earlier. Two successive 
images and their corresponding laser scans are input into the 
visual odometry and scan matching sub-systems. The visual 
odometry system computes the camera rotation and 
translation, with the scale in translation computed using the 
p3p bootstrapping method. This camera pose matrix is used 
to transform the laser points from the first image's 
coordinate system to the second image's coordinates, and to 
warp the second image to be consistent with the first 
camera’s view. Projecting these transformed laser points 
onto the warped image plane in the second view provides a 
local search region to find scan point correspondences in the 
images. The patch based search method described in Section 
IV-A is employed to find the best matches by minimizing 
the SAD of image patches around scan point projections in 
the two images but searching only within the local search 
window. Once correspondences are found, the robust 
RANSAC based method described in Section IV-B 
determines the pose transformation.  The bootstrapped 
method of computing scale, as explained in section IV-C, 
tends to accumulate errors over time. Thus, scale in the 
current translation is re-computed using Eqn. 6, and the 
SIFT features are re-triangulated with the pose estimates 
from visual odometry.  

E. VOSM Experimental Results 

We compare the accuracy of the VOSM algorithm 
presented in this paper with the ground truth collected by an 

Applanix position and orientation system used for land 
surveying. This is an aided inertial navigation system 
consisting of a navigation computer and a strap down 
navigation-grade Honeywell HG9900 IMU. The HG9900 
combines three ring laser gyros with bias stability of less 
than 0.003deg/hr, and three precision accelerometers with 
bias of less than 0.245 mm/s . For our indoor experiments, 
we utilized a pre-surveyed control point as a global position 
reference. Navigation precision is improved by the use of 
zero-velocity updates (ZUPTs), which allow for 
accumulated biases in the IMU to be estimated, and any 
velocity drift to be corrected. These ZUPTs manifest as 
discontinuities in the ground truth paths of Fig. 5 to be 
discussed shortly.  

Ground truth comparison of VOSM for a 60m loop inside 
a corridor of a building on the UC Berkeley campus is 
shown in Fig. 5(a). The raw visual odometry and ICP results 
are plotted against ground truth in Fig. 5(b). As seen, the 
VOSM reconstructed path is in close agreement with the 
ground truth, while VO and ICP visibly deviate from the 
ground truth. Figures 5(c)-5(e) compare the rotation and 
translations from VOSM against the ground truth. As seen, 
there is close agreement between the ground truth and 
VOSM values. The loop closure error for all schemes is 
shown in Table-1. As expected, the loop closure error is the 
lowest for VOSM at 18cm, or 0.3% of the traversed path. In 
contrast, Oskiper et. al. [3] have reported on a more 
elaborate system consisting of two stereo camera pairs and 
an IMU to obtain between 0.5% to 1% loop closure error.  In 
addition to loop closure error, we have also computed the 
average position error for the various algorithms by 
determining the distance between the ground truth position 
and the position computed by each algorithm at each time 
step in the 3rd column of Table-1. As expected, VOSM has 
an average position error that is 15 times smaller than that of 
ICP and 7 times smaller than that of VO. The 3rd and 4th 
columns of Table-1 confirm the plots in Fig. 5 showing that 
yaw and translation parameters for VOSM have lower RMS 
error compared to VO and ICP. 

Dead 
Reckoning 

Method 

Loop 
Closure 
Error 
(m) 

Average 
Position 
Error 
(m) 

RMS 
Yaw 

Error 
(degrees) 

RMS 
Translation 

Error 
(m) 

ICP 0.24 2.36 0.17 X: 0.05 
Y: 0.03 

VO 1.23 1.09 0.38 X: 0.04 
Y: 0.06 

VOSM 0.18 0.15 0.11 X: 0.02 
Y:0.02 

Table-1: A comparison of the mean position and loop closure errors 
for ICP, Visual Odometry (VO), and VOSM. 

V. BACKPACK SYSTEM FOR INDOOR MODELING 
 VOSM is essentially designed to provide navigation 
estimates for a wheeled system that has 3 degrees of 
freedom. The algorithm, however, does not apply to a 
system that has a non-zero pitch and roll, such as a backpack 
system carried by a human operator. Visual odometry 
provides pose estimates of a traversing camera in 3D and 

0 30  31 60 61 90
(a) (b) (c) 

Fig. 3. (a) Sample laser scan; (b) lines extracted from the 
scan in (a); (c) angle distribution of the lines in (b). 
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performs well when the camera has a smooth trajectory. 
However, the change in dynamics of the human gait while 
walking is quite complex and as such, we have empirically 
found that visual odometry, by itself does not perform well. 
Further, with a side facing camera, features are only tracked 
over a short sequence of images, and no long term feature 
tracks are available to accurately determine the three rotation 
parameters, thus leading to large accumulation of error over 
time.  

A horizontally mounted laser scanner, on the other hand, 
measures the absolute depth to objects in the scene. Further, 
the rotation computed by scan matching is generally more 
accurate than visual odometry in indoor scenes, since the 
sensor’s scanning rate is much faster than the speed at which 
a human operator traverses the environment. Thus, we have 
opted to mount 3 laser scanners orthogonal to each other in 
our backpack system in order to measure the rotation in the 3 
independent axes namely X, Y, and Z, as shown in Fig. 1(a). 
With these initial rotation estimates, the translation vector is 
recovered using camera images as explained shortly.  

A. ICP Aided Visual Odometry (ICP-VO) 
We transform ICP rotation estimates from the 3 orthogonal 

laser scanners to camera coordinates to construct a full 3D 
rotation matrix to represent the rotation between a pair of 
successive images, It and It+1.. The SIFT feature correspond-
ences between this pair of images is obtained from the 
feature tracker. We let,  

 
represent the vectors along which a feature correspondence 
pair lies in the two images. Substituting Eqns. 4 and 8 in 
Eqn. 3 we obtain,  

 
By defining                          , and reordering terms we have,  

 
where,               are the 3 rows of the rotation matrix, Rc, that 
is composed from the 3 Euler angles obtained by performing 
scan matching on the 3 orthogonal laser scanners. With all 
the available feature correspondences between the two 
images, the null space of the matrix in Eqn. 10 is spanned by 
the translation vector,                       .  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is important to note that Eqn. 10 has only 2 degrees of 
freedom, as the translation can be computed only up to an 
unknown scale factor. Thus, only 2 feature point 
correspondences are sufficient to find the translation. 
However, feature correspondences from the SIFT feature 
tracker could have outliers that degrade the translation 
solution. Thus, we have implemented a 2-point RANSAC 
procedure that computes a translation hypothesis using 2 
randomly chosen point correspondences, and scores the 
hypothesis based on the reprojection error of all feature 
correspondences between the two images. The winning pose 
estimates are then further refined iteratively to find the best 
solution that minimizes the Sampson reprojection error of 
the feature correspondences between the 2 images. With our 
current backpack configuration, multiple laser scanners 
sweep the environment as the human operator traverses it, 
and absolute depth can be assigned to SIFT features in the 
images when laser scan points project to within a few pixels 
of the feature location in an image. The true depth of the 
SIFT feature is used to directly compute the scale in 
translation using Eqn. 6.  

B. Results 
 To evaluate the performance of the ICP-VO algorithm, 
two data sets were collected in the interior corridor of the 
Electrical Engineering building on UC Berkeley campus. 
The results of the algorithm on the first dataset are compared 
against ground truth from the HG9900, in Fig. 6(a). The 
initial 6 DoF pose from the IMU is applied to the ICP-VO 
reconstructed path in order to compare the paths. Unlike 
VOSM, the recovered path by ICP-VO is truly in 3D since it 
recovers 6DoF pose rather than 3DoF. As seen, the ICP-VO 
path is in close agreement with the ground truth in the x-y 
plane, but not along the z-axis; this can be attributed to 
errors in roll and pitch. We have found that by applying 
local bundle adjustment techniques such as the one 
described in [14], we can significantly reduce the error in 
pitch and roll, Y, and Z, thereby improving the accuracy of 
the reconstructed path along the z-axis. For comparison, Fig. 
6(b) shows the reconstructed path by VO and ICP against 
ground truth. As seen, VO results in large error in the z-axis 
and ICP has large error along the x-axis. Figs. 6(c) through 
6(h) compare the six pose parameters against the ground 
truth from the Honeywell IMU. As seen, there is close 
agreement between the pose transformation values and the   

Fig. 4. Flow diagram of VOSM.

 Scans ,  
 Images ,  

  

SIFT 
Feature 
Matches 

Camera Laser Scanner Sensor Synchronization

SIFT Feature 
Detection and 

Tracking 

5-Point 
Algorithm 

with 
Preemptive 
RANSAC  

and 
Iterative 

Refinement 

Pose 
Extraction  

Search 
Window 

Computation

RANSAC 
based 
Pose 

Estimation 

,  

Scan  
Matches 

 ,

Visual Odometry 

Window 
Based Scan 

Point 
Tracking 

Line 
Extraction

Pose  
Estimate 

ICP 

 Robust Scan Matching 

4138



  

ground truth. For the second data set, a different operator 
carried the backpack, with different walking dynamics, and 
larger incremental rotations occurring at faster time scales. 
This resulted in slightly larger loop closure and path errors 
as seen in Fig 7(a).  
 The average path and loop closure errors for the two data 
sets are reported in Table-2. As seen the loop closure, and 
average position errors for ICP-VO is smaller than VO and 
ICP for both sets. The 4th and 5th columns of Table 2 show 
the RMS and peak errors for all pose parameters. The RMS 
error for yaw is considerably smaller for ICP-VO than for 
VO and ICP, and the peak error for all 6 pose parameters is 
considerably smaller for ICP-VO than for VO and ICP. 

The loop closure error for the VOSM algorithm which 
only recovers x, y and yaw in the 2D plane is 1.29m (1.23 
m) for set-1 (set-2). Similarly, the average position errors are 
0.52m (0.72m) for set-1 (set-2). Thus, for backpack data, a 
truly 3D algorithm such as ICP-VO not only recovers all 6 
degrees of freedom, but also results in smaller loop closure 
error. 

VI. CONCLUSIONS AND FUTURE WORK 
 In this paper two image augmented laser scan matching 
algorithms have been presented for indoor dead-reckoning. 
The VOSM algorithm is predominantly a 2D algorithm that 
efficiently uses images to recover 3DoF poses in a 2D plane. 
It has been tested in the interior corridor of a building, and 
results in a 0.3% loop closure error. This is better than the 
loop closure error obtained in [3] for a combined indoor-
outdoor path. The ICP-VO algorithm presented also fuses 
laser scan matching with image based pose estimated in a 
3D framework, and provides an accurate method of dead-
reckoning in 3D, with loop closure errors of about 1% of the 
traversed path. Future work involves loop closure detection, 
and enforcing global consistency using a graph-SLAM 
framework.  Ultimately, we plan on applying our proposed  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
algorithms to localize our backpack mounted with laser 
scanners and cameras for 3D indoor modeling. 
 

 Loop 
Closure 

Error(m)

Average 
Position 

Error(m) 

Rotation Error
(Y/P/R)  

(deg) 

Translation 
Error 

(X/Y/Z)(m) 

 
Set 1 

 
VO  

 
3.99 

 
2.88 

RMS Error 
1.81/0.61/0.94 

RMS Error 
0.07/0.02/0.05

Peak Error 
4.9/3.4/3.92 

Peak Error 
0.83/0.33/0.37

 
ICP 

 
1.97 

 
3.53 

RMS Error 
0.47/0.67/0.81 

RMS Error 
0.1/0.04/0.05

Peak Error 
3.71/3.39/6.86 

Peak Error 
0.54/0.26/0.2

 
ICP-VO

 
0.65 

 
0.57 

RMS Error 
0.30/1.65/1.35 

RMS Error 
0.05/0.04/0.05

Peak Error 
2.5/1.92/2 

Peak Error 
0.24/0.16/0.17

 
Set 2 

 
VO  

 
3.61 

 

 
1.09 

 

RMS Error 
1.67/0.89/0.56 

RMS Error 
0.13/0.04/0.11

Peak Error 
7.1/3.15/7.16 

Peak Error 
1.02/0.96/0.31

 
ICP 

 
4.88 

 
8.05 

RMS Error 
0.79/0.95/0.94 

RMS Error 
0.17/0.06/0.09

Peak Error 
5.28/6.62/6.2 

Peak Error 
1.7/0.94/0.41

 
ICP-VO

 
0.69 

 
0.86 

RMS Error 
0.77/1.19/0.93 

RMS Error 
0.08/0.05/0.10

Peak Error 
3.5/2.33/2.75 

Peak Error 
0.29/0.48/0.25

Table 2 – Performance of VO and ICP-VO on indoor 
data sets. 

Fig. 5. (a) Reconstructed VOSM path, in red, and ground truth in black; (b) the raw ICP path, in pink, and visual odometry path, in 
blue against ground truth, in black; (c) comparison of VOSM yaw in black, against ground truth in blue; (d) comparison of VOSM x-
translation in black, against ground truth in red; (e) comparison of VOSM y-translation in black, against ground truth in blue. 
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Fig. 7 (a). Reconstructed path of the ICP-VO algorithm in red, against ground truth in black for Set 2; (b) reconstructed 
VO path in blue, and ICP path in pink, against ground truth in black;  (c)-(e) computed roll, pitch and yaw from ICP-
VO against ground truth; (f)-(h) computed delta translations in the x, y and z directions against ground truth. 
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