
Autonomous Indoor Helicopter Flight using a Single Onboard Camera

Sai Prashanth Soundararaj and Arvind K. Sujeeth
Electrical Engineering Department

Stanford University, USA
{saip,asujeeth}@stanford.edu

Ashutosh Saxena
Computer Science Department

Cornell University, USA
asaxena@cs.cornell.edu

Abstract— We consider the problem of autonomously flying a
helicopter in indoor environments. Navigation in indoor settings
poses two major challenges. First, real-time perception and
response is crucial because of the high presence of obstacles.
Second, the limited free space in such a setting places severe
restrictions on the size of the aerial vehicle, resulting in a frugal
payload budget.

We autonomously fly a miniature RC helicopter in small
known environments using an on-board light-weight camera as
the only sensor. We use an algorithm that combines data-driven
image classification with optical flow techniques on the images
captured by the camera to achieve real-time 3D localization
and navigation. We perform successful autonomous test flights
along trajectories in two different indoor settings. Our results
demonstrate that our method is capable of autonomous flight
even in narrow indoor spaces with sharp corners.

I. INTRODUCTION

Unmanned aerial vehicles have several indispensable ap-
plications in surveillance, intelligence and search and rescue
(SAR) operations. We address the problem of autonomous
flights in indoor environments, which often have only limited
free space and may contain a number of obstacles. These
constraints limit the potential size of the aerial vehicle.

Miniature radio controlled helicopters are particularly
suited for indoor navigation due to their low-speed flight
and in-place hovering capabilities. However, their small size
places a frugal payload restriction on weight and power
supply. Miniature cameras are an attractive option because
they are small, passive sensors with low power requirements.
In comparison, other sensors such as lasers (an active sensing
method, e.g., Hokuyo [11]) are heavy (450g) and have high
power requirements (500mA). In our work, therefore, we use
a miniature light-weight camera (Fig. 1) as the sensor.

Related work on autonomous helicopter flight in outdoor
settings such as [1], [8], [9], [5] have led to terrific control
algorithms capable of performing extreme aerobatic ma-
neuvers. However, navigation in indoor environments pose
complementary challenges both in the perception and control
aspects:

• Indoor navigation is more of an accurate perception and
navigation problem than a control problem; it is crucial
to be able to navigate within close quarters of obstacles
in real-time.

• The smaller RC helicopters are limited in their payload
capacities (less than 70g). This allows only light-weight
sensors (such as small cameras) to be used.

Fig. 1. Our miniature indoor helicopter (13.6in rotor diameter, 227g
weight). Inset on the right shows the miniature wireless camera used.

• Images from the on-board video capture are subject to
severe vibrations due to helicopter motion.

To address these issues, we develop a purely vision-based
system, where we fly the helicopter autonomously using
only images from a single on-board camera. We consider
the following scenario: there is a ground robot that moves
around the environment, takes images and builds a map of
the environment (e.g., [22]). For example, we earlier used our
STanford AI Robot (STAIR) to navigate and take pictures in
our building [13]. Now, our miniature helicopter can take
the images from an on-board camera and fly autonomously
in these environments using this database in real-time. We
present an algorithm which uses a non-parametric learning
algorithm (K-nearest neighbor with cover trees implemen-
tation, see Section IV-B for perception). The output of
this algorithm is used in a PD (proportional differential)
controller to control the helicopter.

Our algorithm and controller framework are capable of
autonomously maintaining stable in-place hover of the he-
licopter, as well as following user-defined trajectories in
environments with limited free space. It is also capable of
correcting for drifts in motion, enabling it to maneuver in
narrow regions without crashing into boundaries.

We test our algorithm in two different environments. One
of them has sharp corners and obstacles along the sides of
a confined space and the robot has to correct for drift to
remain in the free space. The other has free space but few

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5307

discriminative features. We show that using our image-based
algorithm, our helicopter is able to fly successfully within
user-defined trajectories in both these environments.

II. RELATED WORK

There is a long and distinguished list of prior work on
autonomous helicopters in outdoor environments. We refer
the reader to a few papers ([1], [8], [9], [5]) because our
problem of indoor flight addresses different issues.

Several researchers have previously performed indoor
flight experiments. However, these are usually conducted in
uncluttered open spaces and using the more stable quad-rotor
helicopter models. For example, Tournier et al. [25] used
known patterns (Moire patterns) pasted in the environment
to estimate the attitude and position of quad-rotor vehicles.
He et al. [10] flew a quad-rotor in GPS denied indoor
environments, using a Hokuyo laser (a device that gives
3D depth). Roberts et al. [20] used infra-red and ultrasonic
sensors to fly a quad-rotor indoor in a large (7× 6m) room,
while [12] used vision to make a quad-rotor hover stably
in an indoor environment. Quad-rotors, however, have larger
dimensions (e.g., 730mm in span for [3], 550mm for [20])
that make it harder for them to navigate in constrained
spaces.

Mejias et al. [14] used vision to land a helicopter while
avoiding power lines. Nicoud and Zufferey [17] discussed the
tradeoffs of designing indoor helicopters while D. Schafroth
et al. [21] designed various test benches for micro helicopters
and designed a dual-rotor single-axis helicopter with an
omnidirectional camera. Mori et al. [16] used markers to
stably hover a co-axial helicopter and go from one marker
to another.

In other related work, Michels et al. [15] used an on-
board camera for autonomous obstacle avoidance in a small
RC car driving at high speeds. They compute image features
by convolving the image with a number of filters, and used
linear regression to predict distances to obstacles.

One can also build a map of the environment using Visual
SLAM (e.g., [27], [6], [22]), in which the map is built
using images captured from a camera. Ribnick et al. [19]
estimate positions and velocities from monocular views.
Such methods for estimating position/location from visual
landmarks have been used in many robots which navigate
on 2D ground.

In comparison to ground vehicles, aerial vehicles have
additional challenges posed by their 3D movement and
the additional degrees of freedom in helicopter orientation.
Furthermore, in the case of aerial navigation in highly
constrained spaces, we require very fast response times;
additional computation (e.g. feature computation) can pro-
hibitively increase the latency of the controller.

Our method of using images captured from a miniature
camera could be applied to autonomous flights of other small
aerial robots as well. For example, extremely small robots
such as 25mm long micro-mechanical flying insects [7] can
use miniature cameras.

Fig. 2. The controller setup showing the wireless image receiver, the laptop
and the wireless transmitter.

III. HELICOPTER PLATFORM

Our test platform is based on the E-flite Blade CX2 and
Blade CX3 coaxial helicopters (Fig. 1). These are cheap,
ready-to-fly micro helicopters. Each helicopter’s rotor diam-
eter is 0.36m (with the landing gear in place) – this enables
it to fly even in confined spaces. However, its total weight
is 227g and allows a payload with a maximum weight of
only 70g. We chose the coaxial model because it provides
stable flight and is considerably easier to control than its
dual rotor counterparts. A Swan EagleEye wireless camera is
mounted on-board (Fig. 1 inset) to stream images in real-time
to the control algorithm. The camera is small (22× 24× 27
mm), light-weight (14g), and has low power consumption
(100 mA). It relays back images of 640 x 480 resolution
at 30 frames per second. This camera is our only perception
source for the helicopter control – we do not even use inertial
sensors in our algorithm.

A wireless receiver attached to the laptop is used to
receive the streaming frames. We use a commercial interface,
Endurance’s PCTx, to link the transmitter to the USB port
of the laptop, via the trainer port (see Fig. 2). This enables
the helicopter to be controlled via the PC using our control
algorithm. We use the Spektrum DX6i 2.4 GHz transmitter,
which is capable of translating PPM input to DSM signals
that are broadcast to the helicopter.

IV. VISUAL PERCEPTION

There are various methods one can use for visual percep-
tion, such as using SIFT features or dense 3D reconstruction.
While SIFT features can provide additional robustness, it
comes at the expense of increased computation time. In our
real-time application, any elaborate computation is unsustain-
able. Furthermore, since SIFT features tend to be specific,
they have little hope of generalizing to similar but unknown
environments. With these limitations in mind, we chose a
simpler strategy that can still provide efficient and robust
perception.

5308

For image-based localization, we use a non-parametric
learning algorithm (nearest-neighbors implemented with
cover trees, described below). It gives us a “global” pre-
diction of the state Ψ (location and orientation) of the
helicopter. We will also use a scoring function for taking into
account helicopter dynamics while predicting the location.
Finally, we obtain velocity estimates using optical flowi. Our
PD controller combines the two predictions (global location
estimate and velocity estimate) to generate commands for
the helicopter.

For the purposes of flying a robot indoors, its (x, y)
location, its height z and the angle θ (yaw) to which
the helicopter points are sufficient to describe a hovering
location. The other two orientations of the helicopter ψ
(pitch) and γ (roll) are close to zero in the stable state of the
helicopter, and become non-zero only when the helicopter is
controlled to move to a new location. Therefore, we describe
the state of the helicopter as Ψ = (x, y, z, θ).

A. Image database using Cover Trees

A cover tree [2] is a computationally-efficient data struc-
ture for performing nearest neighbor lookups from a large
database. (There are many other implementations for fast
nearest neighbor lookups, e.g. KD trees [18]; cover trees are
most suited for our purpose because they are not as limited
by the number of dimensions.) It represents the data points
in a tree structure with storage size linear in the number of
data points. This enables one to store visual maps of a large
scale environment, such as a building.

Database retrieval can be performed using a number of
methods. Cummins and Newmann [6] used interest points
on small image patches as the basis of representation. This
method is useful for recognizing a specific image feature in
the database. Since our images contain extensive motion blur
due to helicopter motion, it is harder to recognize individual
features. Therefore, we use the whole image as the basis of
the representation.

In the field of computer vision, Torralba [24] presented
the idea of tiny images for large databases. They started with
80 million images from the Internet, and despite projecting
it down to only a few dimensions, they were still able
to recognize objects given a new image. Motivated by
[24] and [26], we reduce the dimension of a full image
from our camera from 307200 pixels to 32 using Principal
Components Analysis (PCA) (See Fig. 3). This significantly
reduces the storage and computational requirements. Each
vector q ∈ R32 for a frame is stored as a point in the
cover tree C. This allows us to perform fast classification
of an incoming test frame by searching for the K-Nearest
Neighbors using its PCA projection. We chose the K-Nearest
Neighbors (kNN) algorithm to classify a frame with respect
to its position and attitude because it is a fast, data-driven
approach.

B. Prediction with spatial proximity

Visually, two images corresponding to different locations
often look very similar even if they are of two spatially

Fig. 3. Image frames before and after Principal Component Analysis.

distinct areas. For example, one hallway would look exactly
the same as another. In order to disambiguate, we maintain
a history H of the past few states (five in our experiments)
of the helicopter. Since we know that the helicopter cannot
change its location drastically in a short interval, we can
use this memory of past states to improve the estimation
of the helicopter’s location. In detail, when a new frame is
received from the helicopter’s camera, we extract the K near-
est neighbors (n1, n2, . . . , nK , with labels Ψ1,Ψ2, . . . ,ΨK

ordered from closest to farthest) from its PCA projection
using cover trees. We compute the score J for each of the
i = 1, 2, ...,K nearest neighbors.

J(Ψi) =
∑
j∈H

||Ψi −Hj ||2 (1)

where Hj represents the jth image in the image history. We
then define the Ψi with the lowest (best) score J as

Ψ∗ = arg min
i
J(Ψi) (2)

to be the current prediction (with corresponding nearest
neighbor n∗).1

However, in many cases, our image-based classification is
not unimodal in that it needs to maintain multiple beliefs
about its state. For example, consider a helicopter flying
in a hallway and facing a wall; turning either left or right
would result in a similar visual appearance. An algorithm
that uses Kalman filters also suffers from this problem when
the belief about the state is not unimodal. Particle filters [23]
provide a nice method to address this issue; however, they
are computationally intensive. As a simplification of these
methods, we account for the case where the helicopter has
high confidence in its state due to a location with a visually
discriminative feature. We therefore estimate the state as

Ψ̂ = arg min(ν||n∗ − q||2, ||n1 − q||2) (4)

where q is the query point and ν is a coefficient between
0 and 1 indicating the confidence in the closest point, i.e.,
a parameter describing the relative confidence of the values

1In practice, we take three neighbors (i = 1, 2, 3) with lowest score J ,
and define the expected state as

Ψ′ =
X

i

wiΨi, (3)

where
P

i wi = 1. Using Ψ′ instead of Ψ∗ mitigates a number of errors
caused by noise.

5309

obtained from the spatial proximity estimate n1 as compared
to the nearest neighbor value n∗. This estimate is then taken
to be the prediction of the current state Ψ of the helicopter.

C. Optical Flow

Self-created turbulence and random drifts are a common
occurrence when flying miniature RC helicopters. To help
stabilize the helicopter against these unwanted movements,
we use the optical flow across images to estimate the
helicopter’s current velocity and direction of motion. This
velocity estimate is then used by the control algorithm to
stabilize the helicopter as described in Section IV-D. The
main idea is to provide a counter-acting effect that helps
prevent the helicopter from turning or moving too drastically
in a short period, giving it additional stability.

Optical flow is implemented using 400 features and
OpenCV’s implementation of the Pyramidal Lucas Kanade
(PLK) algorithm [4]. We calculate the total optical flow as
the mean over all the features for each frame (we additionally
apply a median filter in time to remove outliers). Fig. 4 shows
the calculated optical flow on an example frame, and the inset
shows the attitude estimated by kNN. We sum the horizontal
components of the optical flow in the horizontal direction to
get Orow, and sum in the vertical direction to get Ocol.

Fig. 4. Optical flow computed from a typical image.

D. Control Algorithm

The inputs to our control algorithm are the image frames
relayed in real-time from the on-board wireless camera. Our
algorithm uses these to estimate the current position and
velocity of the helicopter and then outputs those estimates
to a PD controller.

We will first describe how we use the vision output to
generate desired velocity controls for the helicopter. Let the
current state of the helicopter be Ψ; the noisy estimate of the
state obtained using our kNN algorithm is Ψ̂ = (x̂, ŷ, ẑ, θ̂);
and the desired values (e.g. xdesired) are the coordinates
that we want to move towards. We combine the output of

vision (current location from kNN and velocity estimate from
optical flow) to stabilize the helicopter as:

ẋ∗ = α1 ∗ (xdesired − x̂) + β1 ∗ ˆ̇xOF (5)

ẏ∗ = α2 ∗ (ydesired − ŷ) + β2 ∗ ˆ̇yOF (6)

ż∗ = α3 ∗ (zdesired − ẑ) + β3 ∗ ˆ̇zOF (7)

θ̇∗ = α4 ∗
(
θdesired − θ̂

)
+ β4 ∗ ˆ̇

θOF (8)

where ˆ̇xOF = Orow cos θ, ˆ̇yOF = Orow sin θ and ˆ̇zOF =
Ocol are the velocity estimates calculated by optical flow
in x, y and z-directions, respectively. α and β are tunable
parameters, estimated through controlled experiments.

By varying the desired (or goal) values continuously, we
can make the helicopter follow trajectories and maintain
orientations in space. For example, when the helicopter is
at its desired location, the first term in each of the equations
would be close to zero, and the second optical flow term
would prevent the helicopter from moving due to a few
misclassifications.

We can give four control commands to the helicopter—
throttle T (mostly changes z), rudder R (mostly changes θ),
elevator E (mostly moves the helicopter forward/backward)
and aileron A (mostly moves the helicopter left/right). We
write a control command as C = (A,E, T,R). Note that the
“stable” control commands are (0, 0, 0, 0), i.e., the state of
the helicopter with correct trim settings. A non-zero control
would give the helicopter a velocity in a particular direction.
We compute the commands to be given to the helicopter
from the desired velocity Ψ̇∗ as

C = MΨ̇∗ (9)

where M ∈ R4×4 is the control mixing matrix.2

E. Data Collection

Our method uses a data-driven supervised learning algo-
rithm for estimating the current state ψ of the helicopter.
This necessitates a labeled training data set. Our training
data consists of videos taken along uniformly spaced points
in each environment. At each point, we take a training video
by rotating first clockwise and then counter-clockwise at
approximately uniform velocity, which provides a continuous
set of θ labels at a particular (x,y) coordinate. We also take
training videos at a fixed θ along a line of points in both x
and y directions at varying heights z.3 The data points are
then labeled assuming that the motion was uniform during
each training video.

To construct our final training datasets, we additionally
apply a Gaussian blur to each frame of the training videos
and add those to the training set along with the normal

2M is mostly a diagonal matrix with the gains hand-tuned. Only a
few off-diagonal entries are non-zero, (i.e., the trim correlations), for
example, changing elevator mostly moves the helicopter forward/backward
but also slightly changes z. Finally, since our representation (x, y)
is in global coordinates, the first 2 × 2 components of M have
[cos θ, sin θ; − sin θ, cos θ].

3We use a combination of different initial orientations to reduce the
labeling error due to imprecision in the data collection process.

5310

Fig. 5. Controller interface showing location estimate and control signal
values.

unblurred frames. This helps account for varying amounts of
motion blur (which depends on the velocity of the helicopter)
in the in-flight video stream.

We often encountered significant problems with radio
frequency interference in the wireless receiver for the on-
board camera. To mitigate this, we used a fast and reasonably
accurate filter based on the histogram of an image’s edges.
We applied the noise filter to both the training sets and the
incoming frames in real-time.

V. CONTROLLER INTERFACE AND SIMULATOR

A. Controller Interface

The interface was designed to provide us flexibility in
running experiments, having a smooth control of navigation
and effective realtime feedback. We use Endurance’s low
level PCTx driver for communicating through the radio-
controller interface. Fig. 5 shows a screenshot of the con-
troller during an actual flight. The display presents several
pertinent real-time results to the user: the video stream from
the helicopter’s wireless camera, and displays showing the
current kNN estimates for location and orientation, optical
flow value and command signals generated by the control
algorithm.

B. Simulator

We implemented a simple simulator of helicopter behavior
to test our vision algorithm (Fig. 5). The simulator builds a
database to model the spatial structure of the surroundings
based on a test video. It interacts with the vision and control
framework by accepting a control command, retrieving the
image frame that would have resulted if the command was
issued to the helicopter in the actual setting, and passing the
frame to the controller.4 The retrieval is done by searching
for the image in the test video closest to the estimated
state. We also simulate the latency of the helicopter response
due to communication/processing delays and physical effects
such as inertia. The simulator enables us to both verify
classification accuracy along trajectories and visualize the
controller’s dynamics.

4The resulting image frame is an approximation, since it is constrained
to be a frame present in the test video.

Fig. 6. An image showing our test environment E1.

VI. EXPERIMENTS

We tested our algorithm in two different locations. Our
first environment (E1) is a relatively feature-less open rect-
angular space (4.8× 4.8m). This environment provides few
obstacles for the helicopter, but poses a challenging local-
ization problem. Conversely, our second environment (E2)
is in a constrained space (1.8× 3.6m) with narrow corridors
(1.3m wide) and a sharp turn, where even minor deviations
in flight can cause a crash. We collected 28306 and 31559
training frames in E1 and E2 respectively. After projecting
to 32 dimensions using the PCA model, storing the training
model required only 9.51 MB and 12.5 MB. Figures 6 and 10
provide a view of each respective test environment.

Fig. 7. An overhead view showing the trajectory the helicopter has to
follow in E2. Note that this map only shows two degrees of freedom out
of a possible four for our helicopter.

5311

(a) x-component (b) y-component (c) θ-component

Fig. 8. A square trajectory in environment E1. Blue shows the ground-truth and red shows the predicted location. (Best viewed in color)

(a) x-component (b) y-component (c) θ-component

Fig. 9. A trajectory in environment E2. Blue shows the ground-truth and red shows the predicted location. (Best viewed in color)

TABLE I
AVERAGE AND MEDIAN ERROR ALONG VARIOUS AXES FOR TWO TEST ENVIRONMENTS (E1 AND E2). “RAND” MEANS THAT WE RANDOMLY PREDICT

THE LOCATION/ORIENTATION DRAWN UNIFORMLY FROM POSSIBLE LOCATIONS.

X (METERS) X (METERS) Y (ERRORS) Y (METERS) θ θ
(MEAN) (MEDIAN) (MEAN) (MEDIAN) (MEAN) (MEDIAN)

E1 (RAND) 1.22 1.22 1.22 1.22 90.0◦ 90.0◦

E1 (OUR METHOD) .32 .11 .22 .09 15.6◦ 12.8◦

E2 (RAND) .46 .46 .91 .91 90.0◦ 90.0◦

E2 (OUR METHOD) .11 0.01 .36 .29 8.3◦ 4.3◦

A. Simulator Results

We collected six test videos in E1 and four in E2. The
test videos were collected along various trajectories. Fig. 8
a,b shows the x and y classification results on a typical test
video in E1; this video was taken along a square-path where
the helicopter was pointing along the direction of movement.
Fig. 8c shows another trajectory in which x and y are kept
constant, but θ is panned.

We tested our framework on a significantly harder trajec-
tory in E2 which consists of a narrow corridor with obstacles
on either sides followed by a sharp turn around a corner
and into a second section of the corridor (see Fig. 7). Fig. 9
shows the simulated results of this trajectory. The constrained
nature of this path makes accurate classification especially
important for robust traversal. We see that the predicted
results follow the ground truth trajectory quite closely. As
shown in Fig. 7 and 10, the trajectory consists of two laps.
In the first part, x and θ remain mostly constant and y
increases as we move forward in a nearly straight line while
maintaining a safe distance from the sides. In the second part,

the helicopter turns (thus changing θ to a different value)
and follows the second corridor in which both x and y are
increasing.

Table I shows the average and median error for x, y
and θ. We get good results for predicting the position and
orientation estimates in both environments— for instance, a
mean error of only 12.9◦ (with random baseline of 90◦)5 for
the θ estimate. Because of a few errors in the prediction,
our mean errors increase significantly. Its is also worth
noting that the classification error is low even in E1, despite
the environment being virtually featureless. Additionally,
our controller can handle a few misclassifications without
jeopardizing the flight because it would correct itself in
consecutive frames.6 Therefore, we also report median errors.

These trajectories show typical results and are a reasonable
test case for our classification algorithm; however, in reality

5Random means that we randomly predict the orientation drawn uni-
formly from all possible locations

6Furthermore, the classifier only provides a global location estimate; local
position is well stabilized by the optical flow.

5312

the results can vary due to imperfect modeling of helicopter
dynamics. Therefore, we test our algorithm with actual flights
in the two test locations.

B. Real Test Flights: System Details

Real-time perception, processing and response is crucial
for our algorithm. We therefore performed several optimiza-
tions to meet these constraints. Table II shows the execution
time of key components of our system when using different
dimensions for the PCA projection. The data was collected
on a Dell XPS 1330 laptop with a 2.4 GHz Core 2 Duo
processor. The on-board video camera captures at 30 frames
per second (fps). Using the 32 dimension PCA model in
our experiments, we were able to to achieve nearly real-time
response by dropping every other frame. Fast response is
extremely important for flying the helicopter successfully;
therefore, we trade-off a slight degradation in classification
accuracy for an order of magnitude improvement in process-
ing time.

TABLE II
COMPARISON OF PERFORMANCE WITH DIFFERENT PCA DIMENSIONS.

PCA (MS) KNN (MS) TOTAL FPS
32-DIM 23.77 4.77 14.32
64-DIM 48.6 7.00 10.10
256-DIM 186.9 487.26 1.40

C. Real Test Flights: Results and Discussion

We performed several experiments in the two environ-
ments along various trajectories.7 We ran experiments using
both the Blade CX2 and the CX3 helicopters with no changes
to the algorithm. We have the videos available at (some
of the clips are also shown in the video attached with the
submission):

http://ai.stanford.edu/∼saip/helicopter

We used our algorithm to perform several hovering and
panning trajectories. Our algorithm is robust in maintaining
orientation. In E1, the open space is nearly symmetric, so
several locations (e.g. the hallways) have unusually high rates
of misclassification. Despite this, our algorithm is still able
to autonomously pan to a desired orientation and maintain
stable hovering; the combined update equation allows it to
pass through less stable positions until it fixes on the desired
location.

Next, we perform a number of trajectories in different
environments - for example, an L-shaped trajectory in E1
(not shown in the video). In one trajectory in E2 (see Fig. 10),
the helicopter has to fly from one end of the room to another
back and forth (including turning automatically) without

7Test flight procedure: Landing and taking-off of the helicopter was
done manually. After taking-off, the control was handed over to our vision
algorithm. The sub-trims of the helicopter control were also set manually
before the flight—a standard procedure for human helicopter pilots.

running into the walls or the chairs. This is a significant
challenge in this narrow area, where even a small drift or
gust of turbulence can cause the helicopter to hit a wall
very quickly. In this case, our algorithm corrects for both
lateral and panning drift to avoid nearby obstacles. When
the helicopter reaches the end of the corridor, it successfully
turns and traverses the corridor again.

In the more challenging trajectory in E2 (shown in Fig. 7
and 10), the helicopter flies through the corridor and au-
tonomously turns around a corner to go to the second part
of the corridor. This trajectory was even more constrained
than the first. The helicopter had to pass through narrow
areas (only 1.30m wide) multiple times—with the diameter
of the helicopter (and the landing gear) as 0.36m, this left
only 0.47m free space on each side of the helicopter. In this
small space, the helicopter must automatically turn around
the corner while continuing to maintain a safe distance from
the walls and the obstacles. Our attached videos shows a
few typical clips out of the many experiments we did in this
location.

There are a few limitations of the current system. The
throttle controls are very sensitive and we found it hard to
automatically maintain the desired height accurately. This
causes the helicopter to drift up and down, potentially
resulting in a few additional misclassifications. We plan to
improve this to fly the helicopter more robustly.

VII. CONCLUSION

We presented a control algorithm for indoor helicopter
navigation based on fast nearest neighbors classification for
3D localization and optical flow for velocity estimation.
Our algorithm was successfully able to fly a miniature RC
helicopter autonomously in known but constrained indoor
spaces. The algorithm requires only a single light-weight
camera for visual perception and control. Our approach
extends the approaches of past work (e.g. 2D ground and
pattern-based image localization) to the more difficult prob-
lem of 3D flight with a miniature helicopter in multi-
ple challenging environments. We believe that our results
demonstrate that in the future, even miniature aerial robots
could fly autonomously using only a single camera as the
sensor.

REFERENCES

[1] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application
of reinforcement learning to aerobatic helicopter flight. In Neural
Information Processing Systems (NIPS), 2006.

[2] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest
neighbor. In International Conference on Machine Learning (ICML),
2006.

[3] S. Bouabdallah and R. Siegwart. Backstepping and sliding-mode
techniques applied to an indoor micro quadrotor. In International
Conference on Robotics and Automation (ICRA), 2005.

[4] J. Bouguet. Pyramidal implementation of the lucas kanade feature
tracker description of the algorithm. OpenCV, Intel Corporation, 1999.

[5] A. Coates, P. Abbeel, and A. Y. Ng. Learning for control from multiple
demonstrations. In International Conference on Machine Learning
(ICML), 2008.

[6] M. Cummins and P. Newmann. Fab-map: Probabilistic localisation
and mapping in the space of appearance. International Journal of
Robotics Research (IJRR), 27(6):647–665, 2008.

5313

Fig. 10. Sequence of images showing our helicopter flying and turning the corner to complete the trajectory in E2.

[7] X. Deng, L. Schenato, W.-C. Wu, and S. Sastry. Flapping flight for
biomimetic robotic insects: Part ii- flight control design. IEEE Trans
on Robotics, 22(4):789–803, 2006.

[8] E. Feron and S. Bayraktar. Aggressive landing maneuvers for un-
manned aerial vehicles. In AIAA Guid, Nav Cont Conf, 2006.

[9] V. Gavrilets, I. Martinos, B. Mettler, and E. Feron. Control logic for
automated aerobatic flight of miniature helicopter. In AIAA Guid, Nav
Cont Conf, 2002.

[10] R. He, S. Prentice, and N. Roy. Planning in information space for a
quadrotor helicopter in a gps-denied environments. In International
Conference on Robotics and Automation (ICRA), 2008.

[11] Hokuyu. Range-finder type laser scanner urg-04lx specifications.
Online, 2005.

[12] N. Johnson. Vision-Assisted Control of a Hovering Air Vehicle in an
Indoor Setting. PhD thesis, Bringham Young University, 2008.

[13] E. Klingbeil, A. Saxena, and A. Y. Ng. Learning to open new doors. In
Robotic Science and Systems (RSS) workshop on Robot manipulation,
2008.

[14] L. Mejias, J. Roberts, K. Usher, P. Corke, and P. Campoy. Two seconds
to touchdown vision-based controlled forced landing. In Int’l conf on
Intelligent Robots and Systems (IROS), 2006.

[15] J. Michels, A. Saxena, and A. Y. Ng. High speed obstacle avoidance
using monocular vision and reinforcement learning. In International
Conference on Machine Learning (ICML), 2005.

[16] R. Mori, K. Hirata, and T. Kinoshita. Vision-based guidance control of
a small-scale unmanned helicopter. In Int’l conf on Intelligent Robots
and Systems (IROS), 2007.

[17] J.-D. Nicoud and J.-C. Zufferey. Toward indoor flying robots. In Int’l
conf on Intelligent Robots and Systems (IROS), 2002.

[18] R. Panigrahy. An improved algorithm finding nearest neighbor using
kd-trees. LNCS, (4957):387–398, 2008.

[19] E. Ribnick, S. Atev, and N. Papanikolopoulos. Estimating 3d positions
and velocities of projectiles from monocular views. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 31(5):938–
944, 2008.

[20] J. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano. Quadrotor
using minimal sensing for autonomous indoor flight. In European
Micro Air Vehicle Conference (AV), 2007.

[21] D. Schafroth, S. Bouabdallah, C. Bermes, and R. Siegwart. From the
test benches to the first prototype of the mufly micro helicopter. J
Intell Robot Syst, 54:245–260, 2009.

[22] B. Steder, G. Grisetti, C. Stachniss, and W. Burgard. Visual slam
for flying vehicles. IEEE Transactions on Robotics, 24(5):1088–1093,
2008.

[23] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
2005.

[24] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images:
a large dataset for non-parametric object and scene recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(11):1958–1970, 2008.

[25] G. Tournier, M. Valenti, and J. P. How. Estimation and control of
a quadrotor vehicle using monocular vision and moirre patterns. In
AIAA Guidance, Navigation, and Control Conf, 2006.

[26] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of
Cognitive Neuriscience, COM:132, 1990.

[27] B. Williams, M. Cummins, J. Neira, P. Newmann, I. Reid, and
J. Tardos. An image-to-map loop closing method for monocular slam.
In Int’l conf on Intelligent Robots and Systems (IROS), 2008.

5314

